PROBLEMS |
»¢ 3.1 Consider a systematic (8, 4) code whose parity-check equations are
vo = Uy + u2 +us,
vy = up +uy +uz,
vy = up + U1 + u3,
vz = ug + uz + us.
where ug, u1, up, and us, are message digits, and vp, vy, 2, and v3 are parity-
check digits. Find the generator and parity-check matrices for this code. Show
analytically that the minimum distance of this code is 4.
3.2 Construct an encoder for the code given in Prob!em 3.1
3.3 Construct a syndrome circuit for the code given in Problem 3.1.

5 3.4 Let H be the parity-check matrix of an (n, k) linear code C thz}t has both oc_id-
and even-weight codewords. Construct a new linear code C; with the following

parity-check matrix:

H;

(Note that the last row of H; consists of all 1’s.) _
a. Show that Cy is an (n + 1, k) linear code. C; is called an extension of C.
b. Show that every codeword of C; has even weight.

¢ Show that C; can be obtained from C by adding an extra parity-check digit,
denoted by veo, to the left of each codeword v as follows: (1) if v has odd weight,
then v, = 1, and (2) if v has even weight, then v, = 0. The parity-check digit
Voo is called an overall parity-check digit.
¢ 3.5 Let C be a linear code with both even- and odd-weight codewords. Show that
the number of even-weight codewords is equal to the number of odd-weight
codewords.
3.6 Consider an (n, k) linear code C whose generator matrix G contains no zero
column. Arrange all the codewords of C as rows of a 2¥-by-n array.
a. Show that no column of the array contains only zeros.
b. Show that each column of the array consists of 2¢~1 zeros and 2~ ones.
¢ Show that the set of all codewords with zeros in a particular component
position forms a subspace of C. What is the dimension of this subspace?
% 3.7 Prove that the Hamming distance satisfies the triangle inequality; that is, let x, y,
and z be three n-tuples over GF(2), and show that

d(x,y) + d(y, z) > d(x, z).

3.8 Prove that a linear code is capable of correcting A or fewer errors and simultane-
ously detecting /(I > A) or fewer errors if its minimum distance dpip > A +1 + 1.
%-3.9 Determine the weight distribution of the (8, 4) linear code given in Problem 3.1.
Let the transition probability of a BSC be p = 10~2. Compute the probability of
an undetected error of this code.

3.10 Because the (8, 4) linear code given in Problem 3.1 has minimum distance 4, it
is capable of correcting all the single-error patterns and simultaneously detecting
any combination of double errors. Construct a decoder for this code. The decoder
must be capable of correcting any single error and detecting any double errors.

3.11 Let T be the ensemble of all the binary systematic (n, k) linear codes. Prove that
a nonzero binary n-tuple v is contained in either exactly 2¢~-D®-5 ¢codes in " or
in none of the codes in I".

% 3.12 The (8, 4) linear code given in Problem 3.1 is -capable of correcting 16 error
patterns (the coset leaders of a standard array). Suppose that this code is used
for a BSC. Devise a decoder for this code based on the table-lookup decoding
scheme. The decoder is designed to correct the 16 most probable error patterns.



3.13 Let C; be an (n1, k) linear Systematic code with minimum distance dy and
generator matrix G; = [P1 I]. Let C2 be an (ny, k) linear Systematic code with
minimum distance d; and generator matrix G, = [P, L]. Consider an (ny+ny, k)
linear code with the following parity-check matrix:

1
T
P

H= Lyt I

3.15 For any binary (n, k) linear code with minimum distance (or minimum weight)
2t+1or greater, show that the number of parity-check digits satisfies the following

inequality: _
i (3)e(3) o (3)]

The preceding inequality gives an upper bound on the random-error—correcting
capability 1 of ap (n, k) linear code, This bound is known as the Hamming

bound [14). (Hint: For an (n, k) linear code with minimum distance 2¢ + 1 or
greater, all the n-tuples of weight 7 or less can be used as coset leaders in a
standard array.)
3.16 Show that the minimum distance dp;, of an (n, k) linear code satisfies the following
inequality:
n.2k-1
dpin < * 1"

(Hint: Use the result of Problem 3.6(b). This bound is known as the Plotkin
bound [1-3].)
* 3.17 Show that there exists an (n, k) linear code with a minimum distance of at least

dif
d-1
Z( n ) < 2"k,
i=l1 g

(Hint: Use the result of Problem 3.11 and the fact that the nonzero n-tuples of
weight d — 1 or less can be at most in

(1))

i=1

(n, k) systematic linear codes.)
* 3.18 Show that there exists an (n, k) linear code with a minimum distance of at Jeast
dmin that satisfies the following inequality:

dmin—~1 dmin
E()E0)
= i=

(Hinr: See Problem 3.17. The second inequality provides a lower bound on the
minimum distance attainable with an (, k) linear code. This bound is known as
the Varshar(novTGiIbert bound [1-3].)



