PROBLEMS

★ 3.1 Consider a systematic (8, 4) code whose parity-check equations are

$$v_0 = u_1 + u_2 + u_3,$$

$$v_1 = u_0 + u_1 + u_2,$$

$$v_2 = u_0 + u_1 + u_3,$$

$$v_3 = u_0 + u_2 + u_3.$$

where u_0, u_1, u_2 , and u_3 , are message digits, and v_0, v_1, v_2 , and v_3 are parity-check digits. Find the generator and parity-check matrices for this code. Show analytically that the minimum distance of this code is 4.

- 3.2 Construct an encoder for the code given in Problem 3.1.
- 3.3 Construct a syndrome circuit for the code given in Problem 3.1.

$$\mathbf{H}_{1} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \mathbf{H} \\ 0 \\ \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}.$$

(Note that the last row of H_1 consists of all 1's.)

- a. Show that C_1 is an (n+1, k) linear code. C_1 is called an extension of C.
- **b.** Show that every codeword of C_1 has even weight.
- c. Show that C_1 can be obtained from C by adding an extra parity-check digit, denoted by v_{∞} , to the left of each codeword \mathbf{v} as follows: (1) if \mathbf{v} has odd weight, then $v_{\infty} = 1$, and (2) if \mathbf{v} has even weight, then $v_{\infty} = 0$. The parity-check digit v_{∞} is called an *overall parity-check* digit.
- ★ 3.5 Let C be a linear code with both even- and odd-weight codewords. Show that the number of even-weight codewords is equal to the number of odd-weight codewords.
 - **3.6** Consider an (n, k) linear code C whose generator matrix G contains no zero column. Arrange all the codewords of C as rows of a 2^k -by-n array.
 - a. Show that no column of the array contains only zeros.
 - **b.** Show that each column of the array consists of 2^{k-1} zeros and 2^{k-1} ones.
 - c. Show that the set of all codewords with zeros in a particular component position forms a subspace of C. What is the dimension of this subspace?
- 3.7 Prove that the Hamming distance satisfies the triangle inequality; that is, let x, y, and z be three n-tuples over GF(2), and show that

$$d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) \ge d(\mathbf{x}, \mathbf{z}).$$

- 3.8 Prove that a linear code is capable of correcting λ or fewer errors and simultaneously detecting $l(l > \lambda)$ or fewer errors if its minimum distance $d_{\min} \ge \lambda + l + 1$.
- 43.9 Determine the weight distribution of the (8, 4) linear code given in Problem 3.1. Let the transition probability of a BSC be $p = 10^{-2}$. Compute the probability of an undetected error of this code.
 - 3.10 Because the (8, 4) linear code given in Problem 3.1 has minimum distance 4, it is capable of correcting all the single-error patterns and simultaneously detecting any combination of double errors. Construct a decoder for this code. The decoder must be capable of correcting any single error and detecting any double errors.
 - 3.11 Let Γ be the ensemble of all the binary systematic (n, k) linear codes. Prove that a nonzero binary *n*-tuple **v** is contained in either exactly $2^{(k-1)(n-k)}$ codes in Γ or in none of the codes in Γ .
- ★ 3.12 The (8, 4) linear code given in Problem 3.1 is capable of correcting 16 error patterns (the coset leaders of a standard array). Suppose that this code is used for a BSC. Devise a decoder for this code based on the table-lookup decoding scheme. The decoder is designed to correct the 16 most probable error patterns.

3.13 Let C_1 be an (n_1, k) linear systematic code with minimum distance d_1 and generator matrix $G_1 = [P_1 \ I_k]$. Let C_2 be an (n_2, k) linear systematic code with minimum distance d_2 and generator matrix $G_2 = [P_2 I_k]$. Consider an $(n_1 + n_2, k)$ linear code with the following parity-check matrix:

$$\mathbf{H} = \left[\begin{array}{c} \mathbf{P}_1^T \\ \mathbf{I}_{n_1 + n_2 - k} & \mathbf{I}_k \\ \mathbf{P}_2^T \end{array} \right].$$

Show that this code has a minimum distance of at least $d_1 + d_2$.

- \star 3.14 Show that the (8, 4) linear code C given in Problem 3.1 is self-dual.
 - 3.15 For any binary (n, k) linear code with minimum distance (or minimum weight) 2t+1 or greater, show that the number of parity-check digits satisfies the following

$$n-k \ge \log_2 \left[1 + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{t} \right].$$

The preceding inequality gives an upper bound on the random-error-correcting capability t of an (n, k) linear code. This bound is known as the Hamming

bound [14]. (Hint: For an (n, k) linear code with minimum distance 2t + 1 or greater, all the n-tuples of weight t or less can be used as coset leaders in a

3.16 Show that the minimum distance d_{\min} of an (n, k) linear code satisfies the following

$$d_{\min} \leq \frac{n \cdot 2^{k-1}}{2^k - 1}.$$

(Hint: Use the result of Problem 3.6(b). This bound is known as the Plotkin

 \star 3.17 Show that there exists an (n, k) linear code with a minimum distance of at least

$$\sum_{i=1}^{d-1} \binom{n}{i} < 2^{n-k}.$$

(Hint: Use the result of Problem 3.11 and the fact that the nonzero n-tuples of weight d-1 or less can be at most in

$$\left\{\sum_{i=1}^{d-1} \binom{n}{i}\right\} \cdot 2^{(k-1)(n-k)}$$

- (n, k) systematic linear codes.)
- 3.18 Show that there exists an (n, k) linear code with a minimum distance of at least d_{\min} that satisfies the following inequality:

$$\sum_{i=1}^{d_{\min}-1} \binom{n}{i} < 2^{n-k} \le \sum_{i=1}^{d_{\min}} \binom{n}{i}.$$

(Hint: See Problem 3.17. The second inequality provides a lower bound on the minimum distance attainable with an (n, k) linear code. This bound is known as the Varsharmov-Gilbert bound [1-3].)