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Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)

 In ordinary algebra, it is very likely that an equation with real coefficients
does not have real roots. For example, equation 𝑋𝑋2 + 𝑋𝑋 + 1 has to have two

roots, but neither of them is in ℝ. The roots of 𝑋𝑋2 + 𝑋𝑋 + 1 are −1
2

± 𝑗𝑗 3
2

. That
is, they are from the complex field ₵.

 The same way, a polynomial with coefficients from 𝐺𝐺𝐺𝐺(2), may or may not
have roots ∈ {0, 1}. For example, it is easy to see that 𝑋𝑋4 + 𝑋𝑋3 + 1 over 𝐺𝐺𝐺𝐺(2)
is irreducible. So, it does not have roots in 𝐺𝐺𝐺𝐺(2). But it is of degree four, so
it has to have four roots. These roots are in 𝐺𝐺𝐺𝐺(24). For a small field like
𝐺𝐺𝐺𝐺(24) it is easy to try all 16 elements (in fact 14, since we know that 0 and 1
are not answers) to find four that solve the equation.



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)
 Substituting elements of 𝐺𝐺𝐺𝐺(24) into the equation 𝑋𝑋4 + 𝑋𝑋3 + 1 we find out that 𝛼𝛼7, 

𝛼𝛼11, 𝛼𝛼13, and 𝛼𝛼14 are its roots. For example, (𝛼𝛼7)4+(𝛼𝛼7)3+1 = 𝛼𝛼28 + 𝛼𝛼21 + 1 =
𝛼𝛼13 + 𝛼𝛼6 + 1 = 1 + 𝛼𝛼2 + 𝛼𝛼3 + 𝛼𝛼2 + 𝛼𝛼3 + 1 = 0. Similarly, we can check 𝛼𝛼11, 
𝛼𝛼13, and 𝛼𝛼14. So,

𝑋𝑋4 + 𝑋𝑋3 + 1 = 𝑋𝑋 + 𝛼𝛼7 𝑋𝑋 + 𝛼𝛼11 𝑋𝑋 + 𝛼𝛼13 𝑋𝑋 + 𝛼𝛼14 .
 The following theorem helps us to find other roots of a polynomial after finding one.

 Theorem 11: let 𝛽𝛽 ∈ 𝐺𝐺𝐺𝐺(2𝑚𝑚) be a root of 𝑓𝑓(𝑋𝑋). Then, 𝛽𝛽2𝑖𝑖 , 𝑖𝑖 ≥ 0 is also a root of 𝑓𝑓(𝑋𝑋).

 Proof: we have seen that 𝑓𝑓(𝑋𝑋) 2 = 𝑓𝑓(𝑋𝑋2). So, 𝑓𝑓(𝛽𝛽) 2 = 𝑓𝑓(𝛽𝛽2). Sine 𝑓𝑓 𝛽𝛽 = 0,
𝑓𝑓 𝛽𝛽2 = 0. Also, 𝑓𝑓(𝛽𝛽2) 2 = 𝑓𝑓 𝛽𝛽22 . So, 𝑓𝑓 𝛽𝛽22 = 𝑓𝑓 𝛽𝛽4 = 0 and so on. Therefore,
𝑓𝑓 𝛽𝛽2𝑖𝑖 = 0, 𝑖𝑖 ≥ 0. These elements 𝛽𝛽2𝑖𝑖 of 𝐺𝐺𝐺𝐺(2𝑚𝑚) are called conjugates of 𝛽𝛽.

 In the previous example, after finding 𝛽𝛽 = 𝛼𝛼7 as a root of 𝑋𝑋4 + 𝑋𝑋3 + 1, we can see that
𝛽𝛽21 = 𝛼𝛼14 is a root as well. 𝛽𝛽22 = 𝛽𝛽4 = 𝛼𝛼28 = 𝛼𝛼13 is also a root. And also, 𝛽𝛽23 =
𝛽𝛽8 = 𝛼𝛼56 = 𝛼𝛼11.



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)
 Theorem 12: the 2𝑚𝑚 − 1 non-zero elements of 𝐺𝐺𝐺𝐺(2𝑚𝑚) form all the 

roots of 𝑋𝑋2𝑚𝑚−1 + 1.

 Proof: in Theorem 8, we saw that if 𝛽𝛽 is an element of 𝐺𝐺𝐺𝐺(𝑞𝑞), then 
𝛽𝛽𝑞𝑞−1 = 1. So, for 𝛽𝛽 ∈ 𝐺𝐺𝐺𝐺(2𝑚𝑚) we have 𝛽𝛽2𝑚𝑚−1 = 1 ⇒ 𝛽𝛽2𝑚𝑚−1 + 1 = 0. 
This means that 𝛽𝛽 is a root of 𝑋𝑋2𝑚𝑚−1 + 1. Therefor, every non-zero 
elements of 𝐺𝐺𝐺𝐺(2𝑚𝑚) is a root of 𝑋𝑋2𝑚𝑚−1 + 1 and since this polynomial 
has 2𝑚𝑚 − 1 roots, the 2𝑚𝑚 − 1 non-zero elements of 𝐺𝐺𝐺𝐺(2𝑚𝑚) form all 
the roots of 𝑋𝑋2𝑚𝑚−1 + 1.

 Corollary 12.1: the elements of 𝐺𝐺𝐺𝐺(2𝑚𝑚) form all the roots of 𝑋𝑋2𝑚𝑚 +
𝑋𝑋.

 Proof: this polynomial factors as 𝑋𝑋 𝑋𝑋2𝑚𝑚−1 + 1 . It has a root of zero
and all non-zero elements of 𝐺𝐺𝐺𝐺(2𝑚𝑚) as its roots.



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)
 While an element 𝛽𝛽 over 𝐺𝐺𝐺𝐺(2𝑚𝑚) is always a root of 𝑋𝑋2𝑚𝑚−1 + 1, it may also be 

a root of a polynomial over 𝐺𝐺𝐺𝐺(2) with degree less than 2𝑚𝑚 − 1. Take 𝑚𝑚 = 4, 
i.e., 𝐺𝐺𝐺𝐺(24). 𝑋𝑋2𝑚𝑚−1 + 1 = 𝑋𝑋15 + 1. We can write 𝑋𝑋15 + 1 = (

)
𝑋𝑋4 + 𝑋𝑋3 +

1 𝑋𝑋11 + 𝑋𝑋10 + 𝑋𝑋9 + 𝑋𝑋8 + 𝑋𝑋6 + 𝑋𝑋4 + 𝑋𝑋3 + 1 . We saw that 𝛽𝛽 = 𝛼𝛼7 is a root of 
𝑋𝑋4 + 𝑋𝑋3 + 1.

 Definition: for any 𝛽𝛽 ∈ 𝐺𝐺𝐺𝐺(2𝑚𝑚) the polynomial ∅(𝑋𝑋) with lowest degree that 
has 𝛽𝛽 as its root is called the minimal polynomial of 𝛽𝛽.

 Theorem 13: the minimal polynomial ∅(𝑋𝑋) of a field element 𝛽𝛽 is irreducible.

 Proof: suppose ∅(𝑋𝑋) is not irreducible and can be written as ∅ 𝑋𝑋 = ∅1(𝑋𝑋)∅2(𝑋𝑋). 
Since ∅ 𝛽𝛽 = ∅1 𝛽𝛽 ∅2 𝛽𝛽 = 0, then either ∅1 𝛽𝛽 = 0 or ∅2 𝛽𝛽 = 0. This contradicts 
the definition the ∅ 𝑋𝑋 is the smallest degree polynomial with 𝛽𝛽 as a root.



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)
 Theorem 14: If a polynomial 𝑓𝑓(𝑋𝑋) over 𝐺𝐺𝐺𝐺(2) has 𝛽𝛽 as a root, then ∅(𝑋𝑋)

divides 𝑓𝑓(𝑋𝑋).

 Proof: suppose 𝑓𝑓(𝑋𝑋) is not divisible by ∅(𝑋𝑋). Then, 𝑓𝑓 𝑋𝑋 = ∅ 𝑋𝑋 � 𝑎𝑎 𝑋𝑋 + 𝑟𝑟(𝑋𝑋)
with 𝑟𝑟(𝑋𝑋) having degree less than ∅(𝑋𝑋). But,

𝑓𝑓 𝛽𝛽 = ∅ 𝛽𝛽 � 𝑎𝑎 𝛽𝛽 + 𝑟𝑟(𝛽𝛽)

 But 𝑓𝑓 𝛽𝛽 = 0 and ∅ 𝛽𝛽 = 0 ⇒ 𝑟𝑟 𝛽𝛽 = 0 ⇒ contradiction.

 Following properties are simple to prove:

 Theorem 15: the minimal polynomial ∅(𝑋𝑋) of 𝛽𝛽 ∈ 𝐺𝐺𝐺𝐺(2𝑚𝑚) divides 𝑋𝑋2𝑚𝑚 + 𝑋𝑋.

 Theorem 16: if 𝑓𝑓(𝑋𝑋) is an irreducible polynomial and 𝑓𝑓 𝛽𝛽 = 0, then 𝑓𝑓 𝑋𝑋 =
∅(𝑋𝑋).



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)
 In a previous example, we saw that 𝛼𝛼7, 𝛼𝛼11, 𝛼𝛼13, and 𝛼𝛼14 are roots of 𝑓𝑓 𝑋𝑋 =

𝑋𝑋4 + 𝑋𝑋3 + 1. That is, 

 𝑋𝑋4 + 𝑋𝑋3 + 1 = 𝑋𝑋 + 𝛼𝛼7 𝑋𝑋 + 𝛼𝛼11 𝑋𝑋 + 𝛼𝛼13 𝑋𝑋 + 𝛼𝛼14 .

 Note that if we take 𝛽𝛽 = 𝛼𝛼7, we have 𝛽𝛽2 = 𝛼𝛼14, 𝛽𝛽4 = 𝛼𝛼28 = 𝛼𝛼13, 𝛽𝛽8 = 𝛼𝛼11, 
and 𝛽𝛽16 = 𝛽𝛽 = 𝛼𝛼7. That is,

 𝑋𝑋4 + 𝑋𝑋3 + 1 = 𝑋𝑋 + 𝛽𝛽 𝑋𝑋 + 𝛽𝛽2 𝑋𝑋 + 𝛽𝛽4 𝑋𝑋 + 𝛽𝛽8 .

 Following theorem relates to this observation.

 Theorem 17: for 𝛽𝛽 ∈ 𝐺𝐺𝐺𝐺(2𝑚𝑚) if 𝑒𝑒 is the smallest number such that 𝛽𝛽2𝑒𝑒 = 𝛽𝛽, 
then 𝑓𝑓 𝑋𝑋 = ∏𝑖𝑖=0

𝑒𝑒−1(𝑋𝑋 + 𝛽𝛽2𝑖𝑖) is an irreducible polynomial over 𝐺𝐺𝐺𝐺(2).

 Proof: first we show that 𝑓𝑓(𝑋𝑋) is a polynomial over 𝐺𝐺𝐺𝐺(2). 



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)

 𝑓𝑓(𝑋𝑋) 2 = ∏𝑖𝑖=0
𝑒𝑒−1(𝑋𝑋 + 𝛽𝛽2𝑖𝑖)

2
= ∏𝑖𝑖=0

𝑒𝑒−1(𝑋𝑋 + 𝛽𝛽2𝑖𝑖)2

 But 𝑋𝑋 + 𝛽𝛽2𝑖𝑖
2

= 𝑋𝑋2 + 𝛽𝛽2𝑖𝑖𝑋𝑋 + 𝛽𝛽2𝑖𝑖𝑋𝑋 + 𝛽𝛽2𝑖𝑖+1 = 𝑋𝑋2 + (𝛽𝛽2𝑖𝑖 + 𝛽𝛽2𝑖𝑖)𝑋𝑋 + 𝛽𝛽2𝑖𝑖+1

= 𝑋𝑋2 + 𝛽𝛽2𝑖𝑖+1 .

 So, 𝑓𝑓(𝑋𝑋) 2= ∏𝑖𝑖=0
𝑒𝑒−1(𝑋𝑋2 + 𝛽𝛽2𝑖𝑖+1) = ∏𝑖𝑖=1

𝑒𝑒 (𝑋𝑋2 + 𝛽𝛽2𝑖𝑖) = ∏𝑖𝑖=1
𝑒𝑒−1(𝑋𝑋2 + 𝛽𝛽2𝑖𝑖)(𝑋𝑋2 + 𝛽𝛽2𝑒𝑒)

= ∏𝑖𝑖=1
𝑒𝑒−1(𝑋𝑋2 + 𝛽𝛽2𝑖𝑖)(𝑋𝑋2 + 𝛽𝛽) = ∏𝑖𝑖=0

𝑒𝑒−1(𝑋𝑋2 + 𝛽𝛽2𝑖𝑖) = 𝑓𝑓(𝑋𝑋2)

 Let 𝑓𝑓 𝑋𝑋 = 𝑓𝑓0 + 𝑓𝑓1𝑋𝑋 + ⋯+ 𝑓𝑓𝑒𝑒𝑋𝑋𝑒𝑒 , then 𝑓𝑓 𝑋𝑋2 = 𝑓𝑓0 + 𝑓𝑓1𝑋𝑋2 + ⋯+ 𝑓𝑓𝑒𝑒𝑋𝑋2𝑒𝑒 and
𝑓𝑓(𝑋𝑋) 2 = 𝑓𝑓0 + 𝑓𝑓1𝑋𝑋 + ⋯+ 𝑓𝑓𝑒𝑒𝑋𝑋𝑒𝑒 2 = ∑𝑖𝑖=0𝑒𝑒 𝑓𝑓𝑖𝑖2𝑋𝑋2𝑖𝑖 + (1 + 1)∑𝑖𝑖=0𝑒𝑒 ∑𝑗𝑗=0𝑒𝑒 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗𝑋𝑋𝑖𝑖+𝑗𝑗 =
∑𝑖𝑖=0𝑒𝑒 𝑓𝑓𝑖𝑖2𝑋𝑋2𝑖𝑖. So, 𝑓𝑓 𝑋𝑋2 = 𝑓𝑓(𝑋𝑋) 2 ⇒ 𝑓𝑓𝑖𝑖2 = 𝑓𝑓𝑖𝑖 for all 𝑖𝑖.

 This means that 𝑓𝑓𝑖𝑖 = 0 or 𝑓𝑓𝑖𝑖 = 1 for all 𝑖𝑖. Therefore, 𝑓𝑓(𝑋𝑋) is a polynomial over 𝐺𝐺𝐺𝐺(2).

 The only thing left is to show that 𝑓𝑓(𝑋𝑋) is irreducible.



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)
 We show that if we assume 𝑓𝑓(𝑋𝑋) is not irreducible, we arrive at a 

contradiction. 

 Let 𝑓𝑓(𝑋𝑋) not be irreducible and can be written as 𝑓𝑓 𝑋𝑋 = 𝑎𝑎(𝑋𝑋)𝑏𝑏(𝑋𝑋). Since 
𝑓𝑓 𝛽𝛽 = 0, either 𝑎𝑎 𝛽𝛽 = 0 or 𝑏𝑏 𝛽𝛽 = 0. If 𝑎𝑎 𝛽𝛽 = 0, then 𝑎𝑎 𝑋𝑋 has 𝛽𝛽 as well as 
𝛽𝛽2,⋯ ,𝛽𝛽2𝑒𝑒−1 as its roots. So, it has degree 𝑒𝑒 and 𝑎𝑎 𝑋𝑋 = 𝑓𝑓(𝑋𝑋). Similarly, for 
𝑏𝑏(𝑋𝑋). Therefore, 𝑓𝑓(𝑋𝑋) must be irreducible. 

 Definition: 𝛽𝛽2,⋯ ,𝛽𝛽2𝑒𝑒−1 are called conjugates of 𝛽𝛽. 

 Theorem 18: let ∅ 𝑋𝑋 be the minimal polynomial of 𝛽𝛽 ∈ 𝐺𝐺𝐺𝐺(2𝑚𝑚). Let 𝑒𝑒 be the 
smallest non-negative integer such that 𝛽𝛽2𝑒𝑒 = 𝛽𝛽. Then, ∅ 𝑋𝑋 = ∏𝑖𝑖=0

𝑒𝑒−1(𝑋𝑋 + 𝛽𝛽2𝑖𝑖).



Properties of Extended Galois Field 𝑮𝑮𝑮𝑮(𝟐𝟐𝒎𝒎)
 Example: consider Galois Field 𝐺𝐺𝐺𝐺(24) and let 𝛽𝛽 = 𝛼𝛼3. The conjugates of 𝛼𝛼3 are

𝛽𝛽2 = 𝛼𝛼6, 𝛽𝛽22 = 𝛽𝛽4 = 𝛼𝛼12, 𝛽𝛽23 = 𝛼𝛼24 = 𝛼𝛼9. So, ∅ 𝑋𝑋 for 𝛽𝛽 = 𝛼𝛼3 is

∅ 𝑋𝑋 = (𝑋𝑋 + 𝛼𝛼3)(𝑋𝑋 + 𝛼𝛼6)(𝑋𝑋 + 𝛼𝛼12)(𝑋𝑋 + 𝛼𝛼9) = 𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋2 + 𝑋𝑋 + 1.

 Consider 𝐺𝐺𝐺𝐺(24) generated by 𝑝𝑝 𝑋𝑋 = 𝑋𝑋4 + 𝑋𝑋 + 1. Following is a list of minimal
polynomials:

Conjugate Roots ∅ 𝑋𝑋
0 𝑋𝑋

1 𝑋𝑋 + 1

𝛼𝛼, 𝛼𝛼2, 𝛼𝛼4, 𝛼𝛼8 𝑋𝑋4 + 𝑋𝑋 + 1

𝛼𝛼3, 𝛼𝛼6, 𝛼𝛼9, 𝛼𝛼12 𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋2 + 𝑋𝑋 + 1

𝛼𝛼5, 𝛼𝛼10 𝑋𝑋2 + 𝑋𝑋 + 1

𝛼𝛼7, 𝛼𝛼11, 𝛼𝛼13, 𝛼𝛼14 𝑋𝑋4 + 𝑋𝑋3 + 1



Vector Spaces
 Let 𝑉𝑉 be a set of elements on which an operation called addition (+) is defined. Let 𝐺𝐺 be

a field. A multiplication (�) operation between elements of 𝑉𝑉 and 𝐺𝐺 is defined. The set
𝑉𝑉 is called a vector space over 𝐺𝐺 if the following conditions hold:
i) 𝑉𝑉 is a commutative group under addition.
ii) for any element 𝑎𝑎 ∈ 𝐺𝐺 and any 𝑣𝑣 ∈ 𝑉𝑉:    𝑎𝑎 � 𝑣𝑣 ∈ 𝑉𝑉.
iii) distributive law: ∀ 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 and ∀ 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉:

𝑎𝑎 � 𝑢𝑢 + 𝑣𝑣 = 𝑎𝑎 � 𝑢𝑢 + 𝑎𝑎 � 𝑣𝑣 and
𝑎𝑎 + 𝑏𝑏 � 𝑣𝑣 = 𝑎𝑎 � 𝑣𝑣 + 𝑏𝑏 � 𝑣𝑣

iv) associative law:
𝑎𝑎 � 𝑏𝑏 � 𝑣𝑣 = 𝑎𝑎 � (𝑏𝑏 � 𝑣𝑣)

v) let 1 be the unit element of 𝐺𝐺. Then, ∀ 𝑣𝑣 ∈ 𝑉𝑉 ⇒ 1. 𝑣𝑣 = 𝑣𝑣.

 The elements of 𝑉𝑉 are called vectors. The elements of the field 𝐺𝐺 are called scalars.



Properties of Vector Spaces
 The addition between elements of 𝑉𝑉 is called vector addition.

 The multiplication between elements of 𝐺𝐺 and 𝑉𝑉 is called scalar multiplication.

 Properties of the vector field:

Property I: ∀ 𝑣𝑣 ∈ 𝑉𝑉 ⇒ 0 � 𝑣𝑣 = 0 where 0 is the zero element of 𝐺𝐺.

Property II: ∀ 𝑐𝑐 ∈ 𝐺𝐺 ⇒ 𝑐𝑐 � 0 = 0 where 0 is the zero element of 𝑉𝑉.

Property III: ∀ 𝑐𝑐 ∈ 𝐺𝐺 and ∀ 𝑣𝑣 ∈ 𝑉𝑉, we have:
−𝑐𝑐 � 𝑣𝑣 = 𝑐𝑐 � −𝑣𝑣 = − 𝑐𝑐 � 𝑣𝑣 .

 Definition: a subset of a vector space 𝑉𝑉 say 𝑆𝑆 is called a subspace if it is also a 
vector space.

 Theorem 22: let 𝑆𝑆 ⊂ 𝑉𝑉 where 𝑉𝑉 is a vector space over 𝐺𝐺. Then 𝑆𝑆 is a subspace of 
𝑉𝑉 if:

i) ∀ 𝑢𝑢, 𝑣𝑣 ∈ 𝑆𝑆, 𝑢𝑢 + 𝑣𝑣 ∈ 𝑆𝑆.

ii) ∀ 𝑎𝑎 ∈ 𝐺𝐺 and 𝑢𝑢 ∈ 𝑆𝑆 ⇒ 𝑎𝑎 � 𝑢𝑢 ∈ 𝑆𝑆.



Set of Binary 𝒏𝒏-tuples is a Vector Space

 Take 𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−1) where 𝑣𝑣𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺(2). Define:
𝑣𝑣 + 𝑢𝑢 = 𝑣𝑣0 + 𝑢𝑢0, 𝑣𝑣1 + 𝑢𝑢1,⋯ , 𝑣𝑣𝑛𝑛−1 + 𝑢𝑢𝑛𝑛−1 ,

where addition is modulo-2.

Also, for 𝑎𝑎 ∈ 𝐺𝐺𝐺𝐺(2) define:
𝑎𝑎 � 𝑣𝑣 = 𝑎𝑎 � 𝑣𝑣0, 𝑎𝑎 � 𝑣𝑣1,⋯ , 𝑎𝑎 � 𝑣𝑣𝑛𝑛−1 ,

where multiplication is modulo-2.

 Let 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘 be 𝑘𝑘 vectors ∈ 𝑉𝑉 and 𝑎𝑎1,𝑎𝑎2,⋯ , 𝑎𝑎𝑘𝑘 ∈ 𝐺𝐺. Then,

𝑎𝑎1𝑣𝑣1 + 𝑎𝑎2𝑣𝑣2 + ⋯+ 𝑎𝑎𝑘𝑘𝑣𝑣𝑘𝑘

is called a linear combination of 𝑣𝑣1,𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘 . It is clear that sum of two linear
combinations of 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘 is a linear combination of 𝑣𝑣1,𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘. Also, 𝑐𝑐 � (𝑎𝑎1𝑣𝑣1 +
𝑎𝑎2𝑣𝑣2 + ⋯+ 𝑎𝑎𝑘𝑘𝑣𝑣𝑘𝑘) is a linear combination of 𝑣𝑣1,𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘. So:

 Theorem 23: the set of all linear combinations of 𝑣𝑣1,𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉 is a subspace of 𝑉𝑉.



Set of Binary 𝒏𝒏-tuples is a Vector Space

 Definition: 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉 are linearly dependent if there are 𝑘𝑘 scalars
𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑘𝑘 ∈ 𝐺𝐺 such that 𝑎𝑎1𝑣𝑣1 + 𝑎𝑎2𝑣𝑣2 + ⋯+ 𝑎𝑎𝑘𝑘𝑣𝑣𝑘𝑘 = 0.

 A set of vectors 𝑣𝑣1,𝑣𝑣2,⋯ , 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉 are linearly independent if they are not linearly
dependent.

 Consider:

𝑒𝑒0 = (1,0,⋯ , 0)

𝑒𝑒1 = (0,1,⋯ , 0)

⋮

𝑒𝑒𝑛𝑛−1 = (0,0,⋯ , 1)

 these 𝑛𝑛-tuples span the vector space 𝑉𝑉 of all 2𝑛𝑛 𝑛𝑛-tuples.



Set of Binary 𝒏𝒏-tuples is a Vector Space

 Each 𝑛𝑛-tuple (𝑎𝑎0,𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛−1) is written as 𝑎𝑎0,𝑎𝑎1,⋯ , 𝑎𝑎𝑛𝑛−1 = 𝑎𝑎0𝑒𝑒0 + 𝑎𝑎1𝑒𝑒1 +
⋯+ 𝑎𝑎𝑛𝑛−1𝑒𝑒𝑛𝑛−1. 

 We call 𝑢𝑢 � 𝑣𝑣 = 𝑢𝑢0𝑣𝑣0 + 𝑢𝑢1𝑣𝑣1 + ⋯+ 𝑢𝑢𝑛𝑛−1𝑣𝑣𝑛𝑛−1 the inner product of 𝑢𝑢 and 𝑣𝑣. If 𝑢𝑢 �
𝑣𝑣 = 0, we say that 𝑢𝑢 and 𝑣𝑣 are orthogonal.

 Let 𝑆𝑆 be a subspace of 𝑉𝑉. Let the subset 𝑆𝑆𝑑𝑑 of 𝑉𝑉 be the set of all vectors 𝑢𝑢 of 𝑆𝑆 and for
any vector 𝑣𝑣 ∈ 𝑆𝑆𝑑𝑑 we have 𝑢𝑢 � 𝑣𝑣 = 0. 𝑆𝑆𝑑𝑑 is called the null space of 𝑆𝑆.

 Theorem 24: let 𝑆𝑆 be a 𝑘𝑘-dimensional subspace of 𝑉𝑉𝑛𝑛 (set of 𝑛𝑛-tuples over 𝐺𝐺𝐺𝐺(2)). The
dimension of 𝑆𝑆𝑑𝑑, the null space of 𝑆𝑆, is 𝑛𝑛 − 𝑘𝑘.
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