ELEC 6131: Error Detecting and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Thursday, 17:45-20:15.
Office Hours: Thursday, 16:00-17:00

LECTURE 6: BCH Codes

BCH Codes

Block Length $\mathrm{n}=2^{\mathrm{m}}-1$ for some $\mathrm{m} \geq 3$
Number of Parity-check bits $n-k \leq m t$ Minimum Distance $\mathrm{d}_{\text {min }} \geq 2 t+1$

- The generator polynomial is defined in terms of its roots over GF $\left(2^{\mathrm{m}}\right)$.
- For a t -error correcting BCH Code, $\mathrm{g}(\mathrm{x})$ is the lowest-degree polynomial with $\operatorname{roots} \alpha, \alpha^{2} \ldots, \alpha^{2 t}$.
\Rightarrow Let $\varphi_{i}(x)$ be the minimal polynomial of α^{i} for $i=1,2, \ldots, 2 t$.Then:

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{2 t}(x)\right\}
$$

Where LCM stands for least Common Multiple.

BCH Codes

If i is even then we can write $i=i^{\prime} .2^{l}$,
Where i^{\prime} is odd and $l \geq 1$. Then:

$$
\alpha^{i}=\left(\alpha^{i^{\prime}}\right)^{2 l}
$$

So α^{i} and $\alpha^{i^{\prime}}$ are conjugate of each other and have the same minimal polynomial and:

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{3}(x), \ldots, \varphi_{2 t-1}(x)\right\}
$$

- Since the degree of each of $\Phi_{i}(x), i=1,3, \ldots$ is less than or equal to m , the degree $\mathrm{of} \mathrm{g}(\mathrm{x})$ is less than or equal to $m t$ So,

$$
n-k \leq m t
$$

as the degree of $\mathrm{g}(\mathrm{x})$ is $n-k$.

- Table 6.1 lists BCH Codes for lengths $2^{m}-1, m=3, . .10$ that is length 7 to 1023.
- Refer to Appendix C for the list of BCH Codes and their generating polynomial.
- These are narrow sense or primitive BCH Codes. In general, α does not need to be primitive and roots can be non- Consecutive.

TABLE 6.1: BCH codes generated by primitive elements of order less than 2^{10}

\boldsymbol{n}	\boldsymbol{k}	\boldsymbol{t}	\boldsymbol{n}	\boldsymbol{k}	\boldsymbol{t}	\boldsymbol{n}	\boldsymbol{k}	\boldsymbol{t}
7	4	1	127	50	13	255	71	29
15	11	1		43	14		63	30
	7	2		36	14		55	31
	5	3		29	21		47	42
31	26	1		22	23		45	43
	21	2		15	27		37	45
	16	3		8	31		29	47
	11	5	255	247	1		21	55
6	7		239	2		13	59	
63	57	1		231	3		9	63
	51	2		223	4	511	502	1
	45	3		215	5		493	2
	39	4		207	6		484	3
	36	5		199	7		475	4
30	6		191	8		466	5	
	24	7		187	9		457	6

TABLE 61: (contirnted)

TABLE 6.1: (continued)

\boldsymbol{n}	\boldsymbol{k}	\boldsymbol{t}	\boldsymbol{n}	\boldsymbol{k}	\boldsymbol{t}	\boldsymbol{n}
728	30	\boldsymbol{k}	\boldsymbol{t}			
718	31	433	74	153	125	
708	34	423	75	143	126	
698	35	413	77	133	127	
688	36		393	78	123	170
678	37		383	82	121	171
668	38		378	83	111	173
658	39		368	85	91	175
648	41		358	86	86	181
638	42	348	87	76	187	
628	43	338	89	66	189	
618	44	328	90	56	191	
608	45	318	91	46	219	
598	46	308	93	36	223	
588	47	298	94	26	239	
578	49	288	95	16	147	
573	50	278	102	11	255	
563	51					

Relationship with Hamming Codes

- Consider a single error correcting BCH Code of length $\mathrm{n}=2^{\mathrm{m}}-1$. Then:

$$
g(x)=\varphi_{1}(x)
$$

- $\varphi_{1}(\mathrm{x})$ is polynomial of degree m. So,

$$
n-k=m \rightarrow k=2^{m}-1-m
$$

So, a Hamming Code is just a single error correcting BCH code.

BCH Codes: Example

- Example: Design a triple error correcting BCH Code of length 15.

$$
n=15=2^{m}-1 \rightarrow m=4
$$

- So, we need to find primitive element α over $G F\left(2^{4}\right)$ and form:

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{3}(x), \varphi_{5}(x)\right\}
$$

- From table 2.9, we have:

$$
\begin{gathered}
\varphi_{1}(x)=1+x+x^{4} \\
\varphi_{3}(x)=1+x+x^{2}+x^{3}+x^{4} \\
\varphi_{5}(x)=1+x+x^{2}
\end{gathered}
$$

So,

$$
\begin{gathered}
g(x)=\left(1+x+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)\left(1+x+x^{2}\right) \\
=1+x+x^{2}+x^{4}+x^{5}+x^{8}+x^{10}
\end{gathered}
$$

Therefore, $n-k=10 \rightarrow(15,5)$ BCH Code with $d_{\text {min }}=7 \rightarrow \mathrm{t}=3$.

- See Appendix B for minimal polynomials for $m=2, \ldots, 10$.

TABLE 2.9: Minimal polynomials of the clements in $G F\left(2^{4}\right)$ generated by $p(X)=$ $x^{4}+x+1$.

BCH Codes Over $G F\left(2^{6}\right)$

- Do this derivation of $\mathrm{g}(\mathrm{x})$ for all BCH Codes of length $2^{6}-1=63$ in order to become familiar with concepts involved.
- First, using the primitive polynomial $\mathrm{p}(\mathrm{x})=1+\mathrm{x}+\mathrm{x}^{6}$, generate all elements of $G F\left(2^{6}\right)$. They are listed below, but I strongly encourage you to create the table yourself manually (don't use a computer program).

BCH Codes Over GF ($\mathbf{2}^{6}$)

BCH Codes Over GF (2^{6})

- From the above table you can find minimal polynomial for all elements of $\operatorname{GF}\left(2^{6}\right)$:

Elements	Minimal polynomials
$\alpha_{0}, \alpha^{2}, \alpha^{4}, \alpha^{16}, \alpha^{32}$	$1+X+X^{6}$
$\alpha^{3}, \alpha^{6}, \alpha^{12} \alpha^{24}, \alpha^{48} \alpha^{33}$	$1+x+x^{2}+x^{4}+x^{6}$
$\alpha^{5} \cdot \alpha^{10}, \alpha^{20}, \alpha^{40} \cdot \alpha^{17}, \alpha^{34}$	$1+x+X^{2}+x^{5}+X^{6}$
${ }^{14} \cdot \alpha^{28}, \alpha^{56}, \alpha^{49} \cdot \alpha^{35}$	$1+x^{3}+x^{6}$
$\alpha^{9} \cdot \alpha^{18}{ }^{18} \cdot \alpha^{36}{ }^{36}{ }^{\text {a }}$	$1+x^{2}+x^{3}$
$\begin{aligned} & 111, \alpha^{22}, \alpha^{44}, \alpha^{25}, \alpha^{50} \cdot \alpha^{37} \\ & 13-\alpha^{26}, \alpha^{52}, \alpha^{41}, \alpha^{19} \cdot \alpha^{38} \end{aligned}$	$1+x^{2}+x^{3}+x^{5}+x^{6}$ $1+x+x^{3}+x^{4}+x^{6}$
$\alpha^{15}, \alpha^{30}, \alpha^{60}, \alpha^{57}, \alpha^{51}, \alpha^{39}$	$1+x^{2}+x^{3}+x^{4}+x^{6}$ $1+x^{2}+x^{4}+x^{5}+x^{6}$
α^{21}, α^{42}	$1+x+x^{2}+x^{5}+x^{5}$
$\alpha^{23} \cdot \alpha^{46} \cdot \alpha^{29} \cdot \alpha^{58} \cdot \alpha^{53}, \alpha^{43}$	$1+x+x^{4}+x^{5}+x^{6}$ $1+x+x^{3}$
$\alpha^{31}, \alpha^{62}, \alpha^{61}, \alpha^{59}, \alpha^{55}, \alpha^{47}$	1+ ${ }^{1+x+x^{5}+x^{6}}$

Finally for any value of t generate

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{3}(x), \ldots, \varphi_{2 t-1}(x)\right\}
$$

TABLE 6.4: Generator polynomials of all the BCH codes of length 63.

n	k	t	$g(X)$
63	57	1	$\mathrm{g}_{1}(X)=1+X+X^{6}$
	51	2	$\mathrm{g}_{2}(X)=\left(1+X+X^{6}\right)\left(1+X+X^{2}+X^{4}+X^{6}\right)$
	45	3	$g_{3}(X)=\left(1+X+X^{2}+X^{5}+X^{6}\right)_{2}(X)$
	39	4	$g_{4}(X)=\left(1+X^{3}+X^{6}\right)^{\prime} \mathrm{g}_{3}(X)$
	36	5	$g_{s}(X)=\left(1+X^{2}+X^{3}\right)_{4}(X)$
	30	6	$\mathrm{g}_{6}(X)=\left(1+X^{2}+X^{3}+X^{5}+X^{6}\right) \operatorname{gs}(X)$
	24	7	$g_{7}(X)=\left(1+X+X^{3}+X^{4}+X^{6}\right) \mathrm{g}_{6}(X)$
	18	10	$\mathrm{g}_{10}(X)=\left(1+X^{2}+X^{4}+X^{5}+X^{6}\right) \mathrm{g}_{7}(X)$
	16	11	$g_{11}(X)=\left(1+X+X^{2}\right) \mathrm{g}_{10}(X)$
	10	13	$g_{13}(X)=\left(1+X+X^{4}+X^{5}+X^{6}\right)_{11}(X)$
	7	15	$\operatorname{gis}_{15}(X)=\left(1+X+X^{3}\right) \ln _{13}(X)$

Parity Check Matrix of BCH Codes

- We know that each code polynomial $\mathrm{v}(\mathrm{x})$ is divisible by $\mathrm{g}(\mathrm{x})$ and that $\mathrm{g}(\mathrm{x})$ is:

$$
g(x)=\operatorname{LCM}\left\{g_{1}(x), g_{2}(x), \ldots, g_{2 t}(x)\right\}
$$

$>$ So, $\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{2 t}$ are the root of $\mathrm{v}(\mathrm{x})$, i.e.,

$$
V\left(\alpha^{i}\right)=v_{0}+v_{1} \alpha^{i}+v_{2} \alpha^{2 i}+\ldots+v_{n-1} \alpha^{(n-1) i}=0
$$

for $i=1,2, \ldots, 2 t$

- If we form

$$
H=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-1} \\
1 & \alpha^{2} & \left(\alpha^{2}\right)^{2} & \cdots & \left(\alpha^{2}\right)^{n-1} \\
\vdots & \vdots & \vdots & & \cdots \\
\vdots \\
1 & \alpha^{2 t} & \left(\alpha^{2 t}\right)^{2} & \cdots & \left(\alpha^{2 t}\right)^{n-1}
\end{array}\right]
$$

we have

$$
\underline{v} \cdot H^{T}=\underline{0}
$$

for any code vector $\underline{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$

Parity Check Matrix of BCH Codes

- Since if α^{i} is conjugate of α^{j} then $v\left(\alpha^{i}\right)=0$ implies $v\left(\alpha^{j}\right)=0$ and vice versa. So, we can drop even rows and write:

$$
\mathrm{H}=\left[\begin{array}{cccccc}
1 & \alpha & \alpha^{2} & \alpha^{3} & \cdots & \alpha^{n-1} \\
1 & \alpha^{3} & \left(\alpha^{3}\right)^{2} & \left(\alpha^{3}\right)^{3} & \cdots & \left(\alpha^{3}\right)^{n-1} \\
1 & \alpha^{5} & \left(\alpha^{5}\right)^{2} & \left(\alpha^{5}\right)^{3} & \cdots & \left(\alpha^{5}\right)^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 \alpha^{2 t-1} & \left(\alpha^{2 t-1}\right)^{2}\left(\alpha^{2 t-1}\right)^{3} \cdots & \left(\alpha^{2 t-1}\right)^{n-1}
\end{array}\right]
$$

- Example: Consider double- error correcting BCH Code of length 15.

$$
\begin{gathered}
15=2^{4}-1 \rightarrow m=4 \text { and from table 2.9: } \\
\varphi_{1}(x)=1+x+x^{4}, \varphi_{3}(x)=1+x+x^{2}+x^{3}+x^{4}
\end{gathered}
$$

So, $\mathrm{g}(\mathrm{x})=\varphi_{1}(\mathrm{x}) \varphi_{3}(\mathrm{x})=1+\mathrm{x}^{4}+\mathrm{x}^{6}+\mathrm{x}^{7}+\mathrm{x}^{8}$ and we have $n-k=8 \rightarrow k=15-8=7$

- So, this is the BCH Code $(15,7)$ with $d_{\text {min }}=5$, i.e., $\mathrm{t}=2$.

Non-primitive BCH Codes

- Substituting α^{i},s, so we get:
$\mathrm{H}=\left[\begin{array}{l}100010011010111 \\ 010011010111100 \\ 001001101011110 \\ 000100110101111 \\ 100011000110001 \\ 000110001100011 \\ 001010010100101 \\ 011110111101111\end{array}\right]$

- Example of a non-primitive BCH Code:

Consider $G F\left(2^{6}\right)$ and take $\beta=\alpha^{3}$. β has order $n=21: \beta^{21}=\left(\alpha^{3}\right)^{21}=\alpha^{63}=1$

- Let $\mathrm{g}(\mathrm{x})$ be the minimal degree polynomial with roots: $\beta, \beta^{2}, \beta^{3}, \beta^{4}$
- β, β^{2} and β^{4} have the same minimal polynomial:

$$
\varphi_{1}(x)=1+x+x^{2}+x^{4}+x^{6}
$$

Decoding of BCH Codes

and B^{3} has: $\varphi_{3}(x)=1+x^{2}+x^{3}$. So $g(x)=\varphi_{1}(x) \varphi_{3}(x)=1+x+x^{4}+x^{5}+x^{7}+x^{8}+x^{9}$
It can be easily verified that $g(x)$ divides $x^{21}+1$. The code generated by $g(x)$ is a $(21,12)$ non-primitive BCH Code that corrects two errors.

- Decoding of BCH Codes:
- Let codeword \underline{v} represented by code polynomial

$$
v(x)=v_{0}+v_{1} x+v_{2} x^{2}+\cdots+v_{n_{-} 1} x_{n_{-} 1}
$$

be the transmitted codeword.

- The received polynomial is:

$$
r(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n_{-} 1} x_{n_{-} 1}
$$

- Denoting the error polynomial by e(x), we have:

$$
r(x)=v(x)+e(x)
$$

- The syndrome is calculated multiplying \underline{r} by H^{T} :

$$
\underline{s}=\left(s_{1}, s_{2}, \ldots, s_{2 t}\right)=\underline{r} \cdot H^{T}
$$

Decoding of BCH Codes

- This means that the $i-t h$ component of $\underline{\mathrm{s}}$ is:

$$
s_{i}=r\left(\alpha^{i}\right)=r_{0}+r_{1} \alpha^{i}+r_{2} \alpha^{2 i}+\cdots+r_{n-1} \alpha^{(n-1) i}
$$

for $i=1,2, \ldots, 2 t$.

- Let's divide $\mathrm{r}(\mathrm{x})$ by $\varphi_{i}(x)$, i.e., the minimal polynomial of α^{i} :

$$
r(x)=\alpha_{i}(x) \varphi_{i}(x)+b_{i}(x)
$$

- $\varphi_{i}\left(\alpha^{i}\right)=0$, therefore,

$$
S_{i}=r\left(\alpha^{i}\right)=b_{i}\left(\alpha^{i}\right)
$$

- Example: Consider (15,7) BCH Code. Let the received vector be (100000001000000). So, $r(x)=1+\mathrm{x}^{8}$. Let's find, $\underline{\mathrm{S}}=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$.The minimal polynomial for $\alpha, \alpha^{2}, \alpha^{4}$ is the same,

$$
\varphi_{1}(x)=\varphi_{2}(x)=\varphi_{4}(x)=1+x+x^{4}
$$

and for α^{3} we have,

$$
\varphi_{3}(x)=1+x+x^{2}+x^{3}+x^{4}
$$

Decoding of BCH Codes

- Dividing $\mathrm{r}(\mathrm{x})=1+\mathrm{x}^{8}$ by $\varphi_{1}(x)$ we get,

$$
b_{1}(x)=x^{2}
$$

- Dividing $\mathrm{r}(\mathrm{x})$ by $\varphi_{3}(x)$, we get

$$
b_{3}(x)=1+x^{3}
$$

So,

$$
s_{1}=b_{1}(\alpha)=\alpha^{2}, \quad s_{2}=\alpha^{4}, \quad s_{4}=\alpha^{8}
$$

and

$$
s_{3}=b_{3}\left(\alpha^{3}\right)=1+\alpha^{9}=1+\alpha+\alpha^{3}=\alpha^{7}
$$

Therefore,

$$
\underline{S}=\left(\alpha^{2}, \alpha^{4}, \alpha^{7}, \alpha^{8}\right)
$$

Decoding of BCH Codes

- Since

$$
V\left(\alpha^{i}\right)=0, \text { for } i=1,2, \ldots, 2 t
$$

we have

$$
S_{i}=r\left(\alpha^{i}\right)=v\left(\alpha^{i}\right)+e\left(\alpha^{i}\right)=e\left(\alpha^{i}\right)
$$

- Now, assume that we have v errors at locations $j_{1}, j_{2}, \ldots, j_{\gamma}$. That is,

$$
e(x)=x^{j_{1}}+x^{j_{2}}+\cdots+x^{v}
$$

- Then we have,

$$
\begin{gathered}
S_{1}=\alpha^{j_{1}}+\alpha^{j_{2}}+\ldots+\alpha^{j_{v}} \\
S_{2}=\left(\alpha^{j_{1}}\right)^{2}+\left(\alpha^{j_{2}}\right)^{2}+\cdots+\left(\alpha^{j_{v}}\right)^{2} \\
\vdots \\
S_{2 t}=\left(\alpha^{j_{1}}\right)^{2 t}+\left(\alpha^{j_{2}}\right)^{2 t}+\cdots+\left(\alpha^{j_{v}}\right)^{2 t}
\end{gathered}
$$

Decoding of BCH Codes

Let $\beta_{1}=e^{j_{1}} \beta_{2}=e^{j_{2}}, \ldots, \beta_{\gamma}=e^{j_{\gamma}}, \beta_{1,}, \beta_{2}, \ldots, \beta_{\gamma}$ are called error location numbers. Then we have:

$$
\begin{gathered}
\mathrm{S}_{1}=\beta_{1}+\beta_{2}+\ldots+\beta_{v} \\
\mathrm{~S}_{2}=\beta_{1}{ }^{2}+\beta_{2}{ }^{2}+\ldots+\beta_{v}{ }^{2} \\
\vdots \\
\mathrm{~S}_{2 \mathrm{t}}=\beta_{1}{ }^{2 \mathrm{t}}+\beta_{2}{ }^{2 \mathrm{t}}+\ldots+\beta_{v}{ }^{2 \mathrm{t}}
\end{gathered}
$$

These 2 t equations are symmetric function of $\beta_{1}, \beta_{2}, \ldots, \beta_{v}$

- Define the following polynomial

$$
\sigma(x)=\left(1+\beta_{1} x\right)\left(1+\beta_{2} x\right)\left(1+\beta_{3} x\right) \ldots\left(1+\beta_{v} x\right)
$$

This is called the error locator polynomial and has $\beta_{1}^{-1} \beta_{2}^{-1} \ldots \beta_{v}^{-1}$ as its roots. $\sigma(\mathrm{X})$ can also be represented as:

$$
\sigma(x)=\sigma_{0}+\sigma_{1} x+\sigma_{2} x^{2}+\cdots+\sigma_{v} x^{v}
$$

Decoding of BCH Codes

It is clear that:

$$
\begin{gathered}
\sigma_{0}=1 \\
\sigma_{1=}=\mathrm{B}_{1}+\mathrm{B}_{2}+\ldots+\beta_{v} \\
\sigma_{2=} \mathrm{B}_{1} \mathrm{~B}_{2}+\mathrm{B}_{2} \mathrm{~B}_{3}+\ldots+\beta_{v-1} \beta_{v} \\
\vdots \\
\sigma_{\gamma=} B_{1} B_{2} \ldots \beta_{v}
\end{gathered}
$$

- $\sigma_{i}, \mathrm{~s}$ can be shown to be related to syndromes as follows:

$$
\begin{gathered}
s_{1}+\sigma_{1}=0 \\
s_{2}+\sigma_{1} s_{1}+2 \sigma_{2}=0 \\
s_{3}+\sigma_{1} s_{2} \sigma_{2} s_{1}+3 s_{3}=0 \\
\vdots \\
s_{v}+\sigma_{1} s_{v-1+\cdots+} \sigma_{v-1} s_{1}+v \sigma_{v}=0 \\
s_{v+1}+\sigma_{1} s_{v+\cdots+} \sigma_{v-1} s_{2}+v s_{1}=0
\end{gathered}
$$

- These are called Newton identities.
- For the binary case

$$
i \sigma_{i}= \begin{cases}\sigma_{i} & \text { for odd } i \\ 0 & \text { for even } i\end{cases}
$$

Berlekamp Algorithm

- Berlekamp Algorithm is an Iterative Algorithm for finding Error-Location Polynomial:
This algorithm tries to generate polynomials of degree $1,2, .$. that has $\beta_{1}, \beta_{2} \ldots$ as it roots.
- First we define $\sigma^{(1)}(x)$ that satisfies the first Newton equality: $\sigma^{(1)}(\mathrm{x})=1+\mathrm{S}_{1} \mathrm{x}$ Since $\mathrm{S}_{1}+\sigma_{1}=0 \rightarrow \sigma_{1}=\mathrm{S}_{1}$
- Then we check whether $\sigma^{(1)}(x)$ satisfies the second Newton equality or not. If it satisfies we let $\sigma^{(2)}(x)=\sigma^{(1)}(x)$ otherwise we add another term to $\sigma^{(1)}(x)$ to form $\sigma^{(2)}(x)$ that satisfies the first and second equalities.
- Then for $\sigma^{(3)}(x)$: if $\sigma^{(2)}(x)$ satisfies the third equality we let $\sigma^{(3)}(x)=$ $\sigma^{(2)}(x)$ otherwise add a correction term that makes $\sigma^{(3)}(x)$ satisfy the first three equalities.
- We continue this iterative approach until we get $\sigma^{(2 t)}(x)$ and set $\sigma(x)=\sigma^{(2 t)}(x)$.
- Now let's see how we can go from one stage say μ to $\mu+1$.

Berlekamp Algorithm

- Assume that at stage μ, the polynomial is

$$
\sigma^{(\mu)}(x)=1+\sigma_{1}^{(\mu)} x+\sigma_{2}^{(\mu)} x^{2}+\ldots+\sigma_{L_{\mu}}^{(\mu)} x^{L_{\mu}}
$$

- If $\sigma^{(\mu)}(x)$ satisfies also $(\mu+1)$ st equality then, $\mathrm{S}_{\mu+1}$ should be

$$
\sigma_{1}^{(\mu)} s_{\mu}+\sigma_{2}^{(\mu)} s_{\mu-1}+\ldots+\sigma_{L_{\mu}}^{(\mu)} s_{\mu+1-L_{\mu}}
$$

- We compare this with actual $s_{\mu+1}$. That is why we add this to $S_{\mu+1}$ and check whether we get zero or not Let the sum be denoted by d_{μ} and call it discrepancy.

$$
d_{\mu}=s_{\mu+1}+\sigma_{1}^{(\mu)} s_{\mu}+\sigma_{2}^{(\mu)} s_{\mu-1}+\ldots+\sigma_{L_{\mu}}^{(\mu)} s_{\mu+1-L_{\mu}}
$$

- If this is zero, then $\sigma^{(\mu)}(x)$ also satisfies the $\mu+1$-st equality and therefore,

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)
$$

- But if $d_{\mu} \neq 0$, then $\sigma^{(\mu)}(x)$ does not satisfy the $\mu+1$-st equality.

Berlekamp Algorithm

- Note that

and

$$
d_{\rho}=\sum_{i=0}^{L \rho} \sigma_{i}^{(\rho)} s_{\rho_{+} 1_{-} i}
$$

$$
\sigma^{(\rho)}(\mathrm{x})=1+\sigma_{1}^{(\rho)}{ }_{\mathrm{x}}+\sigma_{2}^{(\rho)} \mathrm{x}^{2}+\ldots+\sigma_{L \rho}^{(\rho)} x^{L \rho}
$$

- Let's form $\sigma^{(\mu+1)}(x)$ as:

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)+A X^{\mu-\rho} \sigma^{(\rho)}(x)
$$

- Then

$$
d_{\mu}^{\prime}=\sum_{i=0}^{L \mu} \sigma_{i}^{(\mu)} \mathrm{S}_{\mu+1-\mathrm{i}}+\sum_{i=0}^{L \rho} \sigma_{i}^{(\rho)} \mathrm{S}_{\mu-\rho+1-\mathrm{i}}
$$

or

$$
\begin{gathered}
d_{\mu}^{\prime}=d_{\mu}+A d_{\rho} \\
A=d_{\mu} / d_{\rho}
\end{gathered}
$$

Summary of Berlekamp Algorithm

- In summary, Berlekamp algorithm is as follows:
- Initialization: start with first two rows according to the following table:

$\boldsymbol{\mu}$	$\sigma^{(\mu)}(\boldsymbol{X})$	\boldsymbol{d}_{μ}	$\boldsymbol{I}_{\boldsymbol{\mu}}$	$\mu-l_{\mu}$
-1	1	1	0	-1
0 1	1	S_{1}	0	0
1				
!				
$2 t$				

- Iteration: For each μ form $d_{\mu}=s_{\mu+1}+\sigma_{1}^{(\mu)} s_{\mu}+\cdots+\sigma_{L \mu}^{(\mu)} x$

Where L_{μ} is the degree of $\sigma^{(\mu)}(x)$

Summary of Berlekamp Algorithm

1) If $d_{\mu}=0$ then $\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)$
2) If $d_{\mu} \neq 0$ then:

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)+d_{\mu} d_{\rho}^{-1} x^{\mu-\rho} \sigma^{(\rho)}(x)
$$

Where ρ is the row (the stage) where $d_{\rho} \neq 0$ and is closest to μ, i.e., $\mu-\rho$ is the smallest

- Termination:
- Continue until you find $\sigma^{(2 t)}(x)$ and let:

$$
\sigma(x)=\sigma^{(2 t)}(x)
$$

Example

- Consider the $(15,5)$ code we saw previously assume that,

$$
\begin{aligned}
\mathrm{v}= & (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) \text { is transmitted } \\
& \text { and } \mathrm{r}=(000101000000100) \text { is received. }
\end{aligned}
$$

Then $r(x)=x^{3}+x^{5}+x^{12}$.

- The minimal polynomial for α, α^{2} and α^{4} is

$$
\varphi_{1}(x)=\varphi_{2}(x)=\varphi_{4}(x)=1+x+x^{4}
$$

(For α^{3} and α^{6}

$$
\varphi_{3}(x)=\varphi_{6}(x)=1+x+x^{2}+x^{3}+x^{4}
$$

- For α^{5},

$$
\varphi_{5}(x)=1+x+x^{2}
$$

- Dividing $\mathrm{r}(\mathrm{x})$ by $\varphi_{1}(x)$, we get

$$
b_{1}(x)=1
$$

- Dividing $\mathrm{r}(\mathrm{x})$ by $\varphi_{3}(x)$, we get

$$
b_{3}(x)=1+x^{2}+x^{3}
$$

- And dividing by $\varphi_{5}(x)$,

$$
b_{5}(x)=x^{2}
$$

Example

So:

$$
\begin{gathered}
s_{1}=s_{2}=s_{4}=1 \\
s_{3}=1+\alpha^{6}+\alpha^{9}=\alpha^{10} \\
s_{6}=1+\alpha^{12}+\alpha^{18}=\alpha^{5} \\
s_{5}=\alpha^{10}
\end{gathered}
$$

Using Berlekamp method, we get $\sigma(x)=\alpha^{(6)}(x)=1+x+\alpha^{5} x$.

$\boldsymbol{\mu}$	$\boldsymbol{\sigma}^{(\mu)}(\boldsymbol{X})$	$\boldsymbol{d}_{\boldsymbol{\mu}}$	$\boldsymbol{l}_{\boldsymbol{\mu}}$	$\boldsymbol{\mu}-\boldsymbol{l}_{\boldsymbol{\mu}}$
-1	1	1	0	-1
0	1	1	0	0
1	$1+X$	0	1	0 (take $\rho=-1$)
2	$1+X$	α^{5}	1	1
3	$1+X+\alpha^{5} X^{2}$	0	2	1 (take $\rho=0$)
4	$1+X+\alpha^{5} X^{2}$	α^{10}	2	2
5	$1+X+\alpha^{5} X^{3}$	0	3	2 (take $\rho=2$)
6	$1+X+\alpha^{5} X^{3}$	-	-	-

Example

- We can verify that α^{3}, α^{10} and α^{12} are the roots of $\sigma(\mathrm{x})$.

$$
\begin{aligned}
& \left(\alpha^{3}\right)^{-1}=\alpha^{12} \\
& \left(\alpha^{10}\right)^{-1}=\alpha^{5}
\end{aligned}
$$

and

$$
\left(\alpha^{12}\right)^{-1}=\alpha^{3}
$$

- So:

$$
e(x)=x^{3}+x^{5}+x^{12}
$$

Error Correction Procedure

1) Calculate syndrome.
2) Form error- location polynomial $\sigma(x)$
3) Solve $\sigma(x)$ to get error locations (Chien Search)

- Chien Search:

1) Load $\sigma_{1,} \sigma_{2, \ldots, \ldots} \sigma_{2 t}$ in 2 t registers.
(If $\sigma(\mathrm{x})$ has degree less than 2 t , i.e., $\mu<2 t$ then $\sigma_{\mu+1}=\sigma_{\mu+2}=\cdots=\sigma_{2 t}=0$)
2) The multipliers multiply σ_{i} by α^{i} and the circuit generates

$$
\sigma_{1} \alpha+\sigma_{2} \alpha^{2}+\cdots+\sigma_{\mu} \alpha^{\mu}
$$

- If α is a root of $\sigma(x)$ then

$$
1+\sigma_{1} \alpha+\sigma_{2} \alpha^{2}+\cdots+\sigma_{\mu} \alpha^{\mu}=0
$$

Chien Search

Load $\sigma_{1,} \sigma_{2, \ldots, \sigma_{2 t}}$ in 2 t registers.
(If $\sigma(\mathrm{x})$ has degree less than 2t, i.e., $\mu<2 t$ then $\sigma_{\mu+1}=\sigma_{\mu+2}=\cdots=\sigma_{2 t}=0$)
The multipliers multiply σ_{i} by α^{i} and the circuit generates

$$
\sigma_{1} \alpha+\sigma_{2} \alpha^{2}+\cdots+\sigma_{\mu} \alpha^{\mu}
$$

- If α is a root of $\sigma(x)$ then

$$
1+\sigma_{1} \alpha+\sigma_{2} \alpha^{2}+\cdots+\sigma_{\mu} \alpha^{\mu}=0
$$

Error Correction Procedure

- Or the output of A is 1 .
- So if output of A is 1 then α is a root and $\alpha^{-1}=\alpha^{n-1}$ is error location and r_{n-1} should be corrected.
- Multipliers are clocked so we get

$$
\alpha^{2},\left(\alpha^{2}\right)^{2}, \ldots,\left(\alpha^{2}\right)^{\mu}
$$

Or the output of A is

$$
\sigma_{1} \alpha^{2}+\sigma_{2}\left(\alpha^{2}\right)^{2}+\cdots \sigma_{\mu}\left(\alpha^{2}\right)^{\mu}
$$

If this is $1, r_{n-2}$ should be corrected and so on for $3, . ., \nu$.

