ELEC 6131: Error Detecting and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Tuesday, 17:45-20:15.
Office Hours: Tuesday, 15:00-17:00

LECTURE 3: More on Galois Fields

Properties of Extended Galois Field $\operatorname{GF}\left(2^{m}\right)$

- In ordinary algebra, it is very likely that an equation with real coefficients does not have real roots. For example, equation $X^{2}+X+1$ has to have two roots, but neither of them is in \mathbb{R}. The roots of $X^{2}+X+1$ are $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$. That is, they are from the complex field \mathbb{C}.
- The same way, a polynomial with coefficients from $G F(2)$, may or may not have roots $\in\{0,1\}$. For example, it is easy to see that $X^{4}+X^{3}+1$ over $G F(2)$ is irreducible. So, it does not have roots in $G F(2)$. But it is of degree four, so it has to have four roots. These roots are in $G F\left(2^{4}\right)$. For a small field like $G F\left(2^{4}\right)$ it is easy to try all 16 elements (in fact 14 , since we know that 0 and 1 are not answers) to find four that solve the equation.

Properties of Extended Galois Field $G F\left(2^{m}\right)$

- Substituting elements of $G F\left(2^{4}\right)$ into the equation $X^{4}+X^{3}+1$ we find out that α^{7}, α^{11}, α^{13}, and α^{14} are its roots. For example, $\left(\alpha^{7}\right)^{4}+\left(\alpha^{7}\right)^{3}+1=\alpha^{28}+\alpha^{21}+1=$ $\alpha^{13}+\alpha^{6}+1=\left(1+\alpha^{2}+\alpha^{3}\right)+\left(\alpha^{2}+\alpha^{3}\right)+1=0$. Similarly, we can check α^{11}, α^{13}, and α^{14}. So,

$$
X^{4}+X^{3}+1=\left(X+\alpha^{7}\right)\left(X+\alpha^{11}\right)\left(X+\alpha^{13}\right)\left(X+\alpha^{14}\right)
$$

- The following theorem helps us to find other roots of a polynomial after finding one.
- Theorem 11: let $\beta \in G F\left(2^{m}\right)$ be a root of $f(X)$. Then, $\beta^{2^{i}}, i \geq 0$ is also a root of $f(X)$.
- Proof: we have seen that $[f(X)]^{2}=f\left(X^{2}\right)$. So, $[f(\beta)]^{2}=f\left(\beta^{2}\right)$. Sine $f(\beta)=0$, $f\left(\beta^{2}\right)=0$. Also, $\left[f\left(\beta^{2}\right)\right]^{2}=f\left(\beta^{2^{2}}\right)$. So, $f\left(\beta^{2^{2}}\right)=f\left(\beta^{4}\right)=0$ and so on. Therefore, $f\left({\beta^{2}}^{i}\right)=0, i \geq 0$. These elements ${\beta^{2}}^{i}$ of $G F\left(2^{m}\right)$ are called conjugates of β.
- In the previous example, after finding $\beta=\alpha^{7}$ as a root of $X^{4}+X^{3}+1$, we can see that $\beta^{2^{1}}=\alpha^{14}$ is a root as well. $\beta^{2^{2}}=\beta^{4}=\alpha^{28}=\alpha^{13}$ is also a root. And also, $\beta^{2^{3}}=$ $\beta^{8}=\alpha^{56}=\alpha^{11}$.

Properties of Extended Galois Field $G F\left(2^{m}\right)$

- Theorem 12: the $2^{m}-1$ non-zero elements of $G F\left(2^{m}\right)$ form all the roots of $X^{2^{m}-1}+1$.
- Proof: in Theorem 8, we saw that if β is an element of $G F(q)$, then $\beta^{q-1}=1$. So, for $\beta \in G F\left(2^{m}\right)$ we have $\beta^{2^{m}-1}=1 \Rightarrow \beta^{2^{m}-1}+1=0$. This means that β is a root of $X^{2^{m}-1}+1$. Therefor, every non-zero elements of $G F\left(2^{m}\right)$ is a root of $X^{2^{m}-1}+1$ and since this polynomial has $2^{m}-1$ roots, the $2^{m}-1$ non-zero elements of $G F\left(2^{m}\right)$ form all the roots of $X^{2^{m}-1}+1$.
- Corollary 12.1: the elements of $G F\left(2^{m}\right)$ form all the roots of $X^{2^{m}}+$ X.
- Proof: this polynomial factors as $X\left[X^{2^{m}-1}+1\right]$. It has a root of zero and all non-zero elements of $G F\left(2^{m}\right)$ as its roots.

Properties of Extended Galois Field GF(2^{m})

- While an element β over $G F\left(2^{m}\right)$ is always a root of $X^{2^{m}-1}+1$, it may also be a root of a polynomial over $G F(2)$ with degree less than $2^{m}-1$. Take $m=4$, i.e., $\operatorname{GF}\left(2^{4}\right) . X^{2^{m}-1}+1=X^{15}+1$. We can write $X^{15}+1=\left(X^{4}+X^{3}+\right.$ 1) $\left(X^{11}+X^{10}+X^{9}+X^{8}+X^{6}+X^{4}+X^{3}+1\right)$. We saw that $\beta=\alpha^{7}$ is a root of $X^{4}+X^{3}+1$.
- Definition: for any $\beta \in G F\left(2^{m}\right)$ the polynomial $\varnothing(X)$ with lowest degree that has β as its root is called the minimal polynomial of β.
- Theorem 13: the minimal polynomial $\varnothing(X)$ of a field element β is irreducible.
- Proof: suppose $\varnothing(X)$ is not irreducible and can be written as $\varnothing(X)=\emptyset_{1}(X) \emptyset_{2}(X)$. Since $\varnothing(\beta)=\emptyset_{1}(\beta) \emptyset_{2}(\beta)=0$, then either $\emptyset_{1}(\beta)=0$ or $\emptyset_{2}(\beta)=0$. This contradicts the definition the $\varnothing(X)$ is the smallest degree polynomial with β as a root.

Properties of Extended Galois Field GF(2^{m})

- Theorem 14: If a polynomial $f(X)$ over $G F(2)$ has β as a root, then $\emptyset(X)$ divides $f(X)$.
- Proof: suppose $f(X)$ is not divisible by $\emptyset(X)$. Then, $f(X)=\varnothing(X) \cdot a(X)+r(X)$ with $r(X)$ having degree less than $\emptyset(X)$. But,

$$
f(\beta)=\varnothing(\beta) \cdot a(\beta)+r(\beta)
$$

- But $f(\beta)=0$ and $\varnothing(\beta)=0 \Rightarrow r(\beta)=0 \Rightarrow$ contradiction.
- Following properties are simple to prove:
- Theorem 15: the minimal polynomial $\varnothing(X)$ of $\beta \in G F\left(2^{m}\right)$ divides $X^{2^{m}}+X$.
- Theorem 16: if $f(X)$ is an irreducible polynomial and $f(\beta)=0$, then $f(X)=$ $\varnothing(X)$.

Properties of Extended Galois Field GF (2 2^{m})

- In a previous example, we saw that $\alpha^{7}, \alpha^{11}, \alpha^{13}$, and α^{14} are roots of $f(X)=$ $X^{4}+X^{3}+1$. That is,
- $X^{4}+X^{3}+1=\left(X+\alpha^{7}\right)\left(X+\alpha^{11}\right)\left(X+\alpha^{13}\right)\left(X+\alpha^{14}\right)$.
\Rightarrow Note that if we take $\beta=\alpha^{7}$, we have $\beta^{2}=\alpha^{14}, \beta^{4}=\alpha^{28}=\alpha^{13}, \beta^{8}=\alpha^{11}$, and $\beta^{16}=\beta=\alpha^{7}$. That is,
- $X^{4}+X^{3}+1=(X+\beta)\left(X+\beta^{2}\right)\left(X+\beta^{4}\right)\left(X+\beta^{8}\right)$.
- Following theorem relates to this observation.
- Theorem 17: for $\beta \in G F\left(2^{m}\right)$ if e is the smallest number such that $\beta^{2^{e}}=\beta$, then $f(X)=\prod_{i=0}^{e-1}\left(X+\beta^{2^{i}}\right)$ is an irreducible polynomial over $G F(2)$.
- Proof: first we show that $f(X)$ is a polynomial over $G F(2)$.

Properties of Extended Galois Field GF (2^{m})

- $[f(X)]^{2}=\left[\Pi_{i=0}^{e-1}\left(X+\beta^{2^{i}}\right)\right]^{2}=\prod_{i=0}^{e-1}\left(X+\beta^{2^{i}}\right)^{2}$
$\Rightarrow \operatorname{But}\left(X+\beta^{2^{i}}\right)^{2}=X^{2}+\beta^{2^{i}} X+\beta^{2^{i}} X+\beta^{2^{i+1}}=X^{2}+\left(\beta^{2^{i}}+\beta^{2^{i}}\right) X+\beta^{2^{i+1}}$

$$
=X^{2}+\beta^{2^{i+1}}
$$

- So, $[f(X)]^{2}=\prod_{i=0}^{e-1}\left(X^{2}+\beta^{2^{i+1}}\right)=\prod_{i=1}^{e}\left(X^{2}+\beta^{2^{i}}\right)=\prod_{i=1}^{e-1}\left(X^{2}+\beta^{2^{i}}\right)\left(X^{2}+\beta^{2^{e}}\right)$

$$
=\prod_{i=1}^{e-1}\left(X^{2}+\beta^{2^{i}}\right)\left(X^{2}+\beta\right)=\prod_{i=0}^{e-1}\left(X^{2}+\beta^{2^{i}}\right)=f\left(X^{2}\right)
$$

L Let $f(X)=f_{0}+f_{1} X+\cdots+f_{e} X^{e}$, then $f\left(X^{2}\right)=f_{0}+f_{1} X^{2}+\cdots+f_{e} X^{2 e}$ and $[f(X)]^{2}=\left(f_{0}+f_{1} X+\cdots+f_{e} X^{e}\right)^{2}=\sum_{i=0}^{e} f_{i}^{2} X^{2 i}+(1+1) \sum_{i=0}^{e} \sum_{j=0}^{e} f_{i} f_{j} X^{i+j}=$ $\sum_{i=0}^{e} f_{i}^{2} X^{2 i}$. So, $f\left(X^{2}\right)=[f(X)]^{2} \Rightarrow f_{i}^{2}=f_{i}$ for all i.

- This means that $f_{i}=0$ or $f_{i}=1$ for all i. Therefore, $f(X)$ is a polynomial over $G F(2)$.
- The only thing left is to show that $f(X)$ is irreducible.

Properties of Extended Galois Field GF(2^{m})

- We show that if we assume $f(X)$ is not irreducible, we arrive at a contradiction.
- Let $f(X)$ not be irreducible and can be written as $f(X)=a(X) b(X)$. Since $f(\beta)=0$, either $a(\beta)=0$ or $b(\beta)=0$. If $a(\beta)=0$, then $a(X)$ has β as well as $\beta^{2}, \cdots, \beta^{2^{e}-1}$ as its roots. So, it has degree e and $a(X)=f(X)$. Similarly, for $b(X)$. Therefore, $f(X)$ must be irreducible.
- Definition: $\beta^{2}, \cdots, \beta^{2^{2-1}}$ are called conjugates of β.
- Theorem 18: let $\varnothing(X)$ be the minimal polynomial of $\beta \in G F\left(2^{m}\right)$. Let e be the smallest non-negative integer such that $\beta^{2^{e}}=\beta$. Then, $\varnothing(X)=\prod_{i=0}^{e-1}\left(X+\beta^{2^{i}}\right)$.

Properties of Extended Galois Field $\operatorname{GF}\left(2^{m}\right)$

- Example: consider Galois Field $G F\left(2^{4}\right)$ and let $\beta=\alpha^{3}$. The conjugates of α^{3} are $\beta^{2}=\alpha^{6}, \beta^{2^{2}}=\beta^{4}=\alpha^{12}, \beta^{2^{3}}=\alpha^{24}=\alpha^{9}$. So, $\varnothing(X)$ for $\beta=\alpha^{3}$ is
$\emptyset(X)=\left(X+\alpha^{3}\right)\left(X+\alpha^{6}\right)\left(X+\alpha^{12}\right)\left(X+\alpha^{9}\right)=X^{4}+X^{3}+X^{2}+X+1$.
- Consider $G F\left(2^{4}\right)$ generated by $p(X)=X^{4}+X+1$. Following is a list of minimal polynomials:

Conjugate Roots	$\emptyset(X)$
0	X
1	$X+1$
$\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}$	$X^{4}+X+1$
$\alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12}$	$X^{4}+X^{3}+X^{2}+X+1$
α^{5}, α^{10}	$X^{2}+X+1$
$\alpha^{7}, \alpha^{11}, \alpha^{13}, \alpha^{14}$	$X^{4}+X^{3}+1$

Vector Spaces

- Let V be a set of elements on which an operation called addition (+) is defined. Let F be a field. A multiplication (\cdot) operation between elements of \underline{V} and \underline{F} is defined. The set V is called a vector space over F if the following conditions hold:
i) V is a commutative group under addition.
ii) for any element $a \in F$ and any $\underline{v} \in V: \quad a \cdot \underline{v} \in V$.
iii) distributive law: $\forall a, b \in F$ and $\forall \underline{u}, \underline{v} \in V$:

$$
\begin{gathered}
a \cdot(\underline{u}+\underline{v})=a \cdot \underline{u}+a \cdot \underline{v} \text { and } \\
(a+b) \cdot \underline{v}=a \cdot \underline{v}+b \cdot \underline{v}
\end{gathered}
$$

iv) associative law:

$$
(a \cdot b) \cdot \underline{v}=a \cdot(b \cdot \underline{v})
$$

v) let 1 be the unit element of F. Then, $\forall \underline{v} \in V \Rightarrow 1 \cdot \underline{v}=\underline{v}$.

- The elements of V are called vectors. The elements of the field F are called scalars.

Properties of Vector Spaces

- The addition between elements of V is called vector addition.
- The multiplication between elements of F and V is called scalar multiplication.
- Properties of the vector field:

Property I: $\forall \underline{v} \in V \Rightarrow \underline{0} \cdot \underline{v}=0$ where 0 is the zero element of F.
Property II: $\forall c \in F \Rightarrow c \cdot \underline{0}=\underline{0}$ where $\underline{0}$ is the zero element of V.
Property III: $\forall c \in F$ and $\forall \underline{v} \in V$, we have:

$$
(-\bar{c}) \cdot \underline{v}=c \cdot(-\underline{v})=-(c \cdot \underline{v}) .
$$

- Definition: a subset of a vector space V say S is called a subspace if it is also a vector space.
(Theorem 22: let $S \subset V$ where V is a vector space over F. Then S is a subspace of V if:
i) $\forall \underline{u}, \underline{v} \in S, \underline{u}+\underline{v} \in S$.
ii) $\forall a \in F$ and $\underline{u} \in S \Rightarrow a \cdot \underline{u} \in S$.

Set of Binary \boldsymbol{n}-tuples is a Vector Space

- Take $\underline{v}=\left(v_{0}, v_{1}, \cdots, v_{n-1}\right)$ where $v_{i} \in G F(2)$. Define:

$$
\underline{v}+\underline{u}=\left(v_{0}+u_{0}, v_{1}+u_{1}, \cdots, v_{n-1}+u_{n-1}\right)
$$

where addition is modulo-2.
Also, for $a \in G F(2)$ define:

$$
a \cdot \underline{v}=\left(a \cdot v_{0}, a \cdot v_{1}, \cdots, a \cdot v_{n-1}\right)
$$

where multiplication is modulo-2.

- Let $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k}$ be k vectors $\in V$ and $a_{1}, a_{2}, \cdots, a_{k} \in F$. Then,

$$
a_{1} \underline{v}_{1}+a_{2} \underline{v}_{2}+\cdots+a_{k} \underline{v}_{k}
$$

is called a linear combination of $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k}$. It is clear that sum of two linear combinations of $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k}$ is a linear combination of $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k}$. Also, $c \cdot\left(a_{1} \underline{v}_{1}+\right.$ $a_{2} \underline{v}_{2}+\cdots+a_{k} \underline{v}_{k}$) is a linear combination of $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k}$. So:

- Theorem 23: the set of all linear combinations of $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k} \in V$ is a subspace of V.

Set of Binary \boldsymbol{n}-tuples is a Vector Space

- Definition: $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k} \in V$ are linearly dependent if there are k scalars $a_{1}, a_{2}, \cdots, a_{k} \in F$ such that $a_{1} \underline{v}_{1}+a_{2} \underline{v}_{2}+\cdots+a_{k} \underline{v}_{k}=\underline{0}$.
- A set of vectors $\underline{v}_{1}, \underline{v}_{2}, \cdots, \underline{v}_{k} \in V$ are linearly independent if they are not linearly dependent.
- Consider:

$$
\begin{gathered}
\underline{e}_{0}=(1,0, \cdots, 0) \\
\underline{e}_{1}=(0,1, \cdots, 0) \\
\vdots \\
\underline{e}_{n-1}=(0,0, \cdots, 1)
\end{gathered}
$$

- these n-tuples span the vector space V of all $2^{n} n$-tuples.

Set of Binary \boldsymbol{n}-tuples is a Vector Space

- Each n-tuple $\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ is written as $\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)=a_{0} \underline{e}_{0}+a_{1} \underline{e}_{1}+$ $\cdots+a_{n-1} \underline{e}_{n-1}$.
- We call $\underline{u} \cdot \underline{v}=u_{0} v_{0}+u_{1} v_{1}+\cdots+u_{n-1} v_{n-1}$ the inner product of \underline{u} and \underline{v}. If \underline{u}. $\underline{v}=0$, we say that \underline{u} and \underline{v} are orthogonal.
- Let S be a subspace of V. Let the subset S_{d} of V be the set of all vectors \underline{u} of S and for any vector $\underline{v} \in S_{d}$ we have $\underline{u} \cdot \underline{v}=0 . S_{d}$ is called the null space of S.
- Theorem 24: let S be a k-dimensional subspace of V_{n} (set of n-tuples over $G F(2)$). The dimension of S_{d}, the null space of S, is $n-k$.

