- x 2.1 Construct the group under modulo-6 addition. X 2.1 Construct the group under modulo-6 addition the gr
- X 2.2 Construct the group under modulo-3 multiplication. X 2.3 Let m be a positive integer. If m is not a prime, prove that the set $\{1, 2, \dots, m-1\}$ is not a group under modulo-m multiplication.
 - 2.4 Construct the prime field GF(11) with modulo-11 addition and multiplication. Find all the primitive elements, and determine the orders of other elements.
- **X** 2.5 Let m be a positive integer. If m is not prime, prove that the set $\{0, 1, 2, \dots, m-1\}$ is not a field under modulo-m addition and multiplication.
 - **2.6** Consider the integer group $G = \{0, 1, 2, \dots, 31\}$ under modulo-32 addition. Show that $H = \{0, 4, 8, 12, 16, 20, 24, 28\}$ forms a subgroup of G. Decompose G into cosets with respect to H (or modulo H).
 - 2.7 Let λ be the characteristic of a Galois field GF(q). Let 1 be the unit element of GF(q). Show that the sums

1,
$$\sum_{i=1}^{2} 1$$
, $\sum_{i=1}^{3} 1$, ..., $\sum_{i=1}^{\lambda-1} 1$, $\sum_{i=1}^{\lambda} 1 = 0$

form a subfield of GF(q).

- 2.8 Prove that every finite field has a primitive element.
- X2.9 Solve the following simultaneous equations of X, Y, Z, and W with modulo-2 arithmetic:

$$X + Y + W = 1,$$

 $X + Z + W = 0,$
 $X + Y + Z + W = 1,$
 $Y + Z + W = 0.$

- **2.10** Show that $X^5 + X^3 + 1$ is irreducible over GF(2).
- **2.11** Let f(X) be a polynomial of degree n over GF(2). The reciprocal of f(X) is defined as

$$f^*(X) = X^n f\left(\frac{1}{X}\right).$$

- **a.** Prove that $f^*(X)$ is irreducible over GF(2) if and only if f(X) is irreducible over GF(2).
- **b.** Prove that $f^*(X)$ is primitive if and only if f(X) is primitive.
- **2.12** Find all the irreducible polynomials of degree 5 over GF(2).
- **2.13** Construct a table for $GF(2^3)$ based on the primitive polynomial $p(X) = 1 + X + X^3$. Display the power, polynomial, and vector representations of each element. Determine the order of each element.
- **2.14** Construct a table for $GF(2^5)$ based on the primitive polynomial $p(X) = 1 + X^2 + X^2$ X^5 . Let α be a primitive element of $GF(2^5)$. Find the minimal polynomials of α^3 and α^7 .
- **2.15** Let β be an element in $GF(2^m)$. Let e be the smallest nonnegative integer such that $\beta^{2^r} = \beta$. Prove that $\beta^2, \beta^{2^2}, \dots, \beta^{2^{r-1}}$, are all the distinct conjugates
- 2.16 Prove Theorem 2.21.
- 2.17 Let α be a primitive element in $GF(2^4)$. Use Table 2.8 to find the roots of $f(X) = X^3 + \alpha^6 X^2 + \alpha^9 X + \alpha^9.$

- **2.18** Let α be a primitive element in $GF(2^4)$. Divide the polynomial $f(X) = \alpha^3 X^7 + \alpha X^6 + \alpha^7 X^4 + \alpha^2 X^2 + \alpha^{11} X + 1$ over $GF(2^4)$ by the polynomial $g(X) = X^4 + \alpha^3 X^2 + \alpha^5 X + 1$ over $GF(2^4)$. Find the quotient and the remainder (use Table 2.8).
- **X 2.19** Let α be a primitive element in $GF(2^4)$. Use Table 2.8 to solve the following simultaneous equations for X, Y, and Z:

$$X + \alpha^5 Y + Z = \alpha^7,$$

$$X + \alpha Y + \alpha^7 Z = \alpha^9,$$

$$\alpha^2 X + Y + \alpha^6 Z = \alpha.$$

- **2.20** Let V be a vector space over a field F. For any element c in F, prove that $c \cdot 0 = 0$.
- **2.21** Let V be a vector space over a field F. Prove that, for any c in F and any \mathbf{v} in V, $(-c) \cdot \mathbf{v} = c \cdot (-\mathbf{v}) = -(c \cdot \mathbf{v})$.
- **2.22** Let S be a subset of the vector space V_n of all n-tuples over GF(2). Prove that S is a subspace of V_n if for any \mathbf{u} and \mathbf{v} in S, $\mathbf{u} + \mathbf{v}$ is in S.
- **2.23** Prove that the set of polynomials over GF(2) with degree n-1 or less forms a vector space GF(2) with dimension n.
- $\lambda \zeta$ 2.24 Prove that $GF(2^m)$ is a vector space over GF(2).
 - **2.25** Construct the vector space V_5 of all 5-tuples over GF(2). Find a three-dimensional subspace and determine its null space.

2.26 Given the matrices

$$\mathbf{G} = \left[\begin{array}{cccccc} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right], \quad \mathbf{H} = \left[\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right],$$

show that the row space of G is the null space of H, and vice versa.

- 2.27 Let S_1 and S_2 be two subspaces of a vector V. Show that the intersection of S_1 and S_2 is also a subspace in V.
- 2.28 Construct the vector space of all 3-tuples over GF(3). Form a two-dimensional subspace and its dual space.