PROBLEMS

7.1 Consider the triple-error-correcting RS code given in Example 7.2. Find the code polynomial for the message

$$\mathbf{a}(X) = 1 + \alpha^5 X + \alpha X^4 + \alpha^7 X^8.$$

- 7.2 Using the Galois field $GF(2^5)$ given in Appendix A, find the generator polynomials of the double-error-correcting and triple-error-correcting RS codes of length 31.
- \star 7.3 Using the Galois field $GF(2^6)$ given in Table 6.2, find the generator polynomials of double-error-correcting and triple-error-correcting RS codes of length 63.
- 7.4 Consider the triple-error-correcting RS code of length 15 given in Example 7.2. Decode the received polynomial

$$\mathbf{r}(X) = \alpha^4 X^3 + \alpha^9 X^8 + \alpha^3 X^{13}$$

using the Berlekamp algorithm.

- 7.5 Continue Problem 7.4. Decode the received polynomial with the Euclidean algorithm.
- 7.6 Consider the triple-error-correcting RS code of length 31 constructed in Problem 7.2. Decode the received polynomial

$$\mathbf{r}(X) = \alpha^2 + \alpha^{21} X^{12} + \alpha^7 X^{20}$$

using the Euclidean algorithm.

- 7.7 Continue Problem 7.6. Decode the received polynomial in the frequency domain using transform decoding.
- *7.8 For the same RS code of Problem 7.6, decode the following received polynomial with two erasures:

$$\mathbf{r}(X) = (*)X^3 + \alpha^5 X^7 + (*)X^{18} + \alpha^3 X^{21}$$

with the Euclidean algorithm.

- 7.9 Prove that the dual code of a RS code is also a RS code.
- 7.10 Prove that the $(2^m 1, k)$ RS code with minimum distance d contains the primitive binary BCH code of length $2^m 1$ with designed distance d as a subcode. This subcode is called a *subfield subcode*.

7.11 Let α be a primitive element in $GF(2^m)$. Consider the $(2^m - 1, k)$ RS code of length of $2^m - 1$ and minimum distance d generated by

$$g(X) = (X - \alpha)(X - \alpha^2)...(X - \alpha^{d-1}).$$

Prove that extending each codeword $v = (v_0, v_1, \dots, v_{2^m-2})$ by adding an overall parity-check symbol

$$v_{\infty} = -\sum_{i=0}^{2^m-2} v_i$$

produces a $(2^m, k)$ code with a minimum distance of d + 1.

7.12 Consider a t-symbol error-correcting RS code over $GF(2^m)$ with the following parity-check matrix:

$$\mathbf{H} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & (\alpha^2)^2 & \cdots & (\alpha^2)^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{2t} & (\alpha^{2t})^2 & \cdots & (\alpha^{2t})^{n-1} \end{bmatrix},$$

where $n = 2^m - 1$, and α is a primitive element in $GF(2^m)$. Consider the extended Reed-Solomon code with the following parity-check matrix:

$$\mathbf{H}_1 = \left[\begin{array}{ccc} 0 & 1 & \\ 0 & 0 & \\ \vdots & \vdots & \mathbf{H} \\ 0 & 0 & \\ 1 & 0 & \end{array} \right]$$

Prove that the extended code also has a minimum distance of 2t + 1.

7.13 Let $\mathbf{a}(X) = a_0 + a_1 X + \cdots + a_{k-1} X^{k-1}$ be a polynomial of degree k-1 or less over $GF(2^m)$. There are $(2^m)^k$ such polynomials. Let α be a primitive element in $GF(2^m)$. For each polynomial $\mathbf{a}(X)$, form the following polynomial of degree $2^m - 2$ or less over $GF(2^m)$:

$$\mathbf{v}(X) = \mathbf{a}(1) + \mathbf{a}(\alpha)X + \mathbf{a}(\alpha^2)X^2 + \dots + \mathbf{a}(\alpha^{2^m-2})X^{2^m-2}$$

Prove that the set $\{v(X)\}$ forms the $(2^m - 1, k)$ RS code over $GF(2^m)$. (Hint: Show that v(X) has $\alpha, \alpha^2, \dots, \alpha^{2^m - k - 1}$ as roots). This original definition of a RS code is given by Reed and Solomon [1].