
LECTURE 10: Concatenated Coding and Turbo 
Codes

ELEC 6131: Error Detecting 
and Correcting Codes

Instructor: 
Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103. 
Time and Place: Tuesday, 17:45 – 20:15.
Office Hours: Tuesday, 15:00 – 17:00



Concatenated Coding
As the error correcting capability of codes 

increases, i.e., as their rate is reduced their 
decoding becomes more complex. For example, 
if we use a (255,239) RS code, we have to solve 
a polynomial of degree 8 to find the 8 error 
byte’s location. But if we use a (255,205) code, 
the number of errors that can be corrected is 
increased to 25. So, a polynomial of degree 25 
has to be found and solved. 



Concatenated Coding
Apart from rate, the length of code has usually an 

exponential effect on the complexity of decoding. 
And it is evident that in order to get good coding 
gain, we need to have long codewords.

 In order to avoid the complexity of decoding, 
Forney suggested the use of concatenated codes. In 
this scheme the data is coded with one encoder 
(called the outer encoder) and then with another 
(inner encoder). The decoding is performed in the 
reverse order



Concatenated Coding
The following figure shows the block diagram of 

a concatenated coding scheme:



Concatenated Coding
 It is possible to use more than two stages of 

coding. The inner and outer codes can be either 
both block codes or one block code and another 
convolutional code, or some other arrangement. 

As we saw in the previous lecture, convolutional 
codes create bursts of errors. Concatenating 
them (as the inner code) with some burst error 
correcting block code such as RS code is a good 
choice.



Concatenated Coding
 Type equation here.One combination frequently 

used by industry is to use convolutional codes as 
the inner code and Reed-Solomon codes as the 
outer code.  One example is NASA’s Tracking Data 
Relay Satellite System (TDRSS) that uses a 
(255,223) RS code as the outer code and a 64-
state convolutional code with 𝑔𝑔1 𝐷𝐷 = 1 + 𝐷𝐷 +
𝐷𝐷3 + 𝐷𝐷4 + 𝐷𝐷6 and 𝑔𝑔2 𝐷𝐷 = 1 + 𝐷𝐷3 + 𝐷𝐷4 + 𝐷𝐷5 +
𝐷𝐷6. This is the industry standard (133,171) code. 
The overall rate is 223

255
× 1

2
= 0.437 .



Concatenated Coding
 Performance of this scheme

(with and without interleaving) 

is compared with uncoded case 

as well as just convolutional 

or just RS coding.



Turbo Codes
 One possibility for improving the performance of concatenated codes 

is through iterative cooperation of inner and outer code to improve 
the decoding accuracy. In such situation, instead of decoding the 
inner code and giving the hard decision to the outer code, one can 
extract soft values from the inner code, i.e. , likelihood ratios and 
pass them to the outer decoder. Then outer decoder instead of 
starting from no prior information, that is, assuming 𝑃𝑃 0 = 𝑃𝑃 1 = 1

2
can start from somewhere closer to actual situation. The outer 
decoder can then use this information to extract new likelihood ratios 
and passing them to the inner decoder. This process can be iterated 
until a steady-state is reached. While this is possible with a serial 
concatenation and any combination of codes, the best result can be 
achieved by parallel concatenation of two convolutional codes.



Turbo Codes
 In 1993 Berrow, Glavieux and Thitimajshima showed that 

using two very simple convolutional codes working on two 
copies of the input data (one being a permutation of the 
other), one can get results very close to Shannon’s 
bounds.

 The encoder has the following structure 



Turbo Codes
 The paper by Berrou et al. used a two memory (4-state) 

Recursive Systematic Convolutional code.



Turbo Codes
 The above code sends the systematic part, only from one encoder, 

plus two parity streams. So, the rate of the code is 1
3

. However, 
by puncturing the parity streams, one can get higher rates. For 
example, if we send one systematic bit and a parity frame one of 
the two on each output, i.e.,

𝑢𝑢,𝑝𝑝1,𝑢𝑢,𝑝𝑝2,𝑢𝑢,𝑝𝑝1,𝑢𝑢,𝑝𝑝2, …

 We have a rate 1
2

code. While the constituent encoders each have 
only four states, the interleaver causes the output stream to have 
large minimum free distance. 



Turbo Codes
 To decode the turbo code, 

we need two SISO 
(Soft-Input-Soft-Output) 
decoders.

 Each SISO decoder works on one of the two streams. It takes as 
input the channel value, y, and the probability of the corresponding 
systematic bit being one 
(or equivalently, likelihood 
ratio) and generates its
own likelihood ratio.



Turbo Codes
 It then passes it’s result i.e., likelihood ratio (or log-likelihood 

ratio) or the improvement if has added 𝐿𝐿𝑒𝑒(�𝑢𝑢) called extrinsic log-
likelihood ratio to the other decoder.

 At the beginning L(u)=0, i.e., we assume that 𝑝𝑝 0 = 𝑝𝑝 1 = 1
2

so log 𝑝𝑝(𝑢𝑢=0)
𝑝𝑝(𝑢𝑢=1)

=

𝑙𝑙𝑙𝑙𝑔𝑔
1
2
1
2
= 0. But in other iterations,𝐿𝐿−(�𝑢𝑢) and 𝐿𝐿′(�𝑢𝑢) are evolved, iteratively.



Decoding of Turbo Codes
 The Soft-Value of a bit is given as its log-likelihood ratio:

𝐿𝐿 𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑔𝑔
𝑝𝑝(𝑢𝑢 = 0)
𝑝𝑝(𝑢𝑢 = 1)

 Assume that we encode a sequence of 𝑘𝑘 bits using an 𝑛𝑛, 𝑘𝑘 systematic code. 𝑘𝑘
of the encoded bits of the code sequence say 𝑥𝑥 are equal to the values of 𝑢𝑢. the 
other 𝑛𝑛 − 𝑘𝑘 are parity bits.

 Now assume that we assign ±1 to bits of 𝑥𝑥, 
i.e., x=0 →+1 and x=1→ -1.

 Assume that we transmit 𝑥𝑥’s over an Additive White Gaussian Noise 
(AWGN) channel with possibly multiplying the symbols by a fade factor𝑎𝑎. 

 The conditional soft-value or log-likelihood ratio of x given y (the matched 
filter output) is:

𝐿𝐿 𝑥𝑥 𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑔𝑔
𝑝𝑝(𝑥𝑥 = +1|𝑦𝑦)
𝑝𝑝(𝑥𝑥 = −1|𝑦𝑦)

= log
𝑝𝑝(𝑥𝑥 = +1)𝑝𝑝(𝑦𝑦|𝑥𝑥 = +1)
𝑝𝑝 𝑥𝑥 = −1 𝑝𝑝(𝑦𝑦|𝑥𝑥 = −1)



Decoding of Turbo Codes
 For a Gaussian Channel with fade factor 𝑎𝑎:

𝑝𝑝 𝑦𝑦 𝑥𝑥 = +1 =
1

𝜋𝜋𝑁𝑁0𝐸𝐸𝑠𝑠

𝑒𝑒−
𝐸𝐸𝑠𝑠
𝑁𝑁0

(𝑦𝑦−𝛼𝛼)2

and

𝑝𝑝 𝑦𝑦 𝑥𝑥 = −1 =
1

𝜋𝜋𝑁𝑁0𝐸𝐸𝑠𝑠

𝑒𝑒−
𝐸𝐸𝑠𝑠
𝑁𝑁0

(𝑦𝑦+𝛼𝛼)2

So:

𝐿𝐿 𝑥𝑥 𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑔𝑔
𝑒𝑒−

𝐸𝐸𝑠𝑠
𝑁𝑁0

(𝑦𝑦−𝛼𝛼)2

𝑒𝑒−
𝐸𝐸𝑠𝑠
𝑁𝑁0

(𝑦𝑦+𝛼𝛼)2
+ log

𝑝𝑝(𝑥𝑥 = +1)
𝑝𝑝(𝑥𝑥 = −1)

Or

𝐿𝐿 𝑥𝑥 𝑦𝑦 = 4𝑎𝑎
𝐸𝐸𝑠𝑠
𝑁𝑁0

. 𝑦𝑦 + 𝐿𝐿(𝑥𝑥)

= 𝐿𝐿𝑐𝑐 . 𝑦𝑦 + 𝐿𝐿(𝑥𝑥)

 For an AWGN channel 𝑎𝑎 = 1.



Decoding of Turbo Codes
 A maximum a Posteriori (MAP) decoder outputs an a posteriori (i.e., after observing 

the total output of the matched filter y=(𝑦𝑦1, 𝑦𝑦2, …) log-likelihood ratio for transmitted 
+1 and -1:

𝐿𝐿 �𝑢𝑢 = 𝐿𝐿 𝑢𝑢 𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑔𝑔
𝑝𝑝(𝑢𝑢 = +1|𝑦𝑦)
𝑝𝑝(𝑢𝑢 = −1|𝑦𝑦)

 A MAP decoder uses a priori values L(u) for all information bits and the channel values 
𝐿𝐿𝑐𝑐 . 𝑦𝑦. It generates for each information bit a soft value L(�𝑢𝑢) that in addition to 𝐿𝐿𝑐𝑐.𝑦𝑦 and 
L(u) has 𝐿𝐿𝑐𝑐(�𝑢𝑢) called the extrinsic information that depends on the structure of the 
encoder.

𝐿𝐿 �𝑢𝑢 = 𝑙𝑙𝑐𝑐.𝑦𝑦 + 𝑙𝑙 𝑢𝑢 + 𝑙𝑙𝑒𝑒(�𝑢𝑢)

 The first decoder starts with 𝐿𝐿𝑐𝑐 .𝑦𝑦 only (at the beginning) and generate the 
extrinsic information

𝐿𝐿𝑒𝑒− �𝑢𝑢 = 𝐿𝐿−(�𝑢𝑢) − 𝑙𝑙𝑐𝑐 .𝑦𝑦

 The second decoder uses 𝑙𝑙𝑒𝑒 �𝑢𝑢 and generates
𝐿𝐿𝑒𝑒′ �𝑢𝑢 = 𝐿𝐿′(�𝑢𝑢) − (𝑙𝑙𝑐𝑐.𝑦𝑦 + 𝑙𝑙𝑒𝑒−(�𝑢𝑢)



Decoding of Turbo Codes
 This continues iteratively. At the end 

𝐿𝐿 �𝑢𝑢 = 𝑙𝑙𝑐𝑐 .𝑦𝑦 + 𝑙𝑙𝑒𝑒−(�𝑢𝑢) + 𝑙𝑙𝑒𝑒−(�𝑢𝑢)

is the output and is used for making the final (hard) decision.

 At this point we discuss the generation of 𝐿𝐿(�𝑢𝑢𝑘𝑘) for all k for Convolutional 
codes.

 Consider the trellis diagram of a systematic Convolutional code given as:



Decoding of Turbo Codes
 Then 

𝐿𝐿 �𝑢𝑢𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑔𝑔
𝑝𝑝(𝑢𝑢𝑘𝑘 = +1|𝑦𝑦)
𝑝𝑝(𝑢𝑢𝑘𝑘 = −1|𝑦𝑦)

= log
∑𝑠𝑠,𝑠𝑠′,𝑢𝑢𝑘𝑘=+1 𝑝𝑝(𝑠𝑠′, 𝑠𝑠,𝑦𝑦)
∑𝑠𝑠,𝑠𝑠′,𝑢𝑢𝑘𝑘=−1 𝑝𝑝(𝑠𝑠′, 𝑠𝑠,𝑦𝑦)

Where states s’ and s define bit 𝑢𝑢𝑘𝑘and the coded bit 𝑥𝑥𝑘𝑘,𝛾𝛾 , for γ= 
2,…,n.
 The sum of probabilities p(𝑠𝑠𝑠, 𝑠𝑠, 𝑦𝑦) are taken over all existing 

transitions from 𝑠𝑠𝑠 𝑡𝑡𝑙𝑙 𝑠𝑠 with transition label 𝑢𝑢𝑘𝑘 = +1 (in 
numerator) and with label 𝑢𝑢𝑘𝑘 = −1 (in the denominator).

𝑝𝑝 𝑠𝑠′, 𝑠𝑠, 𝑦𝑦 = 𝑝𝑝 𝑠𝑠′, 𝑦𝑦𝑗𝑗<𝑘𝑘 . 𝑝𝑝 𝑠𝑠, 𝑦𝑦𝑘𝑘 𝑠𝑠′ . 𝑝𝑝(𝑦𝑦𝑗𝑗>𝑘𝑘|𝑠𝑠)

= 𝑝𝑝 𝑠𝑠′, 𝑦𝑦𝑗𝑗<𝑘𝑘 . 𝑝𝑝 𝑠𝑠 𝑠𝑠′ . 𝑝𝑝(𝑦𝑦𝑘𝑘|𝑠𝑠′, 𝑠𝑠)𝑝𝑝(𝑦𝑦𝑗𝑗>𝑘𝑘|𝑠𝑠)
= 𝛼𝛼𝑘𝑘−1 𝑠𝑠′ . 𝛾𝛾𝑘𝑘 𝑠𝑠′, 𝑠𝑠 .𝛽𝛽𝑘𝑘(𝑠𝑠)



Decoding of Turbo Codes
 𝑦𝑦𝑗𝑗<𝑘𝑘 is the sequence of received symbols from the beginning up to time k-1, 

𝑦𝑦𝑗𝑗>𝑘𝑘 is the sequence from k+1 to the end.

 𝛼𝛼𝑘𝑘 ‘s can be found using the forward recursion.

𝛼𝛼𝑘𝑘(𝑠𝑠) = �
𝑠𝑠′

𝛾𝛾𝑘𝑘(𝑠𝑠′, 𝑠𝑠)𝛼𝛼𝑘𝑘−1(𝑠𝑠𝑠)

 And 𝛽𝛽𝑘𝑘’s are found using backward recursion

𝛽𝛽𝑘𝑘−1(𝑠𝑠𝑠) = �
𝑠𝑠

𝛾𝛾𝑘𝑘 𝑠𝑠′, 𝑠𝑠 .𝛽𝛽𝑘𝑘(𝑠𝑠)

 The branch transition probabilities are given by,
𝛾𝛾𝑘𝑘 𝑠𝑠′, 𝑠𝑠 = 𝑝𝑝 𝑦𝑦𝑘𝑘 𝑢𝑢𝑘𝑘 . 𝑝𝑝(𝑢𝑢𝑘𝑘)



Decoding of Turbo Codes

𝐿𝐿 �𝑢𝑢𝑘𝑘 = 𝐿𝐿𝑐𝑐𝑦𝑦𝑘𝑘,1 + 𝐿𝐿 𝑢𝑢𝑘𝑘 + 𝑙𝑙𝑙𝑙𝑔𝑔
∑ 𝑠𝑠′,𝑠𝑠
𝑢𝑢𝑘𝑘=+1

𝛾𝛾𝑘𝑘
𝑒𝑒 (𝑠𝑠′, 𝑠𝑠)𝛼𝛼𝑘𝑘−1

𝑠𝑠′ 𝛽𝛽𝑘𝑘(𝑠𝑠)

∑ 𝑠𝑠′,𝑠𝑠
𝑢𝑢𝑘𝑘=−1

𝛾𝛾𝑘𝑘
𝑒𝑒 (𝑠𝑠′, 𝑠𝑠)𝛼𝛼𝑘𝑘−1

𝑠𝑠′ 𝛽𝛽𝑘𝑘(𝑠𝑠)

 Log-max algorithm:

 Since the summations in the above formula are difficult to perform, the 
following fact is used to reduce the complexity:

log 𝑥𝑥 + 𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑥𝑥 1 + 𝑦𝑦
𝑥𝑥
≃ log 𝑥𝑥 if  𝑦𝑦

𝑥𝑥
≪ 1 or 𝑦𝑦 ≪ 𝑥𝑥. That is

log 𝑥𝑥 + 𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑎𝑎𝑥𝑥(𝑥𝑥, 𝑦𝑦)

 So, the approximate version of MAP or Max-log MAP is:
𝐿𝐿 �𝑢𝑢
= 𝐿𝐿𝑐𝑐 . 𝑦𝑦𝑘𝑘 + 𝐿𝐿 𝑢𝑢𝑘𝑘 + 𝑙𝑙𝑎𝑎𝑥𝑥 𝑠𝑠′,𝑠𝑠

𝑢𝑢𝑘𝑘=+1
log𝛼𝛼𝑘𝑘−1(𝑠𝑠𝑠) + log𝛽𝛽𝑘𝑘 𝑠𝑠 + 𝑙𝑙𝑙𝑙𝑔𝑔𝛾𝛾𝑘𝑘

𝑒𝑒 (𝑠𝑠′, 𝑠𝑠)

−𝑙𝑙𝑎𝑎𝑥𝑥 𝑠𝑠′,𝑠𝑠
𝑢𝑢𝑘𝑘=−1

𝑙𝑙𝑙𝑙𝑔𝑔𝛼𝛼𝑘𝑘−1 𝑠𝑠′ + 𝑙𝑙𝑙𝑙𝑔𝑔𝛽𝛽𝑘𝑘 𝑠𝑠 + 𝑙𝑙𝑙𝑙𝑔𝑔𝛾𝛾𝑘𝑘
𝑒𝑒 (𝑠𝑠′, 𝑠𝑠) .



Turbo Codes: Performance Results 
 Following shows the performance of rate 1

2
Turbo code with 1,2,….,18 

iterations. Each iteration involves two decodings, one by each decoder and 
exchange of information.
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