
LECTURE 1: INTRODUCTION

ELEC 6131: Error Detecting
and Correcting Codes

Instructor:
Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Tuesday, 17:45 – 20:15.
Office Hours: Tuesday, 15:00 – 17:00

Outline of this Lecture

 Course outline.

 Why and how of error control coding.

 A brief summary of information theory.

• Different Error Control Strtegis.

• Basic classes of codes.

Course Outline

Areas to be Covered:

• Introduction to coding
• An introduction to abstract algebra
• Linear block codes
• Cyclic codes
• BCH and Reed Solomon codes
• Convolutional codes
• Overview of Turbo codes, LDPC codes and Raptor Codes.

Course Outline
Textbook:

S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd Edition, Prentice-Hall, 2005.
Chapters 2, 3, 4, 5, 6, 7, 11, 12 will be covered in detail.

References:
• S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-Hall, 1995.
• Richard E. Blahut, Algebraic Codes for Data Transmission, Cambridge University Press, 2003.
• E. R. Berlecamp, Algebraic Coding Theory, Aegean Park Press, 1984.
• G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Transactions on Information Theory,

vol. 28, no. 1, pp. 55-67, January 1982.
• S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,”

IEEE J. Select. Areas in Communications, vol. 16, pp. 1451–1458, Oct. 1998.
• V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes for high data rate wireless communication: Perfor

IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, March 1998.
• A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551 –2567, June 2006
• M. R. Soleymani, et al., Turbo Coding for Satellite and Wireless Communications, Kluwer Academic Publishers, 200

Course Outline

Grading Scheme:

Assignment: 15%

Project: 15% (7% literature review, 5% simulation, 3%
presentation).

Midterm : 30% (March 7, 2021)

Final Examination: 40% (25% written 15% oral).

IMPORTANT NOTICE:
• In order to pass the course, you should get at least

60% in the final.
• Failing to write the Midterm results in losing the 30%

assigned to the test.

Course Outline
Suggested Project Topics:

• Algebraic decoding of Reed Solomon Codes.
• Frequency Domain decoding of Reed Solomon Codes.
• Soft Decoding of RS Codes.
•Turbo Coding/Decoding.
• LDPC codes.
• Raptor Codes for erasure channels.
• Raptor Codes over binary symmetric channels.
• Space-time codes.
• Quantum Error Correcting Codes.

Structure of the course

 The course is divided into several modules. Each module corresponds to a Lecture
Note.

 I have tried to make the notes roughly the same size. However, depending on
students’ background and interest, it is conceivable that we spend more time on
one topic than another.

 Following is the list of notes:

• Lecture Note 1: Introduction.

• Lecture Note 2: Introduction to Algebra.

• Lecture Note 3: Galois Fields.

• Lecture Note 4: Linear Block Codes.

Structure of the course

 List of notes (Continued):

• Lecture Note 5: Important Linear Block Codes.

• Lecture Note 6: Cyclic Codes.

• Lecture Note 7 : BCH Codes.

• Lecture Note 8 : Reed Solomon Codes.

• Lecture Note 9 : Convolutional Codes.

• Lecture Note 10 : Concatenated Coding and Turbo Codes.

• Lecture Note 11: LDPC Codes.

Why and How of Error Correction Coding

 Mainly, the HOW part will be treated in the rest of the course. Let’s pause for
a few minutes and talk briefly about the WHY. That is, “Why do we use
coding?”

• Take as an example, a communications link using a digital modulation such as
Binary Shift Keying (BPSK). The probability of bit error also called Bit Error
Rate (BER) is given by:

𝑝𝑝𝑏𝑏 = 𝑄𝑄 2𝐸𝐸𝑏𝑏
𝑁𝑁0

.

 Here 𝑄𝑄(𝑥𝑥) is the q-function representing the probability that the
va;ue of a zero mean unit variance Gaussian variable exceeds 𝑥𝑥.

 The performance of this system is shown in the next slide.

Why and How of Error Correction Coding

𝑝𝑝𝑏𝑏 = 𝑄𝑄 2𝐸𝐸𝑏𝑏
𝑁𝑁0

.

Why and How of Error Correction Coding
 Assume that your 𝐸𝐸𝑏𝑏

𝑁𝑁0
is 4 dB. Then you get a BER of roughly 10−2 = 0.01. This means that

on the average one out of 100 bits will be flipped from 0 to 1 or vice versa. This may have
been tolerable if we still used old techniques such as Pulse Code Modulation (PCM) where
the voice samples were sent sample after sample. Then a sample represented by eight bits
may encounter an error with probability 1 − 1 − 10−2 8 ≈ 0.08. While 8 erroneous bytes
out of 100 bytes is quite high, it is still better than nothing.

 However, today’s digital communication systems use packet based transmission. This means
that instead of transmitting data a byte at a time they send a bunch of bytes into a packet
and send them together. For example in the Linear Predictive Coding schemes used from 2G
onward, every 20 ms of speech, i.e., every 160 speech samples is compressed into a 160 bit
packet (assuming 8 fold compression). With 𝐵𝐵𝐵𝐵𝐵𝐵 = 10−2, the average probability that a
packet contains one or more error is 1 − 1 − 10−2 160 ≈ 0.8. This means that 80% of
what you say over the phone will be lost. To see this effect for yourself, I suggest that you
record a minute or two of your voice using your computer’s microphone or your cell phone,
save it in a binary file, add to it a random bit stream that generates one with probability
0.01 and see what happens. This will only be five to ten lines of Matlab code and the whole
effort should not take you more than 10 minutes.

 The situation is much worse with image and video requiring 𝐸𝐸𝑏𝑏
𝑁𝑁0

of 10−10 or lower.

Why and How of Error Correction Coding
 For example in video coding technique used almost everywhere for video transmission and storage that

frames of video after being compressed are packed into transport stream (TS) packets each with a length
188 bytes (1504 bits). In order to have low packet loss, we need to have very low BER.

 Assume the probability of bit error is 𝐵𝐵𝐵𝐵𝐵𝐵 = 10−7. This means one erroneous bit in 10 million bits.
While this seems quite low it is not sufficient for decent quality video. The probability that a packet si in
error can be found to be 1 − 𝐵𝐵𝐵𝐵𝐵𝐵 1504 = 1.5 × 10−4. Consider a TV program with a bit rate of 20
Mbps (one million bits per second). A simple calculation shows that the number of packets transmitted
per second is roughly 13,300. Multiplying these two numbers, the number of packets to be in error per
second is found to be 2. Note that while two erroneous packets in 13,300 packets may seem low, the
effect is far from being negligible. In an MPEG data streams packets are correlated, i.e., a packet may
contain information to be used for decoding of other packets and loss of one packet may result in many
other packets ending up being useless.

 To avoid loss of packets, usually a bit error rate of 10−10 or lower is required. To have 𝐵𝐵𝐵𝐵𝐵𝐵 = 10−10

according to Figure 1, we need to have an 𝐸𝐸𝑏𝑏
𝑁𝑁0

of 13 dB.

 Now, let’s make a detour to see what is the theoretical minimum required 𝐸𝐸𝑏𝑏
𝑁𝑁0

and how low we can go
using modern day error control coding schemes.

A Bit of Information Theory
 In 1948, Claude E. Shannon opened a new era in the development of communications

by introducing a new discipline called information theory.

 According to Information Theory, any channel connecting a transmitter and a receiver
is characterized by a CAPACITY. Capacity is the maximum rate at which you may
communicate over a channel with arbitrarily small probability of error. The probability
of error tends to zero asymptotically as the size of the codeword increases without
bound.

 According to converse channel coding theorem it is impossible to transmit over a
channel at a rate exceeding its capacity

 Using appropriate signaling (coding) you may communicate over a channel at a rate as
close to C as you wish. On the other hand, the rate cannot exceed the capacity without
significant deterioration of the BER.

Capacity of AWGN Channel
 While computing the capacity of most of the channels is difficult and sometimes impossible,

there are certain channels for which the capacity is known. These include BSC cannel and
AWGN.

 Shannon found the capacity of Additive White Gaussian Noise (AWGN) channel as:

𝐶𝐶 = 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙2 1 + 𝑃𝑃
𝑁𝑁

bps. (1)

Where 𝑊𝑊 is the available bandwidth, 𝑃𝑃 is the power of received signal and 𝑁𝑁 is the power of
noise.

 Assume that we transmit at the maximum allowable rate of R=C. Then,

𝑅𝑅
𝑊𝑊

= 𝑙𝑙𝑙𝑙𝑙𝑙2 1 + 𝑃𝑃
𝑁𝑁

bps/Hz. (2)

 The energy per bit is the power (energy per second) divided by the bit rate (the number of
bits transmitted per second, i.e., 𝐵𝐵𝑏𝑏 = 𝑃𝑃

𝑅𝑅
.

Capacity of AWGN Channel
 We can also write the spectral density 𝑁𝑁0 as the noise power divided by the

bandwidth, 𝑁𝑁0 = 𝑁𝑁
𝑊𝑊

. Substituting theses in Equation (2), we get:

𝑅𝑅
𝑊𝑊

=𝑙𝑙𝑙𝑙𝑙𝑙2 1 + 𝑅𝑅
𝑊𝑊

× 𝐸𝐸𝑏𝑏
𝑁𝑁0

bps/Hz. (3)

 The quantity 𝜂𝜂 = 𝑅𝑅
𝑊𝑊

in the units of bits/second/Hz. is the bandwidth efficiency, i.e., the
number of bits transmitted each second for each Hz. of available bandwidth. For BPSK,
the bandwidth efficiency is 𝜂𝜂 = 1 bps/Hz. Using (3), one can write the required 𝐸𝐸𝑏𝑏

𝑁𝑁0
to

get error free transmission for a bandwidth efficiency 𝜂𝜂:

𝐸𝐸𝑏𝑏
𝑁𝑁0

= 2
𝑅𝑅
𝑊𝑊−1
𝑅𝑅
𝑊𝑊

=2
𝜂𝜂−1
𝜂𝜂

 For 𝜂𝜂 = 1 bps/Hz, we get 𝐸𝐸𝑏𝑏
𝑁𝑁0

=1, i.e., 0 dB.

Capacity of AWGN Channel
 Going back to the required 𝐸𝐸𝑏𝑏

𝑁𝑁0
of 13 dB calculated in previous section, we observe that

using BPS without coding we need to waste 13 dB (20 times) more power than is
theoretically foreseen.

 As an example, it means that instead of charging your mobile phone every 24 hours,
you need to charge it every 1.2 hours.

 The cost of reducing power consumption is an increase in bandwidth requirement and
coding and decoding complexity. We will talk about this during the course.

 Now that we have talked about the WHY of coding, let’s talk briefly about the HOW.
This gives us a preview of what we will be talking about in the rest of the course.

Error Control Coding Strategies:
How sharper than a serpent’s tooth it is to have a rhankless child!

 When reading the above expression, you very quickly detect an error: you find the
term rhankless strange. A little reflection, encourages you to change “r” to “t” and
correct the expression into:

How sharper than a serpent’s tooth it is to have a thankless child!
(from Shakespeare's King Lear)

 The first observation, i.e., realizing that there is an erroneous word in the sentence is
an example of error detection while finding the correct word, is an instance of error
correction. The former is possible due to the fact that not all combinations of the
letters of the alphabet are legitimate words, i.e., the fact that the English language, like
any other language has some structure. The latter, i.e., error correction was possible
because there is enough difference (distance) between words.

Error Control Coding Strategies:
 The same idea is used for error detection and error correction in digital

communications.

 Assume that the messages to be transmitted are divided into 𝑘𝑘 bit words. If we
transmit the data uncoded, we have to use all 2𝑘𝑘 possible combinations of 𝑘𝑘 bits. Any
error in a transmitted k-bit word generates another k-bit word and since we may have
any of the 2𝑘𝑘 possible k-bit words, the receiver has no way of knowing whether an
error has occurred or not.

 For example, assume that 𝑘𝑘 = 4, that is, we transmit 0000, 0001, …, 1111. Assume
that the transmitter sends 0000. Any error in one or more bits results in receiver
getting one of the other 15 patterns and therefore, not being able to detect an error.

Error Detection:
 Now assume that instead of 4 bits, the transmitter sends 5 bits, the fifth bit being a

parity bit.
 A parity bit may be formed by counting the number of ones in the stream and if it is

odd adding a one and if the number of ones is even add a zero. For example, 0000 will
changed into 00000 and 0001 will be changed into 00011. So, the receiver expects to
receive 5-bit patterns with an even number of 1’s.

 Now, if the transmitter sends 00000 and one of the bits is flipped, the receiver receives
a pattern with one 1 and rejects it as an error. Adding one parity bit the number of
possible patterns at the receiver has increased to 32, while the size of our dictionary
(in technical terms, the codebook) has remained the same. So, we have taken one half
of the 5-bit patterns as legitimate codewords and discarded the other half.

 Forming of parities as discussed above is done using exclusive-OR (XOR) operation or
mathematically speaking doing modulo-2 addition. The fifth bit added in the above
example is given by 𝑝𝑝 = 𝑥𝑥0 ⊕ 𝑥𝑥1 ⊕ 𝑥𝑥2⨁𝑥𝑥3 where 𝑥𝑥0, 𝑥𝑥1, , 𝑥𝑥2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥3 are the data bits.

Error Correction:
 Parity bits can also be used to add error correction capability. In order to do that, we

need several parity bits each acting on a subset of bits. As an example, take the same 4
bits we talked about in the above paragraph. Let’s form 3 sets each containing 3 of the
bits. The sets will be distinct but will overlap. To each set, we add a parity bit that is
the result of the modulo-2 addition of the input bits in that group. The set are:

𝑆𝑆0 = 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥3, 𝑝𝑝0
𝑆𝑆1 = 𝑥𝑥0, 𝑥𝑥2, 𝑥𝑥3, 𝑝𝑝1
𝑆𝑆2 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑝𝑝2

 This is called a (7, 4) Hamming code whose Venn diagram is shown in Figure 2 on the
next slide.

 This is called a (7, 4) code since it encodes the 4 bits 𝑥𝑥0, 𝑥𝑥1, , 𝑥𝑥2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥3 into 7 bits
𝑐𝑐0, 𝑐𝑐1, , … , 𝑐𝑐6 defined as: 𝑐𝑐0 = 𝑥𝑥0, 𝑐𝑐1 = 𝑥𝑥1, 𝑐𝑐2 = 𝑥𝑥2, 𝑐𝑐3 = 𝑥𝑥3, 𝑐𝑐4 = 𝑝𝑝0 = 𝑥𝑥0 ⊕ 𝑥𝑥1 ⊕ 𝑥𝑥3,
𝑐𝑐5 = 𝑝𝑝1 = 𝑥𝑥0 ⊕ 𝑥𝑥2 ⊕ 𝑥𝑥3 and 𝑐𝑐6 = 𝑝𝑝2 = 𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕ 𝑥𝑥3.

Figure 2: Venn Diagram of (7, 4) Code

Decoding of Hamming Code
 Assume that the four data bits are 0101. The encoded bits will be 1010101. These 7 bits are

transmitted over the channel and the receiver instead of receiving it receives 1010111. The
decoder computes three syndromes 𝑠𝑠0 = 𝑝𝑝0 ⊕ 𝑥𝑥0 ⊕ 𝑥𝑥1 ⊕ 𝑥𝑥3, 𝑠𝑠1 = 𝑝𝑝1 ⊕ 𝑥𝑥0 ⊕ 𝑥𝑥2 ⊕ 𝑥𝑥3
and 𝑠𝑠2 = 𝑝𝑝2 ⊕ 𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕ 𝑥𝑥3. The result will be 𝑠𝑠0 = 𝑠𝑠2 = 1 and 𝑠𝑠1 = 0.

 The syndrome 𝑠𝑠0 being equal to one indicates that one of the bits 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥3 (or possibly 𝑝𝑝0)
has been flipped. The syndrome 𝑠𝑠1 being zero, the decoder concludes that the error is not
among the bits 𝑥𝑥0, 𝑥𝑥2, 𝑥𝑥3 and 𝑝𝑝1 . Syndrome 𝑠𝑠2 = 1 points finger at 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 and 𝑝𝑝2. Bits
𝑥𝑥2, 𝑥𝑥3 already exonerated and 𝑝𝑝2 never implicated, the conclusion is that the error is in 𝑥𝑥1.
Flipping 𝑥𝑥1, the decoder reconstruct the original message 1010101.

 Referring to Figure 2, we can see that this decision is based on the fact that the result of
syndrome calculation places us in the intersection of the sets 𝑆𝑆0 and 𝑆𝑆2 excluding 𝑆𝑆1, i.e.,
𝑆𝑆0⋂𝑆𝑆2 ∩ �𝑆𝑆1 and from the Venn diagram, we find that the erroneous bit must be 𝑥𝑥1. Note
that with 7 intersection areas, this code can correct a single error in any of the seven bits.

 The (7, 4) Hamming code while not very efficient, is a very useful tool for learning and
appreciating the mechanism of error control coding. Throughout the course, we will
encounter it many times as a toy example to clarify some fundamental concepts that are
difficult to explain using a longer code.

To Correct, or not to Correct, that is the question
 Now that we have some sense of error detection and error correction, you may ask whether

to perform error detection or error correction. More importantly, you may ask what is the
value of detecting errors if we cannot correct them. For one thing you may discard
erroneous messages. You may also ask for retransmission. This is the basis of the error
control strategy called Adaptive Repeat Request (ARQ) where the receiver checks the
message for the presence of errors and if it detects any error asks for retransmission. ARQ is
very efficient since the detection of errors is simpler and requires less overhead as we saw
in the example of the simple Hamming code we discussed before. Furthermore, there is
retransmission only if there is an error. This makes the scheme adaptive to the channel
condition. The problem with ARQ, however, is the delay in retransmission when there is
need for one. This may make ARQ unsuitable for real time delay sensitive applications such
as live video and voice calls over the channels such as satellite communication links where
the propagation delay is quite long.

 The other error control strategy is Forward Error Correction (FEC) where enough parities are
added so that a number of errors expected to occur depending on our information about
the channel condition can be corrected without need for retransmission. The problem with
FEC is that often times, the channel condition is better than the average condition for which
we have chosen the code and the parity bits are of no use. On the other hand in cases
where the channel condition is worse than our preconceived average condition, the errors
remain uncorrected and even the decoder may add extra errors when trying to correct the
errors.

Different Types of Codes
 There are basically two main classes of codes:

• Block codes and,
• Convolutional Codes.

 In a block coding scheme k bits enter the encoder and n>k bits are generated, i.e., a k-
dimensional binary vector is mapped into an n-dimensional vector.

 Since the number of k-dimensional and n-dimensional binary vectors is 2𝑘𝑘 and 2𝑛𝑛,
respectively for each of the 2𝑘𝑘 codewords there are 2𝑛𝑛−𝑘𝑘 − 1 binary vectors that are
not codewords.

 These illegitimate bit streams that grows exponentially with the number of parity bits
𝑎𝑎 − 𝑘𝑘 provide the code with error detection/correction capability.

 The rate of the code is defined as 𝑟𝑟 = 𝑘𝑘
𝑛𝑛

. This is a dimensionless entity that you should
be careful not to mix with the transmission rate in bits per second.

 The number of bits at the output of the decoder exceeds the number of input bits by
n-k. If the k input bits (information bits) appear unaffected and all next to each other
followed by n-k parity bits, the code is called systematic.

Different Types of Codes
 Another way to classify codes is based on whether they are linear or not. In a linear

code the sum of any two codewords is another codeword. Linearity gives a very nice
structure to a code simplifying its representation, encoding and decoding.

 In a linear code parities are formed by modulo-two addition (XORing) of the
information bits. So, in the construction of a linear encode the only gate we need is
exclusive OR (XOR) and no AND or OR gates are used.

 In this course, we mostly talk about linear codes. That is why the first thing we do after
this introduction is to go over some basic concepts from linear algebra.

 We talked about block codes. The other class of codes consists of convolutional codes.
Convolutional codes are linear trellis codes.

 In a convolutional code, the input to the encoder is a k-bit word, the same as block
codes (k is, however, usually small, e.g., one or two). The output, unlike the block
codes, is not only a function of the input bits but also depends on previous inputs (and
possibly previous outputs).

	LECTURE 1: INTRODUCTION�
	Outline of this Lecture
	Course Outline
	Course Outline
	Course Outline
	Course Outline
	Structure of the course
	Structure of the course
	Why and How of Error Correction Coding
	Why and How of Error Correction Coding
	Why and How of Error Correction Coding
	Why and How of Error Correction Coding
	A Bit of Information Theory
	Capacity of AWGN Channel
	Capacity of AWGN Channel
	Capacity of AWGN Channel
	Error Control Coding Strategies:
	Error Control Coding Strategies:
	Error Detection:
	Error Correction:
	Figure 2: Venn Diagram of (7, 4) Code���������
	Decoding of Hamming Code
	To Correct, or not to Correct, that is the question
	Different Types of Codes
	Different Types of Codes

