
LECTURE 11: LDPC Codes

ELEC 6131: Error Detecting
and Correcting Codes

Instructor:
Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Tuesday, 17:45 – 20:15.
Office Hours: Tuesday, 15:00 – 17:00

Low Density Parity Check (LDPC) Codes
References:
 [1] Thomas J. Richardson, M. Amin Shokrollahi, and Rüdiger L. Urbanke,

“Design of capacity-approaching irregular low-density parity-check codes,”
IEEE Trans. Inform. Theory, VOL. 47, NO. 2, FEBRUARY 2001.

 [2] Thomas J. Richardson and Rüdiger L. Urbanke, “Efficient Encoding of Low-
Density Parity-Check Codes,” IEEE Trans. Inform. Theory, VOL. 47, NO. 2,
FEBRUARY 2001.

 [3] Amin Shokrollahi, “LDPC Codes: An Introduction,” Digital Fountain, Inc.
39141 Civic Center Drive, Fremont, CA 94538, April 2, 2003.

Low Density Parity Check (LDPC) Codes
Low Density Parity Check Codes were invented

in 1963 by R.G. Gallager. In addition to
suggesting the use of codes with sparse parity
check matrices, Gallager suggested an iterative
decoding algorithm (message –passing decoders)
and showed that using this type of decoder, one
can come close to Shannon’s bounds.

Low Density Parity Check (LDPC) Codes
 In general, an LDPC coed is the null space of a sparse

(low-density) matrix H , i.e.,
𝑣𝑣𝐻𝐻𝑇𝑇 = 0

Where 𝐻𝐻𝑇𝑇 is a low-density matrix in the following sense:
 Assume that H has M rows and N columns, and there are

(on the average) 𝑖𝑖 ones in the columns and (on the
average) j 1’s on rows. If 𝑖𝑖 ≪ 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ≪ 𝑁𝑁, we call the
matrix H low-density or sparse.

 In the regular or Gallager LDPC codes, the number of 1’s
in each column or on each row are the same.

Low Density Parity Check (LDPC) Codes
 Example: (3,6) Regular LDPC code.

𝐻𝐻 =

1
1
0
1
0
0

1
1
0
0
1
0

1
1
0
0
0
1

0
1
0
1
1
0

0
1
0
0
1
1

1
0
1
0
0
1

1
0
1
0
1
0

0
0
1
1
1
0

0
0
0
1
1
1

0
0
1
1
0
1

1
0
1
0
0
1

0
1
1
1
0
0

 This matrix has 3 one’s in each column and 6 1’s on each row.

 Graphically, LDPC code can be represented using bi-partite
graphs as suggested by Tanner.

Low Density Parity Check (LDPC) Codes
Graphically, LDPC code can be represented using bi-partite graphs
as suggested by Tanner.

Low Density Parity Check (LDPC) Codes
 On one side are the message nodes also called variable nodes; on

the other side of the graph are
constraint nodes or check nodes.

 A legitimate pattern,
i.e., a code word is a bit stream
that when fed to variable nodes,
the check nodes will all have
value zero.
 Note that this example, gives a

rate 1
2

regular LDPC code

Low Density Parity Check (LDPC) Codes
 The above code is a regular LDPC code since each node on the

left is incident by 3 edges and each node on right receives 6
edges. We say that message nodes have degree 3 and check nodes
have degree 6.

 As another example of
an irregular LDPC code
consider:

Low Density Parity Check (LDPC) Codes
 Note that the check nodes receive 7, 7, 3, 6 and 5 ones.

Low Density Parity Check (LDPC) Codes
 An LDPC code is specifies in terms of an edge degree

distribution for variable nodes and another degree distribution for
check nodes.

 Let 𝜆𝜆𝑖𝑖 be the fraction of edges that exit variable nodes of degree 𝑖𝑖.
Define degree distribution polynomial for variable nodes:

𝜆𝜆(𝑥𝑥) = �
𝑖𝑖≥1

𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖−1

 It is clear that

𝜆𝜆 1 = �
𝑖𝑖≥1

𝜆𝜆𝑖𝑖 = 1

Low Density Parity Check (LDPC) Codes
 For the above example:

 𝜆𝜆1 = 1
28

since only 1 of the edges is incident on an edge of
degree 1.

 𝜆𝜆2 = 4
28

= 1
7

since 2 × 2 edges fall upon two nodes of
degree 2. Similarly, 𝜆𝜆3 and 𝜆𝜆4 are found to be 15

28
and 2

7
,

respectively. So:

𝜆𝜆 𝑥𝑥 =
1

28
+

1
7
𝑥𝑥 +

15
28

𝑥𝑥2 +
2
7
𝑥𝑥3

and:

𝜆𝜆 1 =
1

28
+

1
7

+
15
28

+
2
7

= 1

Low Density Parity Check (LDPC) Codes
 We can also write:

�
0

1

𝜆𝜆 𝑥𝑥 𝑎𝑎𝑥𝑥 = �
𝑖𝑖≥1

𝜆𝜆𝑖𝑖
𝑖𝑖
𝑥𝑥𝑖𝑖 (at 𝑥𝑥 = 1) = �

𝑖𝑖≥1

𝜆𝜆𝑖𝑖
𝑖𝑖

 In a similar way, a degree distribution ρ(x) can be defined
for the check nodes:

𝜌𝜌 𝑥𝑥 = �
𝑖𝑖≥1

𝜌𝜌𝑖𝑖 𝑥𝑥𝑖𝑖−1

Where 𝜌𝜌𝑖𝑖 is the fraction of edges incident on a check node of
degree 𝑖𝑖.
 The rate of a (𝜆𝜆,𝜌𝜌) code is given by

𝑃𝑃 𝜆𝜆,𝜌𝜌 = 1 −
∫𝜌𝜌
∫ 𝜆𝜆

Where integrals are taken from 0 to 1.

Rate of LDPC Codes
 As the first example consider the (3,6) regular code we

saw before:

Rate of LDPC Codes
 Note that all the variable nodes have degree 3. That is, all 36

edges leave variable nodes are of degree 3. This means that:
𝜆𝜆3 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆𝑖𝑖 = 0, ∀𝑖𝑖 ≠ 3.

So,
𝜆𝜆 𝑥𝑥 = 𝑥𝑥2.

 Also, all check nodes (nodes on the right) have degree 6. So,
100% (36 out of 36) edges enter nodes of degree 6.

So, 𝜌𝜌6 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑖𝑖 = 0, ∀𝑖𝑖 ≠ 6.
And:

𝜌𝜌 𝑥𝑥 = 𝑥𝑥5.
The rate is:

𝑅𝑅 = 1 −
∫0
1 𝑥𝑥5

∫0
1 𝑥𝑥2

= 1 −
1
6 𝑥𝑥

6

1
3 𝑥𝑥

3
| 𝑥𝑥 = 1 = 1 −

1
2

=
1
2

Rate of LDPC Codes
 This result could already been deducted from the

structure and the dimension of the 𝐻𝐻 matrix or the
corresponding Tanner graph.

 Example: Consider

the Irregular Code

we saw before:

Rate of LDPC Codes
 We observe that there is one variable node of degree 1

(𝑥𝑥6), two variable nodes of degree 2 𝑥𝑥2 and 𝑥𝑥5 , 3 nodes
of degree 3 and 2 nodes of degree 4. There are 28 edges
connecting variable nodes to the check nodes.

 Out of 28 nodes 1 leaves a degree 1 node so, so the
fraction of edges leaving a degree 1 variable node is 1

28
so

𝜆𝜆1 = 1
28

. The fraction of edges leaving degree 2 nodes is
𝜆𝜆2 = 4

28
= 1

7
. Fifteen edges leave 5 degree 3 nodes. So,

𝜆𝜆3 = 15
28

. Finally, the 8 edges leaving nodes 𝑥𝑥4 and 𝑥𝑥8 gives
𝜆𝜆4 = 8

28
= 2

7
. So,

𝜆𝜆 𝑥𝑥 =
1

28
+

1
7
𝑥𝑥 +

15
28

𝑥𝑥2 +
2
7
𝑥𝑥3

Rate of LDPC Codes
 Now, in order to find 𝜌𝜌(𝑥𝑥) let’s look at the check nodes

(the ones on the right).

 We have two check nodes with degree 7, one with degree
6, one with degree 5 and one with degree 3.

 So, out of 28 edges 3 are connected to a check node of
degree 3, five are connected to a node of degree 5, six to
a degree 6 node and 14 are connected to the two nodes of
degree 7. As a result: 𝜌𝜌3 = 3

28
, 𝜌𝜌5 = 5

28
, 𝜌𝜌6 = 6

28
= 3

14
and

𝜌𝜌7 = 14
28

= 1
2
. Therefore,

𝜌𝜌 𝑥𝑥 = 3
28
𝑥𝑥2 + 5

28
𝑥𝑥4 + 3

14
𝑥𝑥5 + 1

2
𝑥𝑥6.

Rate of LDPC Codes
 Let’s use 𝜆𝜆(𝑥𝑥) and 𝜌𝜌(𝑥𝑥) to find the rate of this code:

�𝜆𝜆 𝑥𝑥 𝑎𝑎𝑥𝑥 = �
1

28
+

1
7
𝑥𝑥 +

15
28

𝑥𝑥2 +
2
7
𝑥𝑥3 𝑎𝑎𝑥𝑥

=
1

28
𝑥𝑥 +

1
14

𝑥𝑥2 +
5

28
𝑥𝑥3 +

1
14

𝑥𝑥4

And:

�
0

1
𝜆𝜆 𝑥𝑥 𝑎𝑎𝑥𝑥 =

10
28

=
5

14
.

For the check nodes:

�𝜌𝜌 𝑥𝑥 𝑎𝑎𝑥𝑥 = �
3

28
𝑥𝑥2 +

5
28

𝑥𝑥4 +
3

14
𝑥𝑥5 +

1
2
𝑥𝑥6 𝑎𝑎𝑥𝑥

=
1

28
𝑥𝑥3 +

1
28

𝑥𝑥5 +
1

28
𝑥𝑥6 +

1
14

𝑥𝑥7

Rate of LDPC Codes
 So,

�
0

1
𝜌𝜌 𝑥𝑥 𝑎𝑎𝑥𝑥 =

5
28

.

The rate will be:

𝑅𝑅 = 1 −
∫0
1 𝜌𝜌 𝑥𝑥

∫0
1 𝜆𝜆 𝑥𝑥

= 1 −
5

28
10
28

=
1
2

Encoding of LDPC Codes
 While sparsity of the check matrix facilitates the decoding of

LDPC codes, the fact that they are defined in terms of parity
check matrix makes their encoding complex.

 Now it is a good time to reflect on the question of why we
prefer cyclic codes and systematic codes. If a linear code is not
cyclic, we need to find codewords by multiplying the
information vector U by G. It means n vector multiplications
(as the number of columns of G is 𝑎𝑎). It also is evident that for
each vector multiplication, we need on the average 𝑛𝑛

2
operations (say XOR and add). So, the complexity is 𝑂𝑂(𝑎𝑎2). For
a cyclic code the complexity is 𝑂𝑂 𝑎𝑎 , i.e. , it is linear in 𝑎𝑎. For a
non-cyclic but systematic code, we need to find (𝑎𝑎 − 𝑘𝑘) parities
each requiring (on the average 𝑘𝑘

2
) operation. So, the order of

encoding is 𝑂𝑂(𝑎𝑎𝑘𝑘).

Encoding of LDPC Codes
 Encoding of LDPC codes is difficult since the graph can

only show whether a bit stream is a codeword or not. It
cannot be used for relating the messages to code words.
To ease encoding there are several different approaches:

1) To use cascaded rather than bi-partite graphs. This means
doing encoding in several stages. By choosing the number
and size of the stages, one can design codes that are
encodeable and decodable in linear time. The disadvantage
of this technique is that each stage adds parity to the
message and parity form previous stage. The length of data
to the total code word length is small (low rate). This results
in performance loss compared to a standard LDPC code.

Encoding of LDPC Codes
2) The other approach is to use codes that have lower
triangular form. This is similar to solving system of linear
equations using Gauss elimination.This approach while
guarantees linear time encoding complexity, results in some
loss of performance due to being restricted to a class of
LDPC codes.

3) Starting from a standard LDPC code, we try to make its
parity check matrix lower triangular and stop when we
cannot go further (Richardson and Urbanke).

 This results in an approximate lower triangular matrix.

Encoding of LDPC Codes
 The matrix 𝐻𝐻 is written as:

𝐻𝐻 = 𝑨𝑨 𝑩𝑩 𝑻𝑻
𝑪𝑪 𝑫𝑫 𝑬𝑬

Where 𝑨𝑨 is an (𝑚𝑚 − 𝑔𝑔) × (𝑎𝑎 −𝑚𝑚) matrix, 𝑩𝑩 is (𝑚𝑚 − 𝑔𝑔) ×
𝑔𝑔, 𝑻𝑻 is 𝑚𝑚 − 𝑔𝑔 × 𝑚𝑚 − 𝑔𝑔 , 𝑪𝑪 is 𝑔𝑔 × (𝑎𝑎 −𝑚𝑚), 𝑫𝑫 is 𝑔𝑔 × 𝑔𝑔,
and 𝑬𝑬 is g × (𝑚𝑚 − 𝑔𝑔),

Encoding of LDPC Codes
 We form the matrix:

𝑆𝑆 = 𝐼𝐼 0
−𝐸𝐸𝑇𝑇−1 𝐼𝐼

and multiply 𝐻𝐻 from the left by 𝑆𝑆 to get:

𝐻𝐻 = 𝐴𝐴 𝐵𝐵 𝑇𝑇
−𝐸𝐸𝑇𝑇−1𝐴𝐴 + 𝐶𝐶 −𝐸𝐸𝑇𝑇−1𝐴𝐴 + 𝐷𝐷 0

 Let the codeword be:
𝒗𝒗 = 𝒔𝒔,𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐

Where 𝑠𝑠 is the systematic part and 𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐 is the parity part
with 𝒑𝒑𝟏𝟏 of length 𝑔𝑔 and 𝒑𝒑𝟐𝟐 of length (m − 𝑔𝑔).
 Considering the fact that: 𝑯𝑯𝒗𝒗𝑻𝑻 = 𝟎𝟎𝑻𝑻 we have:

𝑨𝑨. 𝒔𝒔𝑻𝑻 + 𝑩𝑩.𝒑𝒑𝟏𝟏𝑻𝑻 + 𝑻𝑻.𝒑𝒑𝟐𝟐𝑻𝑻 = 0,

−𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑪𝑪 . 𝒔𝒔𝑻𝑻 + −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑫𝑫 .𝒑𝒑𝟏𝟏𝑻𝑻 = 0

Encoding of LDPC Codes
 Assume that −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑫𝑫 is not singular. Then the

second equation gives:
𝒑𝒑𝟏𝟏𝑻𝑻 = − −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑫𝑫 −𝟏𝟏 −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑪𝑪 . 𝒔𝒔𝑻𝑻

Note that the 𝑔𝑔 × 𝑎𝑎 −𝑚𝑚 matrix:
𝑴𝑴 = − −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑫𝑫 −𝟏𝟏 −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑪𝑪

 Can be precomputed and used to find 𝒑𝒑𝟏𝟏𝑻𝑻 = 𝑴𝑴𝒔𝒔𝑻𝑻 with
complexity of order 𝑂𝑂 𝑔𝑔 × 𝑎𝑎 −𝑚𝑚 . We see in the next
slide that this can be done with complexity 𝑂𝑂 𝑎𝑎 + 𝑂𝑂 𝑔𝑔2 .

 Next, we compute 𝒑𝒑𝟏𝟏:

𝒑𝒑𝟐𝟐𝑻𝑻 = 𝑻𝑻−𝟏𝟏 𝑨𝑨. 𝒔𝒔𝑻𝑻 + 𝑩𝑩.𝒑𝒑𝟏𝟏𝑻𝑻 .

Encoding of LDPC Codes
 Table 1 presents the complexity of computing 𝒑𝒑𝟏𝟏:

 So, the complexity of computing 𝒑𝒑𝟏𝟏 is 𝑂𝑂 𝑎𝑎 + 𝑂𝑂 𝑔𝑔2 .

Encoding of LDPC Codes
 Table 2 presents the complexity of computing 𝒑𝒑𝟐𝟐:

 It shows that the complexity of computing 𝒑𝒑𝟐𝟐 is 𝑂𝑂 𝑎𝑎 . So,
the overall complexity is 𝑂𝑂 𝑎𝑎 + 𝑂𝑂 𝑔𝑔2 .

 So far, we have assumed that −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑫𝑫 is not
singular. If it was singular, instead of pre-multiplication,
we need to use Gaussian elimination.

Encoding of LDPC Codes: Example
 As an example, let’s take the (3, 6)

regular code we saw before.

 The parity check matrix for this code is:

Encoding of LDPC Codes: Example
 By reordering the columns as: 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 8,

9 , we get,

 We use Gaussian elimination to clear 𝑬𝑬,

Encoding of LDPC Codes: Example
 We observe that:

−𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑫𝑫 = 1 1
1 1

and is singular. To remove this singularity, we can exchange
columns 5 and 8. This means that the column permutation
(referenced to the original matrix) is: 1, 2, 3, 4, 10, 6, 7, 5,
11, 12, 8, 9.

 The resulting equivalent 𝐻𝐻 matrix is:

Encoding of LDPC Codes: Example
 Now, we have,

−𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑫𝑫 = 1 0
1 1

that is not singular anymore.
Writing the codeword as 𝒗𝒗 = 𝒔𝒔,𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐 we have:

𝑨𝑨. 𝒔𝒔𝑻𝑻 + 𝑩𝑩.𝒑𝒑𝟏𝟏𝑻𝑻 + 𝑻𝑻.𝒑𝒑𝟐𝟐𝑻𝑻 = 0,

𝝁𝝁. 𝒔𝒔𝑻𝑻 + 𝝓𝝓.𝒑𝒑𝟏𝟏𝑻𝑻 = 0

Where 𝐴𝐴 =

1
1
0
1

1
1
0
0

1
1
0
0

0
1
0
1

0
0
1
1

1
0
1
0

, 𝐵𝐵 =

1
0
1
0

0
1
0
0

, 𝑇𝑇 =

1
0
1
0

0
1
1
1

0
0
1
1

0
0
0
1

,

𝝁𝝁 = 0
1

0
0

1
1

1
1

1
1

0
0 and𝝓𝝓 = 1

1
0
1

Encoding of LDPC Codes: Example
 Let’s encode 𝒔𝒔 = 1, 0, 0, 0,0,0

𝑨𝑨𝒔𝒔𝑻𝑻 =

1
1
0
1

1
1
0
0

1
1
0
0

0
1
0
1

0
0
1
1

1
0
1
0

1
0
0
0
0
0

=
1
1
0
1

𝑻𝑻−𝟏𝟏𝑨𝑨𝒔𝒔𝑻𝑻 =

1
0
1
1

0
1
1
0

0
0
1
1

0
0
0
1

1
1
0
1

=
1
1
0
0

−𝑬𝑬 𝑻𝑻−𝟏𝟏𝑨𝑨𝒔𝒔𝑻𝑻 = 0 0
1 0

1 1
0 1

1
1
0
0

= 0
1

Encoding of LDPC Codes: Example

𝑪𝑪𝒔𝒔𝑻𝑻 = 0 1 0
0 0 1

1 0 0
0 1 1

1
0
0
0
0
0

= 0
0

−𝑬𝑬 𝑻𝑻−𝟏𝟏𝑨𝑨𝒔𝒔𝑻𝑻 + 𝑪𝑪𝒔𝒔𝑻𝑻 = 0
1

So,

𝒑𝒑1𝑇𝑇 = 𝜙𝜙−1 −𝑬𝑬𝑻𝑻−𝟏𝟏𝑨𝑨 + 𝑪𝑪 𝒔𝒔𝑇𝑇 = 1 0
1 1

0
1 = 0

1
 And 𝒑𝒑1 = 0 1 .

Encoding of LDPC Codes: Example
 To find 𝒑𝒑2, we compute:

𝑩𝑩𝒑𝒑𝟏𝟏𝑻𝑻 =
𝟎𝟎
𝟏𝟏
𝟎𝟎
𝟎𝟎

𝑨𝑨𝒔𝒔𝑻𝑻 + 𝑩𝑩𝒑𝒑𝟏𝟏𝑻𝑻 =
𝟏𝟏
𝟎𝟎
𝟎𝟎
𝟏𝟏

𝒑𝒑𝟐𝟐𝑻𝑻 = 𝑻𝑻−𝟏𝟏 𝑨𝑨𝒔𝒔𝑻𝑻 + 𝑩𝑩𝒑𝒑𝟏𝟏𝑻𝑻 =
𝟏𝟏
𝟎𝟎
𝟏𝟏
𝟎𝟎

Therefore, the codeword is:

𝒗𝒗 = 𝒔𝒔,𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐 = 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,0 .

Decoding of LDPC Codes
 Decoding of LDPC Codes is performed using message

passing or belief propagation (BP) algorithm.
 BP is an iterative algorithm where in each iteration

message nodes send the likelihood of their value to all
check nodes to which they are connected and check nodes
send message to variable (message) nodes based on what
they have received from other message nodes.

 Message nodes and check nodes exclude what they have
received from one another when they send a message.

 In BP the message sent from a message node is based on
that node’s received information (from the channel) and
what it gets from check nodes connected to it (except the
one it wants to send the message to). These are in the
form of probability or likelihood ratio.

Decoding of LDPC Codes
 A message node 𝑣𝑣 sends to a check node 𝑐𝑐 (the probability

or likelihood) of 𝑣𝑣 having a certain value given its
observation and what it has received in the previous
iteration from its neighboring check nodes other than 𝑐𝑐.

 In the same way, a check node c sends to 𝑣𝑣 the probability
that c has a certain value given all the messages passed to
𝑐𝑐 in the previous iteration from message nodes other than
𝑣𝑣.

 The messages passed from message nodes to check nodes
and vice versa are in the form of likelihood or log
likelihood ratios that we encountered before when
discussing Turbo Codes. Let’s revisit them here.

Decoding of LDPC Codes
 Likelihood ratio of a binary random variable 𝑥𝑥 is:

𝐿𝐿 𝑥𝑥 =
𝑃𝑃(𝑥𝑥 = 0)
𝑃𝑃(𝑥𝑥 = 1)

 The conditional Likelihood ratio of 𝑥𝑥 given 𝒚𝒚 is:

𝐿𝐿 𝑥𝑥|𝒚𝒚 =
𝑃𝑃(𝑥𝑥 = 0|𝒚𝒚)
𝑃𝑃(𝑥𝑥 = 1|𝒚𝒚)

 If 𝑥𝑥 is uniformly distributed, we have:
𝐿𝐿 𝑥𝑥 𝒚𝒚 = 𝐿𝐿(𝒚𝒚|𝑥𝑥)

 If 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑑𝑑 are independent random variables:

𝐿𝐿 𝑥𝑥|𝒚𝒚 = �
𝑖𝑖=1

𝑑𝑑

𝐿𝐿(𝑥𝑥|𝑦𝑦𝑖𝑖)

Or: log 𝐿𝐿 𝑥𝑥|𝒚𝒚 = ∑𝑖𝑖=1𝑑𝑑 log 𝐿𝐿 𝑥𝑥 𝑦𝑦𝑖𝑖 = ∑𝑖𝑖=1𝑑𝑑 𝑙𝑙𝑎𝑎 𝐿𝐿 𝑥𝑥 𝑦𝑦𝑖𝑖

Decoding of LDPC Codes
 Now assume 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑙𝑙 are binary random variables and
𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑙𝑙 are real or integer random variables. We would like
to find:

ln 𝑙𝑙 (𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕⋯⊕ 𝑥𝑥𝑙𝑙 |𝑦𝑦1, … ,𝑦𝑦𝑙𝑙)
 For two bits (𝑙𝑙 = 2) if we let:

2𝑃𝑃 𝑥𝑥1 = 0 𝑦𝑦1 − 1 = 𝑝𝑝 ⇒ 𝑃𝑃 𝑥𝑥1 = 0 𝑦𝑦1 =
1 + 𝑝𝑝

2
And

2𝑃𝑃 𝑥𝑥2 = 0 𝑦𝑦2 − 1 = 𝑞𝑞 ⇒ 𝑃𝑃 𝑥𝑥2 = 0 𝑦𝑦2 = 1+𝑞𝑞
2

Then
𝑃𝑃 𝑥𝑥1 ⊕ 𝑥𝑥2 = 0 𝑦𝑦1,𝑦𝑦2

= 𝑃𝑃 𝑥𝑥1 = 0, 𝑥𝑥2 = 0 𝑦𝑦1,𝑦𝑦2 + 𝑃𝑃 𝑥𝑥1 = 1, 𝑥𝑥2 = 1 𝑦𝑦1,𝑦𝑦2
= 𝑃𝑃 𝑥𝑥1 = 0 𝑦𝑦1 𝑃𝑃 𝑥𝑥2 = 0 𝑦𝑦2 + 𝑃𝑃 𝑥𝑥1 = 1 𝑦𝑦1 𝑃𝑃 𝑥𝑥2 = 1 𝑦𝑦2

Decoding of LDPC Codes

 Substituting 𝑃𝑃 𝑥𝑥1 = 0 𝑦𝑦1 = 1+𝑝𝑝
2

and 𝑃𝑃 𝑥𝑥2 = 0 𝑦𝑦2 = 1+𝑞𝑞
2

:

𝑃𝑃 𝑥𝑥1 ⊕ 𝑥𝑥2 = 0 𝑦𝑦1,𝑦𝑦2 =
1 + 𝑝𝑝

2
.
1 + 𝑞𝑞

2
+

1 − 𝑝𝑝
2

.
1 − 𝑞𝑞

2

=
2 + 2𝑝𝑝𝑞𝑞

2
= 1 + 𝑝𝑝𝑞𝑞

 So: 2𝑃𝑃 𝑥𝑥1 ⊕ 𝑥𝑥2 = 0 𝑦𝑦1,𝑦𝑦2 − 1 = 𝑝𝑝𝑞𝑞.
 Therefore,

2𝑃𝑃 𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕⋯⊕ 𝑥𝑥𝑙𝑙 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑙𝑙 − 1 = �
𝑖𝑖=1

𝑙𝑙

2𝑃𝑃 𝑥𝑥𝑖𝑖 = 0 𝑦𝑦𝑖𝑖 − 1

 Let 𝜆𝜆𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙
𝑃𝑃(𝑥𝑥𝑖𝑖=0|𝑦𝑦𝑖𝑖)
𝑃𝑃(𝑥𝑥𝑖𝑖=1|𝑦𝑦𝑖𝑖)

be the log-likelihood ratio of 𝑥𝑥𝑖𝑖 given
𝑦𝑦𝑖𝑖.

 So, 𝑃𝑃 𝑥𝑥𝑖𝑖 = 0 𝑦𝑦𝑖𝑖 = 𝑒𝑒𝜆𝜆𝑖𝑖

𝑒𝑒𝜆𝜆𝑖𝑖+1

Decoding of LDPC Codes
 Finally,

2 𝑃𝑃 𝑥𝑥𝑖𝑖 = 0 𝑦𝑦𝑖𝑖 − 1 =
𝑒𝑒𝜆𝜆𝑖𝑖 − 1
𝑒𝑒𝜆𝜆𝑖𝑖 + 1

=
𝑒𝑒 �𝜆𝜆𝑖𝑖 2 − 𝑒𝑒 �−𝜆𝜆𝑖𝑖

2

𝑒𝑒 �𝜆𝜆𝑖𝑖 2 + 𝑒𝑒 �−𝜆𝜆𝑖𝑖
2

Or:

2𝑃𝑃 𝑥𝑥𝑖𝑖 = 0 𝑦𝑦𝑖𝑖 − 1 = tanh(
𝜆𝜆𝑖𝑖
2

)

Decoding of LDPC Codes

 Let 𝑚𝑚𝑣𝑣𝑣𝑣
(𝑙𝑙) be the message passed from message node v to check

node c in iteration L. Similarly, denote by 𝑚𝑚𝑣𝑣𝑣𝑣
(𝑙𝑙) the message

from c to v. Then the update equations in BP are:

 Where 𝐶𝐶𝑣𝑣 is the set of check nodes connected to 𝑣𝑣.
Similarly, 𝑉𝑉𝑣𝑣 are variable nodes connected to 𝑐𝑐.

Bit Flip Decoding of LDPC Codes
 This method was devised by Gallager:
 When we compute syndromes, i.e., the value of check nodes, if

they are all zero, we assume there is no error and stop.
 Then, we find for each variable node, the number of failed (1).

Check nodes and flip the one with maximum number of failed
check nodes connected to it.

 We then re-calculate the syndromes and flip the bit that is most
connected to those with value 1.

 We continue iteration above until either all check nodes have
zero value or until a certain number of pre-determined
iterations have been done with no success (failure in this case).

Bit Flip Decoding of LDPC Codes
 The above, simple BP algorithm is given below:
1. Compute syndromes by 𝑟𝑟.𝐻𝐻𝑇𝑇 = 𝑆𝑆 . If all check-sums are 0

stop.
2. Find the number of failed parity check equations for each node.
Decode the number of failed check node for each message node
by 𝑓𝑓𝑖𝑖 , 𝑖𝑖 = 1, 2, . . ,𝑎𝑎.
1. Identify the set of bits 𝑆𝑆 for which 𝑓𝑓𝑖𝑖 is the largest.
2. Flip bits in 𝑆𝑆.
3. Repeat steps 1 to 4 until the parity-check sums are zero

(success), or a preset maximum number of iterations is reached
(decoding failure)

Bit Flip Decoding: Example
 Example: Assume that we have used this code and have

received 0000000100 that is 𝑥𝑥8 = 1 and 𝑥𝑥𝑖𝑖 = 0 𝑖𝑖 ≠ 8

 Step 1: Compute syndromes:
𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥10 = 0,0,0,0,0,0,0,1,0,0

This results in syndromes as:
𝐶𝐶 = 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5 = 1,1,1,1,0

Bit Flip Decoding: Example
 Obviously, this indicates an error.
 Step 2: Find the number of failed parity check equations for

each node:
 The table below shows the frequency of occurrence of each

node in the failed parity check equations:

 Step 1: Compute syndromes:
Step 3: Identify the bits for which the frequency of occurrence is
the largest. From step 2, this is clearly x8, which has occurred in
all four failed parity check equations.
Step 4: Flip bits from step 3: By flipping x8, the code word will be
𝑋𝑋 = 0,0,0,0,0,0,0,0,0,0 . This results in all zero syndromes that
means successful LDPC decoding

𝑥𝑥𝑖𝑖 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6 𝑥𝑥7 𝑥𝑥8 𝑥𝑥9 𝑥𝑥10

𝑓𝑓𝑖𝑖 3 2 2 3 1 1 2 4 2 3

Comparison of LDPC and Turbo Codes
This figure compares the performance of LDPC codes and Turbo codes for
different codeword lengths. All codes are of rate ½ .

	LECTURE 11: LDPC Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Low Density Parity Check (LDPC) Codes
	Rate of LDPC Codes
	Rate of LDPC Codes
	Rate of LDPC Codes
	Rate of LDPC Codes
	Rate of LDPC Codes
	Rate of LDPC Codes
	Rate of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes
	Encoding of LDPC Codes: Example
	Encoding of LDPC Codes: Example
	Encoding of LDPC Codes: Example
	Encoding of LDPC Codes: Example
	Encoding of LDPC Codes: Example
	Encoding of LDPC Codes: Example
	Encoding of LDPC Codes: Example
	Decoding of LDPC Codes
	Decoding of LDPC Codes
	Decoding of LDPC Codes
	Decoding of LDPC Codes
	Decoding of LDPC Codes
	Decoding of LDPC Codes
	Decoding of LDPC Codes
	Bit Flip Decoding of LDPC Codes
	Bit Flip Decoding of LDPC Codes
	Bit Flip Decoding: Example
	Bit Flip Decoding: Example
	Comparison of LDPC and Turbo Codes

