ELEC 6131: Error Detecting and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.

Time and Place: Tuesday, 17:45 - 20:15.

Office Hours: Tuesday, 15:00 – 17:00

LECTURE 5: Cyclic Codes

Outline of this lecture

- ▶ In this lecture we cover the following:
 - ▶ Brief discussion of Hamming codes,
 - ► Cyclic Codes.

Hamming Codes

- Code length: $n = 2^m 1$
- ▶ # of information bits: $k = 2^m 1 m$ and # of parity bits: n k = m

$$d_{min} = 3 \Rightarrow t = 1$$

The parity check matrix of this code H contains all m-tuples except $00 \cdots 0$ as its columns. They are arranged to look like:

$$H = [I_m: Q].$$

For example, for m = 3, we have

and
$$G = [Q^T: I_{2^m-m-1}].$$

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

$$I_3$$

Hamming Codes

▶ Since *H* consists all the *m*-tuples as its columns, adding any two columns, we get another column, i.e.,

$$\underline{h}_i + \underline{h}_j + \underline{h}_k = 0.$$

- So, the minimum distance of the code <u>is not greater</u> than 3. Also, since we do not have any two columns that add up to $\underline{0}$, the minimum distance of the code <u>is not less than 3</u>. Therefore, $d_{min} = 3$.
- Hamming codes are perfect codes: if we form standard array, it will contain $2^n = 2^{2^m-1}$ elements. Each row has $2^k = 2^{2^m-m-1}$ elements. So, there will be $\frac{2^{2^m-1}}{2^{2^m-m-1}} = 2^m$ cosets. Therefore, in addition to $\underline{0}$ we need $2^m 1$ coset leaders. If we take all single error patterns, we have exactly what we need. So, a Hamming code only corrects error patterns with one erroneous bit and corrects all of these. So, Hamming codes are perfect codes.
- ► The only other binary perfect code is (23, 12) <u>Golay</u> code.

Hamming Codes

Weight distribution: let A_i be the number of codewords of weight i. Then, $A(z) = A_n z^n + A_{n-1} z^{n-1} + \cdots + A_1 z + A_0$ can be formed. It is called <u>weight enumerator</u>. For a Hamming code:

$$A(z) = \frac{1}{n+1} \left[(1+z)^n + n(1-z)(1-z^2)^{\frac{n-1}{2}} \right].$$

Example: Consider m = 3.

$$n = 2^{m} - 1 = 2^{3} - 1 = 7 \implies (7,4) \text{ code}$$

$$A(z) = \frac{1}{8} [(1+z)^{7} + 7(1-z)(1-z^{2})^{3}]$$

$$= 1 + 7z^{3} + 7z^{4} + z^{7}.$$

Definition: a linear block code is <u>cyclic</u> if a cyclic shift of any codeword is another codeword.

The *i*th shift of $\underline{v} = (v_0, v_1, \dots, v_{n-1})$ is:

$$\underline{v}^{(i)} = (v_{n-i}, v_{n-i+1}, \cdots, v_{n-1}, v_0, v_1, \cdots, v_{n-i-1}).$$

- For example, $\underline{v}^{(1)} = (v_{n-1}, v_0, v_1, \cdots, v_{n-2})$ and $\underline{v}^{(2)} = (v_{n-2}, v_{n-1}, v_0, v_1, \cdots, v_{n-3})$.
- **Example:** (7, 4) Hamming Code (see next slide).

A (7, 4) cyclic code generated by $g(X) = 1 + X + X^3$.

Messages	Code vectors	Code polynomials
(0000)	0000000	$0 = 0 \cdot \mathbf{g}(X)$
(1000)	1101000	$1 + X + X^3 = 1 \cdot \mathbf{g}(X)$
(0100)	0110100	$X + X^2 + X^4 = X \cdot \mathbf{g}(X)$
(1100)	1011100	$1 + X^2 + X^3 + X^4 = (1 + X) \cdot \mathbf{g}(X)$
(0010)	0011010	$X^2 + X^3 + X^5 = X^2 \cdot \mathbf{g}(X)$
(1010)	1110010	$1 + X + X^2 + X^5 = (1 + X^2) \cdot \mathbf{g}(X)$
(0110)	0101110	$X + X^3 + X^4 + X^5 = (X + X^2) \cdot \mathbf{g}(X)$
(1110)	1000110	$1 + X^4 + X^5 = (1 + X + X^2) \cdot \mathbf{g}(X)$
(0001)	0001101	$X^3 + X^4 + X^6 = X^3 \cdot \mathbf{g}(X)$
(1001)	1100101	$1 + X + X^4 + X^6 = (1 + X^3) \cdot \mathbf{g}(X)$
(0101)	0111001	$X + X^2 + X^3 + X^6 = (X + X^3) \cdot \mathbf{g}(X)$
(1101)	1010001	$1 + X^2 + X^6 = (1 + X + X^3) \cdot \mathbf{g}(X)$
(0011)	0010111	$X^2 + X^4 + X^5 + X^6 = (X^2 + X^3) \cdot \mathbf{g}(X)$
(1011)	1111111	$1 + X + X^2 + X^3 + X^4 + X^5 + X^6$
		$= (1 + X^2 + X^3) \cdot \mathbf{g}(X)$
(0111)	0100011	$X + X^5 + X^6 = (X + X^2 + X^3) \cdot \mathbf{g}(X)$
(1111)	1001011	$1 + X^3 + X^5 + X^6$
		$= (1 + X + X^2 + X^3) \cdot \mathbf{g}(X)$

- Let $v(X) = v_0 + v_1 X + v_2 X^2 + \dots + v_{n-1} X^{n-1}$ be the polynomial representation of \underline{v} .
- Then $v^{(i)}(X) = v_{n-i} + v_{n-i+1}X + \dots + v_{n-1}X^{i-1} + v_0X^i + v_1X^{i+1} + \dots + v_{n-i-1}X^{n-1}.$

Multiply X^i by v(X), i.e., shift \underline{v} i times (linearly, not cyclically) to get: $X^i v(X) = v_0 X^i + v_1 X^{i+1} + \dots + v_{n-i+1} X^{n-1} + \dots + v_{n-1} X^{n+i-1}.$

Add $X^i v(X)$ and $v^{(i)}(X)$:

$$\begin{split} X^i v(X) + v^{(i)}(X) \\ = v_{n-i} + v_{n-i+1} X + \dots + v_{n-1} X^{i-1} + v_{n-i} X^n + v_{n-i+1} X^{n+1} + \dots + v_{n-1} X^{n+i-1} \end{split}$$

or:

$$X^{i}v(X) + v^{(i)}(X) = [v_{n-i} + v_{n-i+1}X + \dots + v_{n-1}X^{i-1}](X^{n} + 1).$$

So:

$$X^{i}v(X) = q(X)[X^{n} + 1] + v^{(i)}(X).$$

That is, the *i*th cyclic shift of v(X) is generated by dividing $X^i v(X)$ by $X^n + 1$.

▶ **Theorem 1:** the non-zero code polynomial with minimum degree in a cyclic code *C* is unique.

Proof: let $g(X) = g_0 + g_1 X + \dots + g_{r-1} X^{r-1} + X^r$ be the minimal degree code polynomial of C. Suppose there is another $g'(X) = g'_0 + g'_1 X + \dots + g'_{r-1} X^{r-1} + X^r$. Then, g(X) + g'(X) is another codeword in C with degree less than r = 0.

▶ **Theorem 2:** let $g(X) = g_0 + g_1 X + \dots + g_{r-1} X^{r-1} + X^r$ be the minimum degree polynomial of a cyclic code C. Then, $g_0 \neq 0$.

Proof: if $g_0 = 0$ then shifting g(X) once to the left (or n-1 times to right) results in $g_1 + g_2X + \dots + g_{r-1}X^{r-2} + X^{r-1}$ which has a degree $\langle r \rangle$ contradiction. So, $g(X) = 1 + g_1X + \dots + g_{r-1}X^{r-1} + X^r$.

Let g(X) be the polynomial of minimum degree of a code C. Take $g(X), Xg(X), X^2g(X), \cdots, X^{n-r-1}g(X)$. These are shifts of g(X) by $0, 1, \cdots, n-r-1$. So, they are codewords. Any linear combination of them is also a codeword. Therefore,

$$v(X) = u_0 g(X) + u_1 X g(X) + \dots + u_{n-r-1} X^{n-r-1} g(X)$$
$$= [u_0 + u_1 X + \dots + u_{n-r-1} X^{n-r-1}] g(X)$$

is also a codeword.

Theorem 3: let $g(X) = 1 + g_1X + \dots + g_{r-1}X^{r-1} + X^r$ be the non-zero code polynomial of minimum degree of an (n, k) cyclic code C. A binary polynomial of degree n-1 or less is a code polynomial if and only if it is a multiple of g(X).

Proof: let v(X) be a polynomial of degree n-1 or less such that:

$$v(X) = (a_0 + a_1 X + \dots + a_{n-r-1} X^{n-r-1}) g(X).$$

Then,

$$v(X) = a_0 g(X) + a_1 X g(X) + \dots + a_{n-r-1} X^{n-r-1} g(X).$$

Since g(X), Xg(X), \cdots are each codeword of C so is their sum v(X).

Now assume v(X) be a code polynomial in C. Then write:

$$v(X) = a(X)g(X) + b(X)$$

i.e., divide v(X) by g(X) and get remainder b(X) and quotient a(X).

$$b(X) = v(X) + a(X)g(X).$$

v(X) is a codeword and so is a(X)g(X). Therefore, b(X) is also a codeword. But degree of b(X) is less than $r \Rightarrow$ contradiction unless if b(X) = 0.

The number of polynomials of degree n-1 or less that are multiple of g(X) is 2^{n-r} . Due to 1-to-1 correspondence between these polynomials and the codewords (Theorem 3), we have $2^{n-r} = 2^k \Rightarrow r = n - k$.

Theorem 4: in an (n, k) cyclic code, there is one and only one code polynomial of degree n - k,

$$g(X) = 1 + g_1 X + g_2 X^2 + \dots + g_{n-k-1} X^{n-k-1} + X^{n-k}$$

Every code polynomial is a multiple of g(X). Every binary polynomial of degree n-1 or less that is a multiple of g(X) is a code polynomial. So,

$$v(X) = u(X)g(X)$$

is a code polynomial, however, not in a systematic form.

To make a cyclic code systematic, multiply the information polynomial u(X) by X^{n-k} . This means placing the k information bits at the head of the shift register (in k rightmost Flip-Flops). Then,

$$u(X) = u_0 + u_1 X + \dots + u_{k-1} X^{k-1}$$

will result in:

$$X^{n-k}u(X) = u_0X^{n-k} + u_1X^{n-k+1} + \dots + u_{k-1}X^{n-1}.$$

Now divide $X^{n-k}u(X)$ by g(X) to get:

$$X^{n-k}u(X) = a(X)g(X) + b(X),$$

where b(X) is a polynomial of degree n - k - 1 or less:

$$b(X) = b_0 + b_1 X + \dots + b_{n-k-1} X^{n-k-1}$$

$$b(X) + X^{n-k}u(X) = a(X)g(X).$$

This means that $b(X) + X^{n-k}u(X)$ is the representation of a codeword in systematic form, i.e.,

$$b(X) + X^{n-k}u(X) = b_0 + b_1X + \dots + b_{n-k-1}X^{n-k-1}$$

$$+ u_0 X^{n-k} + u_1 X^{n-k+1} + \dots + u_{k-1} X^{n-1}$$

that represents

$$\underline{v} = (b_0, b_1, \dots, b_{n-k-1}, u_0, u_1, \dots, u_{k-1}).$$

Example: consider the (7,4) cyclic code generated by $g(X) = 1 + X + X^3$. Let $u(X) = 1 + X^3$. Then,

1.
$$X^3u(X) = X^3 + X^6$$

2. Divide by $g(X) = 1 + X + X^3$

3.
$$v(X) = b(X) + X^3 u(X) =$$

$$X + X^2 + X^3 + X^6$$

or
$$\underline{v} = (0, 1, 1, 1, 0, 0, 1)$$

A (7, 4) cyclic code in systematic form generated by $g(X) = 1 + X + X^3$.

Message	Codeword	
(0000)	(0000000)	$0 = 0 \cdot \mathbf{g}(X)$
(1000)	(1101000)	$1 + X + X^3 = \mathbf{g}(X)$
(0100)	(0110100)	$X + X^2 + X^4 = Xg(X)$
(1100)	(1011100)	$1 + X^2 + X^3 + X^4 = (1 + X)g(X)$
(0010)	(1110010)	$1 + X + X^2 + X^5 = (1 + X^2)\mathbf{g}(X)$
(1010)	(0011010)	$X^2 + X^3 + X^5 = X^2 \mathbf{g}(X)$
(0110)	(1000110)	$1 + X^4 + X^5 = (1 + X + X^2)\mathbf{g}(X)$
(1110)	(0101110)	$X + X^3 + X^4 + X^5 = (X + X^2)g(X)$
(0001)	(1010001)	$1 + X^2 + X^6 = (1 + X + X^3)g(X)$
(1001)	(0111001)	$X + X^2 + X^3 + X^6 = (X + X^3)\mathbf{g}(X)$
(0101)	(1100101)	$1 + X + X^4 + X^6 = (1 + X^3)\mathbf{g}(X)$
(1101)	(0001101)	$X^3 + X^4 + X^6 = X^3 \mathbf{g}(X)$
(0011)	(0100011)	$X + X^5 + X^6 = (X + X^2 + X^3)g(X)$
(1011)	(1001011)	$1 + X^3 + X^5 + X^6 = (1 + X + X^2 + X^3)g(X)$
(0111)	(0010111)	$X^2 + X^4 + X^5 + X^6 = (X^2 + X^3)g(X)$
(1111)	(1111111)	$1 + X + X^2 + X^3 + X^4 + X^5 + X^6$

Theorem 5: the generator polynomial of an (n, k) code is a factor of $X^n + 1$.

Proof: divide $X^k g(X)$ by $X^n + 1$.

$$X^{k}g(X) = (X^{n} + 1) + g^{(k)}(X)$$
 or $X^{n} + 1 = X^{k}g(X) + g^{(k)}(X)$ $g^{(k)}(X)$ is a code polynomial. So, $g^{(k)}(X) = a(X)b(X)$ for some $a(X)$. So, $X^{n} + 1 = [X^{k} + a(X)]g(X)$. *QED*

▶ **Theorem 6:** if g(X) is a polynomial of degree n-k and is a factor of X^n+1 . Then g(X) generates an (n,k) cyclic code.

Proof: let $g(X), Xg(X), \dots, X^{k-1}g(X)$. They are all polynomials of degree n-1 or less. A linear combination of them:

$$v(X) = u_0 g(X) + u_1 X g(X) + \dots + u_{k-1} X^{k-1} g(X)$$

= $[u_0 + u_1 X + \dots + u_{k-1} X^{k-1}] g(X)$

is a code polynomial since $u_i \in \{0, 1\}$. Then v(X) will have 2^k possibilities. These 2^k polynomials form the 2^k codewords of the (n, k) code.

Generator polynomial of a cyclic code:

For example, for (7, 4) code with $g(X) = 1 + X + X^3$, $g_0 = g_1 = g_3 = 1$ and $g_i = 0$ otherwise.

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

This is not always in systematic form. We can make it into systematic form by row and column operations. For example, for the (7, 4) code:

$$G' = \begin{bmatrix} \underline{g_0} \\ \underline{g_1} \\ \underline{g_0 + g_2} \\ \underline{g_0 + g_1 + g_3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Parity check matrix of cyclic codes:

We saw that g(X) divides $X^n + 1$. Write

$$X^n + 1 = g(X)h(X),$$

where h(X) is a polynomial of degree k

$$h(X) = h_0 + h_1 X + \dots + h_k X^k.$$

Consider a code polynomial v(X)

$$v(X)h(X) = u(X)g(X)h(X)$$

= $u(X)(X^n + 1)$
= $u(X)X^n + u(X)$.

Since u(X) has degree less than or equal k-1, $u(X)X^n+u(X)$ does not have $X^k, X^{k+1}, \dots, X^{n-1}$. That is coefficients of these powers of X are zero. So, we get n-k equalities:

$$\sum_{i=0}^{k} h_i v_{n-i-j} = 0 \text{ for } 1 \le j \le n-k.$$

and we have H as:

$$\mathbf{H} = \begin{bmatrix} h_k & h_{k-1} & h_{k-2} & \cdot & \cdot & \cdot & \cdot & \cdot & h_0 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & h_k & h_{k-1} & h_{k-2} & \cdot & \cdot & \cdot & \cdot & \cdot & h_0 & 0 & \cdot & \cdot & 0 \\ 0 & 0 & h_k & h_{k-1} & h_{k-2} & \cdot & \cdot & \cdot & \cdot & \cdot & h_0 & \cdot & \cdot & 0 \\ \vdots & & & & & & & & \vdots \\ 0 & 0 & \cdot & \cdot & \cdot & 0 & h_k & h_{k-1} & h_{k-2} & \cdot & \cdot & \cdot & \cdot & h_0 \end{bmatrix}$$

- **Theorem 7:** let g(X) be the generator polynomial of the (n, k) cyclic code C. The dual code of C is generated by $X^k h(X^{-1})$ where $h(X) = \frac{X^{n+1}}{g(X)}$.
- **Example:** consider (7, 4) code C with $g(X) = 1 + X + X^3$. The generator polynomial of C^d is $X^4h(X^{-1})$ where,

$$h(X) = \frac{X^7 + 1}{1 + X + X^3} = 1 + X + X^2 + X^4.$$

That is, the generator of C^d is:

$$X^{4}h(X^{-1}) = X^{4}(1 + X^{-1} + X^{-2} + X^{-4})$$
$$= 1 + X^{2} + X^{3} + X^{4}.$$

So, C^d is a (7,3) code with $d_{min} = 4$. Therefore, it can <u>correct</u> any <u>single</u> error and <u>detect</u> any combination of <u>double</u> errors.

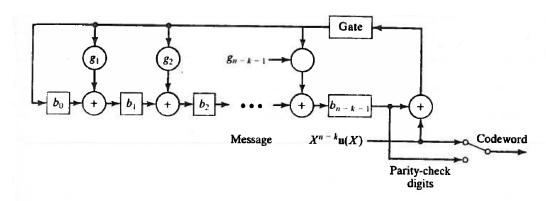
We saw that if we multiply the information polynomial by X^{n-k} and divide by g(X), we get:

$$X^{n-1}u(X) = a(X)g(X) + b(X)$$

and

$$a(X)g(X) = b(X) + X^{n-1}u(X)$$

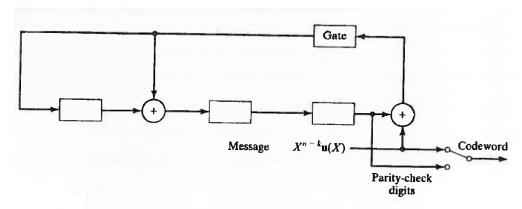
is a codeword in systematic form. The following circuit encodes u(X) based on the above discussion.



Encoding circuit for an (n, k) cyclic code with generator polynomial $g(X) = 1 + g_1 X^2 + \cdots + g_{n-k-1} X^{n-k-1} + X^{n-k}$.

- ► The coding procedure is as follows:
- 1) Close the gate and enter information bits in and also send them over channel. This does multiplication by X^{n-k} as well as parity bit generation.
- 2) Open the gate (break the feedback).
- 3) Output the n k parity bits.

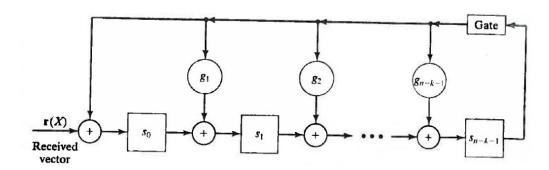
Example: (7, 4) code with $g(X) = 1 + X + X^3$.



Encoder for the (7, 4) cyclic code generated by $g(X) = 1 + X + X^3$.

Syndrome

- Assume $r(X) = r_0 + r_1 X + r_2 X^2 + \dots + r_{n-1} X^{n-1}$ is the polynomial representing the received bits. Divide r(X) by g(X) to get: r(X) = a(X)g(X) + s(X).
- \triangleright s(X) is a polynomial of degree n-k-1 or less. The n-k coefficients of s(X) are the syndromes.
- **Theorem 8:** let s(X) be the syndrome of $r(X) = r_0 + r_1 X + \cdots + r_{n-1} X^{n-1}$. Then, $s^{(i)}(X)$ resulting from dividing $X^i s(X)$ by g(X) is the syndrome of $r^{(i)}(X)$.



An (n-k)-stage syndrome circuit with input from the left end.

Syndrome

Example of (7,4) code:

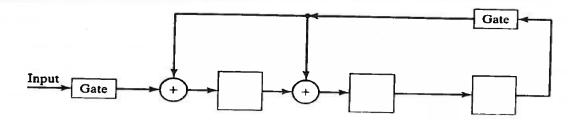
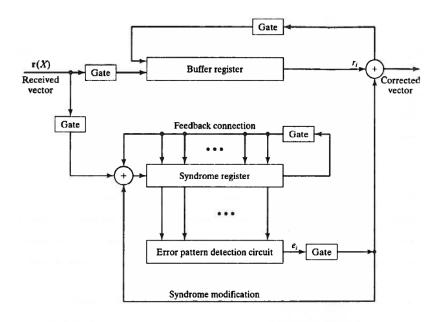


FIGURE 5.6: Syndrome circuit for the (7, 4) cyclic code generated by $g(X) = 1 + X + X^3$.

TABLE 5.3: Contents of the syndrome register shown in Figure 5.6 with $\mathbf{r} = (0010110)$ as input.

Shift	Input	Register contents	
		000 (initial state)	
1	0	000 `	
2	1	100	
3	1	110	
4	0	011	
5	1	011	
6	0	111	
7	0	101 (syndrome s)	
8		100 (syndrome s ⁽¹	
9	_	010 (syndrome s ⁽²⁾	



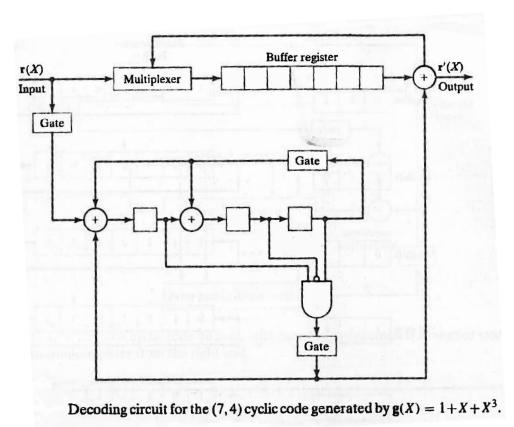
General cyclic code decoder with received polynomial $\mathbf{r}(X)$ shifted into the syndrome register from the left end.

Example: (7, 4) Hamming Code:

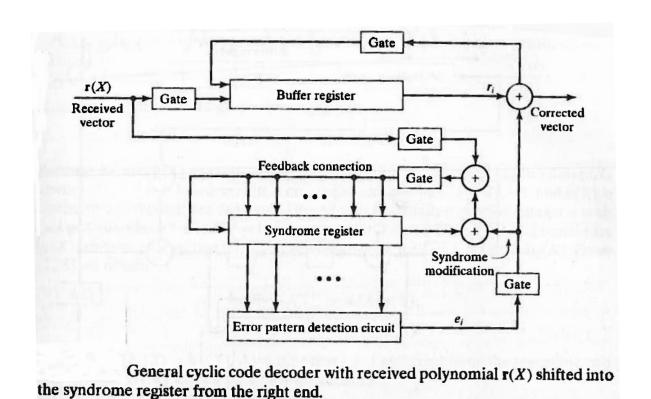
Error patterns and their syndromes with the received polynomial r(X) shifted into the syndrome register from the left end.

Error pattern e(X)	Syndrome s(X)	Syndrome vector (s_0, s_1, s_2)
$\mathbf{e}_6(X) = X^6$	$\mathbf{s}(X) = 1 + X^2$	(101)
$\mathbf{e}_5(X) = X^5$	$\mathbf{s}(X) = 1 + X + X^2$	(111)
$\mathbf{e_4}(X) = X^4$	$\mathbf{s}(X) = X + X^2$	(011)
$\mathbf{e}_3(X)=X^3$	$\mathbf{s}(X) = 1 + X$	(110)
$\mathbf{e}_2(X) = X^2$	$\mathbf{s}(X) = X^2$	(001)
$\mathbf{e}_1(X) = X^1$	$\mathbf{s}(X) = X$	(010)
$\mathbf{e}_0(X) = X^0$	$\mathbf{s}(X) = 1$	(100)

Example: (7, 4) Hamming Code:



General Cyclic Code Decoder:

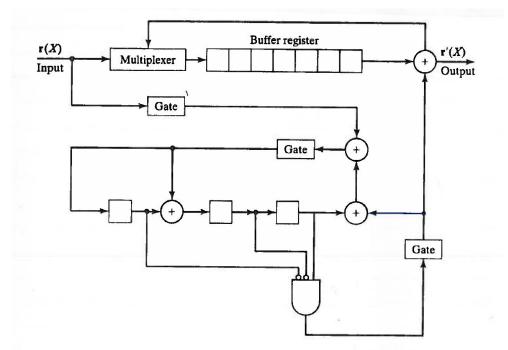


▶ Syndrome decoding of (7, 4) code using syndrome decoder fed from right:

Error patterns and their syndromes with the received polynomial r(X) shifted into the syndrome register from the right end.

Error pattern e(X)	Syndrome $\mathfrak{s}^{(3)}(X)$	Syndrome vector (s_0, s_1, s_2)
$\mathbf{e}(X) = X^6$	$\mathbf{s}^{(3)}(X) = X^2$	(001)
$\mathbf{e}(X) = X^5$	$\mathbf{s}^{(3)}(X)=X$	(010)
$\mathbf{e}(X) = X^4$	$\mathbf{s}^{(3)}(X)=1$	(100)
$\mathbf{e}(X) = X^3$	$s^{(3)}(X) = 1 + X^2$	(101)
$\mathbf{e}(X) = X^2$	$\mathbf{s}^{(3)}(X) = 1 + X + X^2$	(111)
$\mathbf{e}(X) = X$	$\mathbf{s}^{(3)}(X) = X + X^2$	(011)
$\mathbf{e}(X) = X^0$	$\mathbf{s}^{(3)}(X) = 1 + X$	(110)

▶ Syndrome decoding of (7, 4) code using syndrome decoder fed from right:



Decoding circuit for the (7, 4) cyclic code generated by $g(X) = 1 + X + X^3$.

Cyclic Hamming Codes

A Hamming code of length $n = 2^m - 1$ with $m \ge 3$ is generated by a <u>primitive</u> polynomial of degree m. let's see how we can put the Hamming code we discussed earlier in cyclic form:

Divide X^{m+i} by p(X) to get $X^{m+i} = a_i(X)p(X) + b_i(X)$.

Since p(X) is primitive, X is not a factor of p(X) so p(X) does not divide $X^{m+i} \Rightarrow b_i(X) \neq 0$.

 \blacktriangleright $b_i(X)$ has at least two terms. If it had one term:

$$X^{m+i} = a_i(X)p(X) + X^j$$

$$\Rightarrow X^j \left(X^{m+i-j} + 1 \right) = a_i(X)p(X)$$

$$\Rightarrow p(X) \text{ divides } X^{m+i-j} + 1 \text{ but } m+i-j < 2^m - 1$$

$$\Rightarrow \text{ contradiction.}$$

If $i \neq j$, then $b_i(X) \neq b_j(X)$. Let $X^{m+i} = b_i(X) + a_i(X)p(X)$ $X^{m+j} = b_j(X) + a_j(X)p(X).$

Cyclic Hamming Codes

▶ If $b_i(X) = b_j(X)$, then $X^{m+i}(X^{j-i} + 1) = [a_i(X) + a_j(X)]p(X)$,

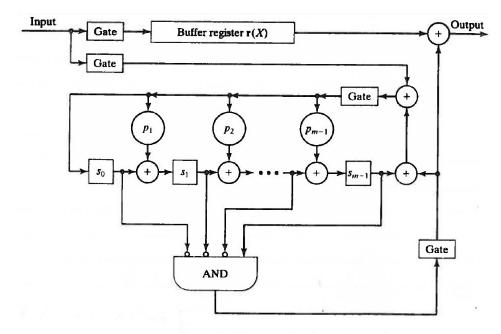
i.e., p(X) divides $X^{j-i} + 1 \Rightarrow$ contradiction.

Let $H = [I_m: Q]$ be the parity check matrix of this code. I_m is an $m \times m$ identity matrix with Q an $m \times (2^m - m - 1)$ matrix with $\underline{b}_i = (b_{i0}, b_{i1}, \cdots, b_{i,m-1})$ as its columns. Since no two columns of Q are the same and each has at least two 1's, then H is indeed a parity-check matrix of a Hamming code.

Syndrome Decoding of Hamming Codes

- Assume that error is in location with highest order, i.e., $e(X) = X^{2^m-2}$.
- ► Then, feeding r(X) from right to syndrome calculator is equivalent to dividing $X^m \cdot X^{2^{m-2}}$ by the generator polynomial p(X). Since p(X) divides $X^{2^{m-1}} + 1$ then

$$s(X) = X^{m-1}$$
 or $\underline{s} = (0, 0, \dots, 0, 1)$.



Decoder for a cyclic Hamming code.