ELEC 6131: Error Detecting
and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Tuesday, 17:45 — 20:15.

Office Hours: Tuesday, 15:00 — 17:00

LECTURE 3: More on Galois Fields




Properties of Extended Galois Field GF(2™)

» In ordinary algebra, it is very likely that an equation with real coefficients
does not have real roots. For example, equation X? + X + 1 has to have two

roots, but neither of them is in R. The roots of X2 + X + 1 are —% ij\/;. That

is, they are from the complex field C.

» The same way, a polynomial with coefficients from GF(2), may or may not
have roots € {0, 1}. For example, it is easy to see that X* + X3 + 1 over GF(2)
is irreducible. So, it does not have roots in GF(2). But it is of degree four, so
it has to have four roots. These roots are in GF(2*). For a small field like
GF(2%) it is easy to try all 16 elements (in fact 14, since we know that 0 and 1
are not answers) to find four that solve the equation.




Properties of Extended Galois Field GF(2™)

» Substituting elements of GF (2%) into the equation X* + X3 + 1 we find out that a”’,
all a13é and al? are its roots. For example, (aN*+(@)+1=a?8 +a?l+1=
al>+a®+1=0+a?+ a3+ (a? + a®) + 1 = 0. Similarly, we can check a!?,
a'3, and a'*. So,
X*+X33+1=X+a)NX+aH)X + a™® (X + a'?).

» The following theorem helps us to find other roots of a polynomial after finding one.

» Theorem 11: let § € GF(2™) be a root of f(X). Then, ﬁzi, i = 0 1s also aroot of f(X).

» Proof: we have seen that [f(X)]? = f(X?). So, [f(B)]? = f(B?). Sine f(B) =0,
f(,[i’z). = 0. Also, [f(B)])* = f (,822)._ So, f (,822) = f(B*) = 0 and so on. Therefore,
f (ﬁzl) = 0,i = 0. These elements 2° of GF (2™) are called conjugates of S.

» In the previous example, after finding f = a” as aroot of X* + X3 + 1, we can see that

1 . 2 . 3
27 = q1* is a root as well. B2 = p* = a?® = a'3 is also a root. And also, B?° =

B8 = 56 = g1,




Properties of Extended Galois Field GF(2™)

» Theorem 12: the 2™ — 1 non-zero elements of GF(2™) form all the
roots of X2" 1+ 1.

» Proof: in Theorem 8, we saw that if § is an element of GF(q), then
B1-1 =1. So, for B € GF(2™) we have p2" "1 = 1= p2"-1 4+ 1 =0.
This means that g is a root of X2"~1 + 1. Therefor, every non-zero

elements of GF(2™) is a root of X2" ~1 + 1 and since this polynomial
has 2™ — 1 roots, the 2™ — 1 non-zero elements of GF(2™) form all

the roots of X211 + 1.

» Corollary 12.1: the elements of GF(2™) form all the roots of X2 +
X.

» Proof: this polynomial factors as X[X?"~* + 1]. It has a root of zero
and all non-zero elements of GF(2™) as its roots.




Properties of Extended Galois Field GF(2™)

>

While an element B over GF(2™) is always a root of X2"~1 + 1, it may also be
a root of a polynomial over GF(2) with degree less than 2™ — 1. Take m = 4,
i.e., GF2H). X" 14+1=X"%4+1. Wecanwrite X*° + 1 = (X* + X3 +

DX+ X104+ X%+ X3+ X6+ X*+ X3 +1). We saw that f = a” is a root of
X*+ X3 +1.

Definition: for any f € GF(2™) the polynomial @(X) with lowest degree that
has g as its root is called the minimal polynomial of .

Theorem 13: the minimal polynomial @(X) of a field element g is irreducible.

Proof: suppose @(X) is not irreducible and can be written as @(X) = @, (X)0,(X).

Since @(B) = @, (B)D,(B) = 0, then either @;(B) = 0 or @,(B) = 0. This contradicts
the definition the @(X) is the smallest degree polynomial with 8 as a root.




Properties of Extended Galois Field GF(2™)

>

>

» Following properties are simple to prove:

Theorem 14: If a polynomial f(X) over GF(2) has 8 as a root, then @(X)
divides f(X).

Proof: suppose f(X) is not divisible by @(X). Then, f(X) = 0(X) - a(X) + r(X)
with r(X) having degree less than @(X). But,
fB) =0(B)-alB)+r(B)

But f(8) = 0 and ®(B) = 0 = r(B) = 0 = contradiction.

Theorem 15: the minimal polynomial @(X) of B € GF(2™) divides X2 + X.

Theorem 16: if f(X) is an irreducible polynomial and f(B8) = 0, then f(X) =
D(X).




Properties of Extended Galois Field GF(2™)

>

» Following theorem relates to this observation.

In a previous example, we saw that a’, a'l, a3, and a'* are roots of f(X) =
X*+ X3+ 1. That is,

X*+X34+1=X+a)X +aH)X + a®) (X + o).

Note that if we take p = a”, we have p? = a'*, p* = a?® = a3, B8 = all,
and p1® = B = a’. That is,

X*+X3+1=X+BX+ D)X+ BH(X + B®).

Theorem 17: for g € GF(2™) if e is the smallest number such that B =B,
then f(X) = [1¢2(X + B?) is an irreducible polynomial over GF(2).

Proof: first we show that f(X) is a polynomial over GF (2).




Properties of Extended Galois Field GF(2™)

b IFOOR = [Meder + 82 | = Tezdex + 62
b But (X +62) = X2 4 BEX 4 p2'X + 2 = X2+ (B2 4 p2x + g2
= X2+ 2"
> So, [FOOI2=TIZa (X% + 27) =TI, (X2 + B2) = TIE (X2 + B2 (X2 + B2°)
= [IeCi (X2 + B2H(X2 + B) = [TZa (X2 + B2) = F(x?)
» Let fX)=fo+fiX+-+fX®, then f(X?)=fo+f,X?>+ +f,X*® and

OO = (fo+ X+ + X2 = T fPX* + (1 + D) Ti o Xboo fii X =
Yoo fEXP So, f(X?) = [f(XN)]* = f = f; forall i.

» This means that f; = 0 or f; = 1 for all i. Therefore, f(X) is a polynomial over GF (2).

» The only thing left is to show that f(X) is irreducible.




Properties of Extended Galois Field GF(2™)

>

>

We show that if we assume f(X) is not irreducible, we arrive at a
contradiction.

Let f(X) not be irreducible and can be written as f(X) = a(X)b(X). Since
f(B) =0, either a(f) =0 or b(B) = 0. If a(B) = 0, then a(X) has g as well as

B2, -, 21 as its roots. So, it has degree e and a(X) = f(X). Similarly, for
b(X). Therefore, f(X) must be irreducible.

Definition: 2,---, 52" are called conjugates of f.

Theorem 18: let @(X) be the minimal polynomial of § € GF(2™). Let e be the
smallest non-negative integer such that §2° = B. Then, @(X) = [1¢2(X + B2).




Properties of Extended Galois Field GF(2™)

» Example: consider Galois Field GF(2%) and let B = a3. The conjugates of a> are
B% = ab, % = p* = a'?, p¥° = a?* = a°. So, B(X) for f = a® is

X)) =X +a>H)X +a®)X +a>H)X +a?)=X*+ X3+ X>°+X +1.

» Consider GF(2*) generated by p(X) = X* + X + 1. Following is a list of minimal

polynomials:
0 X
1 X+1
a, a?, a*, ab X*+X+1
a3, a®, o, al? X*+X3+X°+X+1
A X?+X+1
a’, all, a3, a4 X*+X3+1




Vector Spaces

» LetV be a set of elements on which an operation called addition (+) is defined. Let F be
a field. A multiplication (-) operation between elements of V and F is defined. The set
IV is called a vector space over F if the following conditions hold:

1) V is a commutative group under addition.

i1) for any elementa € F andany veEV: a- v eEV.
i11) distributive law: Va,b € FandVu,v € I/:
a-(u+v)=a-u+a-vand
(a+b)-v=a-v+b-v
1v) associative law:

(a-b)-v=a-(b-v)
v) let 1 be the unit element of F. Then, Vv €V = 1.v = v.

» The elements of V are called vectors. The elements of the field F are called scalars.




Properties of Vector Spaces

The addition between elements of V is called vector addition.

The multiplication between elements of F and V is called scalar multiplication.

Properties of the vector field:
Property l: Vv €V = 0-v = 0 where 0 is the zero element of F.
Property ll: Vc € F = ¢ -0 = 0 where 0 is the zero element of V.
Property lll: Vc € F and Vv € I/, we have:
() v=c-(-v)=—(c-v).

» Definition: a subset of a vector space V say S is called a subspace if it is also a
vector space.

» Theorem 22: let S c V where V is a vector space over F. Then S is a subspace of
v if:

HNVuveSsS u+veSs.

ii)VaeFandueS=>a-ue€s.




Set of Binary n-tuples is a Vector Space

» Take v = (vy,vq,+,v—1) Where v; € GF(2). Define:
v+u=(y+uyvi+u, -, Vpoq +uUp_q1),

where addition is modulo-2.

Also, for a € GF(2) define:
a.2= (a°v01a'v11'"1a'vn—1)1

where multiplication is modulo-2.
» Letvq, vy, -,V be k vectors € V and a4, a,, -, a, € F. Then,

A1V + AV + -+ AUy

is called a linear combination of vq,v,,-:-,V,. It is clear that sum of two linear

combinations of vq,v,, -+, V) 1s a linear combination of vq,v,, -+, V. Also, ¢ (a1vq +
A,V + -+ + aVy) is a linear combination of v4, v, -+, V. So:

» Theorem 23: the set of all linear combinations of v, v,, -+, v, € V is a subspace of V.




Set of Binary n-tuples is a Vector Space

» Definition: v;,v,,---,v, €V are linearly dependent if there are k scalars
aq,a,, -+, a € F such that a;v; + a,vy + -+ a,v, = 0.

» A set of vectors v{,v,,:-, v, €V are linearly independent if they are not linearly
dependent.

» Consider:
€o = (1'0' Tt 0)
e; =(0,1,---,0)

En-1 = (O'O' Y 1)

» these n-tuples span the vector space V of all 2™ n-tuples.




Set of Binary n-tuples is a Vector Space

» Each n-tuple (ay, aq, -, a,—-1) is written as (ag, aq, -+, ap—1) = apep + a,e; +
ot Ap—18n-1-

» Wecallu-v =uyvy +uyv; + -+ u,_1v,,—1 the inner product of u and v. If u -
v = 0, we say that u and v are orthogonal.

» Let S be a subspace of V. Let the subset S; of V be the set of all vectors u of S and for
any vector v € S; we have u - v = 0. §; 1s called the null space of S.

» Theorem 24: let S be a k-dimensional subspace of V;, (set of n-tuples over GF(2)). The
dimension of S, the null space of S, 1sn — k.
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