ELEC 6131: Error Detecting
and Correcting Codes
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LECTURE 8: Convolutional Codes




Convolutional Codes

» In Block Code’s data is encoded using a Combinational circuit. That is, a circuit with
only logic gates and no memory.

» Convolutional Codes on the other hand, have encoders that are Sequential Circuits. A
Convolutional encoder receives k bits as the input and generates n > k output symbols
based on the input at a given time and past inputs (or outputs) still in the memory. A
convolutional code usually has m memory units resulting in 2™ states. m is called the
constraint length, sometimes m+1 is called the constraint length taking into account the
present input and m bits in the memory as the bits affecting the output. k and n are

usually small integers. Codes with k=1 resulting in code rate % are of special interest.

» For example, if k = 1 and n = 1, we have a code of rate% = -




Convolutional Codes

» It is important to note the fact that while k=1 or 2 or some other small number, the
input and output are streams of bits. Assume that L symbols enter the encode. This
means kL input bits and nL output bits we need also to flush the encoder to make it
ready for next block of data, e.g., by feeding km bits. So, the output will actually be
n(L + m) bits long and the rate is

kL k L k
= —, - —
n(L+m) n L+m

whenm <« L.

Since the codewords of a Convolutional code are generated using a Finite State Machine
(FSM), i.e. a sequential circuit, the decoder can be a scheme that finds the best match for
the received sequence (based on minimum distance), by going through all possible outputs
the FSM. The scheme used is the travelling salesman algorithm. It is called the Viterbi
Algorithm (VA) in coding literature as it was first used for decoding of convolutional codes
by Andrew Viterbi (the relationship between VA and travelling salesman problem was later
discovered. So, in fact, Viterbi re-invented the algorithm).




Convolutional Codes

» VA finds a solution that is optimal over the whole received sequence and not
necessarily having lower probability of error for each symbol.

» Another Scheme called BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm is
another decoding technique that works based on the maximum a posterior
(MAP) probability taking into account the a priori probability of bits. It is very
useful in iterative decoding of Turbo codes.

» Example: let’s start with a non-systematic feed forward rate % code.

» The code is non-systematic as there is no direct connection between the input and any
of the outputs. Also, we call the code feed forward as the outputs are not fed back to

the input side.
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Convolutional Codes

» Let the input sequence be u=(ugy, u4,u,,...). The output sequences will be

\_/(O)Z(véo), vl(o), v2(0>, )

and \_/(1):(1251), vl(l), vz(l), )
» These outputs can be obtained by convolving u with the impulse response of the two
branches.

» To find the impulse response let u=(100...) and observe the outputs. Since the
memory order is m, the impulse response can last at most m+1 time units so,

0 0 0
gﬂ”=(9§),g§),m,g§3)
1 1 1

and g®=(g{P, g™, ..., gt

» For this example:
g@=(1011)
and

gW=(1111)

» These are also called generator sequences.




Convolutional Codes

» Now,
vO=u ® g© and vW=u ® g™
» Where & denotes convolution:
vl(j) = > U gl.(j) = U g(()j) + u;_4 ggj) + Uiy, g,(,{) for j=0 and 1.

» For this example,
”1(0)

(D
Y

= Uy -+ Ui—o -+ Uj—3

= U -+ Uj—1 + Ui—o + Uj—3

and V= (v(go), vél), vl(o), 171(1), vz(o), vz(l), )

» Assume u=(10111),then
vO=(10111)®»(1011)=(10000001)
vO=(10111)®»(1111)=(11011101)

and v = (11, 01, 00, 01, 01, 01, 00 ,11)




Convolutional Codes

» When the number of bits encoded is large, we can view the operation of the
convolutional encoder as a block encoder by defining the generate matrix:

;
8758 eMsd gl ... P 4@
o (1 i (1) 1
il 8508 g ... O I O
= o0 : :
8 8 - !'g]lzﬂi,l_z Efl_llﬂll Eﬁﬂﬂ‘

» Then v =uG. For input u= (101111) we have:

RN AL RN 1 R
11 01 11 11
=(10111) 11 01 11 11
11 01 11 11
i i LA b

=(11,01,0001,01,01,00,11),




Convolutional Codes

Example: Arate % non-systematic feed forward convolutional code:

» Let gl.(j) represent the generator sequence corresponding to input i and output j, we
have:
9= gP=01D g¥=01
(‘” =01 g'=00 g”=00




Convolutional Codes

» Then:
> v@ =yl ® g +u® @ g¥
v =41 ® gil) +u® ®g§1)
v@ =yl ® 99 +u® @géZ)
» So,
vl(o) = ul(l) + +ul(i)1 + ul(f)l

vl(l) = ul(z) + uz(i)1

vl(z) = ul(l) + ul(l) + ul(f)l
» While rate % codes with k # 1 can be used, it is easier to use a code % rate to

generate codes % This is done using puncturing. Assume that we have a rate %

code, we can feed it two bits at a time and out of 4 bits we get at the output
throw out one to get a rate g code. Or input 3 bits and get 6 bits out and

throw out 2 bits to get z code .




Convolutional Codes " ————
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Polynomial Domain Representation

» Similar to block codes, we can transform the time domain representation by
transforming the generating sequences to generating polynomial and similarly input
and output sequences to input and output polynomials:

» For example, for the (2,1,3) code, i.e. rate % memory = 3 code, instead of g@= (101
1)and ¢g®=(1111),wecan use:

gOMm)=1+D2+D3and gP(D) =1+ D + D% + D3

vy

- +

vl




Polynomial Domain Representation:

» If we denote the input sequence as,

u(D) = ug + uyD + u,D? + -
Then

vOD = u(D)g'9 (D) and v D = u(D)g™ (D)
So,
v(D) = [vO(D), vV (D)] = v (D?) + DV (D?)
Assume thatu=10111—uD) =1+ D? + D3 + D*, then:
vO(D) =1 +D2+D3+D"(1+D?+D3) =1+D’
vDMD)Y=Q+D2+D3+D"N(1+D+D%>+D3) =1+D+D3+D*+D>+D7

and:
V(D) = [1+ D™+ D(1+ D%+ D®+ D® + D10 4 D19)]

=1+D+D3*+ D7 +D°+ D' 4+ D™ 4+ D
As an exercise trytoget11010001010100 by feeding 101 11 to the encoder.




Polynomial Domain Representation:

» Equivalently, we could use g(D) = g@(D?) + Dg™W(D?) and find the output using
v(D) = u(D?)g(D)
» For the above example:
g(D)=1+D*+D®+ D[1+ D?+ D*+ DY

=1+D*+D®+ D+ D3+ D>+ D7
=1+D+D3+D*+D>+D®+ D7

and

v(D) = u(D?)g(D) = (1 +D*+D®+D®)(1+D+D3*+D*+ D>+ D+ D7)
=1+D+D*+ D74+ D°+ D" + D™ 4+ D?®
In general, for a code with k inputs and n outputs, we have:
g:(D) = g@ (D™ + Dg (D™ + -+ DV 1gP (DY) for 1<i<k
and
k

v(D) = z u®(D™g;D

i=1




Graphical representation: Trees, Trellises and FSM

» Consider a code with m memory elements, each bit takes the contents of shift register
from one of the 2™ possible values to another value. For simplicity take the case of feed
forward, k = 1 code. Let’s start from all zero content for m memory elements i.e., start
from 0 0...0. If the bit entering the encoder is zero it moves to the same state.
Otherwise goesto 1 00 ... 0. Next bit takesitto010...00r110 ... 0.

For example: for the 3-bit memory encoder (2,1,3) we will have:

0og

0og

100

0oo

010

100

110

]

0o1

010

101

100

010

110

111




Graphical representation: Trees, Trellises and FSM

» Note that after entering 3 bits, we get to 8 terminal nodes with all possible
binary values. If we continue, we get trees with 16, 32, 64, ... of terminal
nodes. But node labels will still be one of the eight patterns 000, 001, ...,111.

» So, instead of a tree, we can use a trellis. For the above code, we have the following
trellis

-+



Graphical representation: Trees, Trellises and FSM

» \We label the nodes by state values and the arcs by the input and Ouput.
» let’s now draw the state-diagram: Each state is labeled with the content of the memory
elements and each transition is labeled with the input and output. So, an input 1 takes
the system from state 000 to state 100 generating output 11, so, 1/11 is the label of the
transition from 000 to 1000. Since this is a binary (one bit) input code, we can

represent the input by thickness or shape of line, e.g., using solid line for zero and
dashed line for one.




Classification of Convolutional Codes

» A code can be systematic, e.g.,

I\(Lw - i

A (2,1, 3) binary systematie feedforward convolutional encoder,

» Convolutional encoders can also have feedback.
» Following is an example of (2,1,2) systematic feedback encoder.

> V(o)

A




Classification of Convolutional Codes

» These codes are defined in terms of their feedback and feedforward transfer functions
(or generator functions). The above code has g,(D)=1 and:

1+ D?
1+ D + D2

91(D) =
Or the generator matrix is
G(D) =[1,(1+D?*/(1+ D + D?)]
» Trellis Diagrams list all possible codewords. For example, for a convolutional code
with binary input, after entering k bits, i.e., passing through k stages, we have 2% paths

to consider. Note that for a rate % after entering k! bits, we have an nl bit sequence. So,
the search is for one of the 2*! trellis paths among 2™ possibilities.

» We will have an error if the transmitted sequence belongs to one path of trellis and we
decide in favour of another path. That is, if the noise make the path diverge at one
node and coverage at another node. To see this, let’s try a simple example




Classification of Convolutional Codes
» Consider the (2,1,2) feedback code above.

>

>

Assume, for example, that input the encoder is the all zero sequence. Then the top line
Is the path taken by the output of the encoder.

Now assume that at some point there is an error and instead of straight (solid line), the
decoder takes the dashed line. Unlike un-coded case, the next output is not un-
constraint since the first divergence has caused 00 to be 11, then the next two bits are
either 01 or 10. This continues until the two paths merge. Any convergence of two
diverged paths is called an error event. The shortest error event defines, the minimum
or free distance of the code. In this case the free distance is 3 and is a result of 00,00,00
being changed to 11,01,00. That means decoding 100 instead of 000.




Classification of Convolutional Codes

» Catastrophic Convolutional encoder:
» A convolutional encoder, is one that creates a trellis diagram in which a stream with an

infinite number of errors appears as having a finite distance from the original sequence.
» Example: Take the convolutional code with G(D) = [1+ D,1 + D?].

» Trellis for this encoder is:




Classification of Convolutional Codes

» Now assume that 0 0...0 be encoded, i.e., 00,00, ...00 (upper path) be transmitted. The
distance between 11,01,00, ..., 00 (the violet path) and the correct path is 3. But one
decodes to all 0 and the other to all one.

» Let’s analyze the situation. Note that 1+D is a common divisor to g,(D)= 1+D and
g1(D)=1+D?=(1+D)(1+D) So, the encoder can be conceived as an m=1
encoder [1, 1+D] and a multiplication (say prior to encoding) by 1+D.

» Note that:

L=1+D+D2+D3+---
1+D

or: (1+4D+D?*+D3+--)1+D)=1
» So, if we feed the all one sequence to the 1+D, we get a single 1 and all zero. The same
Is true for any encoder whose constituent g;(D) have a common divisor other than

unity (or shift of unity say D). A% code is not catastrophic if and only if

GCD|[go(D), g,(D), ..., gn—1(D)] = D'  for some integer .




Performance of Convolutional Codes

» The performance of convolutional codes is computed based on their distance profile
(Spectrum) Assume that in the trellis of a code there are A, error event paths of distance d,
for all possible d. Then:

AX) = i Ag X

d=dfree

» Assuming that probability of error event for a path of distance d is P, then:

P(E) < Z APy

d=dfree
» For BSC channel, P(E) can be approximated (upper bound approximated) as:

P(E) < Z Agl2{p(1 = p)]* = A,y 5
d=dfree

» Forsmall p,i.e., high SNR, we have the path with distance d,... as dominant so:

P(E) = Aqy, [2/p(1 = p)]Uree = Ag 2% ree pyreel®

free




Performance of Convolutional Codes

» Instead of Aywhich is the number of error event of weight d, we may use B;which is
the sum of numbers of non-zero bits on all d paths divided by the number of
information bits k. Then:

PEY< ) BaPa= ) Bal2p/T=p)

d=dfree d=dfree
» Again, taking df . path as the dominant path:

P(E) = Bq,,, [2p(1 = p)]¥ree

=~ Bdfreedereepdfree/2
» Assuming BPSK:
—_— | ~ — 0
A N, |=z¢




Performance of Convolutional Codes
» Note that E}, = % , SO

Py(E) = By 25550 C 2D
p(E) = dfree e 0

» Comparing this with un-coded BPSK, i.e.,

p 0 2E, 1 _%
= —_— ~ —e 0
b N, 2

R dfree

» We find that there is power gain of

» This in decibel is called the asymptotic coding gain:

A Rdfree
Y = 10 log10 5 dB.




Soft Decoding of Convolutional Codes

» If we do not do demodulation prior to decoding, we use Euclidean distance. Then:

co

d=dfree No
Or Pp(E) < Xazdsye.Ba € ( ZdlfoEb)
» We can approximate the Q(.) function so that,
0 _dREj
P,(E) < Z Bye Mo
d=dfree
dfreeREp

or: Py(E) = Bajyec€ No

» Comparing with un-coded BPSK i.e., .
/)

Pb = e—NO
» \We get coding gain (asympthotic):
y £ 10logyo(Rdfree) dB
which is 3 dB better than hard decision decoding.




Convolutional Codes

TABLE 12.2= Optimum rate R = 1,/2
quick-look-in coavelutional codes.

w ™ e Adg,, ¥ (AB) TABLE 12.14c): Optimum rate B = 1/2 con-
2 5 5 1 358 I
3 15 & 1 4,77 » " Y dpee  Age, ¥ (AB)
4 a1 7 2 .44
. s 5 8 2 em > s 7 5 1 3
] 151 9 4 6.3 3 13 17 6 1 FEC A
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21 14565371 20 7 10.00 tiomal codes.
22 327445 20 1 1000 v BY WY R dy,,  Ag oy (AB)
23 GII4T465 3 021
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i Sional 4 3 s 23
TABLE 12_1(a)* Oipiimum rate B = 1/4 con 5 ﬁ 57 73 [ g :I:El
codes. & 123 147 121 T 17 .69
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; ; 1:_-’ 3 3 ]g : :11-.2 o 1051 1423 1327 © 17 7.78
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- ] 45 53 &7 77T 18 k] G583
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1467 1751 27 3
g 1173 108 z 2 5 7 & a3 6 3.52
a 11 13 15 12 a4 10 477
TABLE 12.1(k): Optimam rawe & = 1,3 coavola- 4 3z 25 a7 31 4 z 477
; codes. 5 a7 T 57 75 s 7 574
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1 1 3 3 5 1 B 535 757 733 651 7 27 T20
z 5 7 7 8 2 426 o 1475 1723 1157 1371 B 136 7.7
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4 25 33 37 12 5 02
5 47 53 75 13 1 636
6 117 127 155 15 3 5.5
7 225 EETI 367 16 1 727
8 575 623 T27 1B 1 738
9 1167 1378 1545 20 E 823
10 3PS FIRL IMT 22 7 8.65
11 5745 G471 7553 24 13 .03
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