ELEC 6131: Error Detecting and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Tuesday, 17:45-20:15
Office Hours: Tuesday, 15:00-17:00

LECTURE 8: Convolutional Codes

Convolutional Codes

- In Block Code's data is encoded using a Combinational circuit. That is, a circuit with only logic gates and no memory.
- Convolutional Codes on the other hand, have encoders that are Sequential Circuits. A Convolutional encoder receives k bits as the input and generates $n \geq k$ output symbols based on the input at a given time and past inputs (or outputs) still in the memory. A convolutional code usually has m memory units resulting in 2^{m} states. m is called the constraint length, sometimes $m+1$ is called the constraint length taking into account the present input and m bits in the memory as the bits affecting the output. k and n are usually small integers. Codes with $\mathrm{k}=1$ resulting in code rate $\frac{1}{n}$ are of special interest.

For example, if $k=1$ and $n=1$, we have a code of rate $\frac{k}{n}=\frac{1}{2}$.

Convolutional Codes

- It is important to note the fact that while $\mathrm{k}=1$ or 2 or some other small number, the input and output are streams of bits. Assume that L symbols enter the encode. This means $k L$ input bits and $n L$ output bits we need also to flush the encoder to make it ready for next block of data, e.g., by feeding km bits. So, the output will actually be $n(L+m)$ bits long and the rate is

$$
\frac{k L}{n(L+m)}=\frac{k}{n} \cdot \frac{L}{L+m} \rightarrow \frac{k}{n}
$$

when $m \ll L$.
Since the codewords of a Convolutional code are generated using a Finite State Machine (FSM), i.e. a sequential circuit, the decoder can be a scheme that finds the best match for the received sequence (based on minimum distance), by going through all possible outputs the FSM. The scheme used is the travelling salesman algorithm. It is called the Viterbi Algorithm (VA) in coding literature as it was first used for decoding of convolutional codes by Andrew Viterbi (the relationship between VA and travelling salesman problem was later discovered. So, in fact, Viterbi re-invented the algorithm).

Convolutional Codes

- VA finds a solution that is optimal over the whole received sequence and not necessarily having lower probability of error for each symbol.
- Another Scheme called BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm is another decoding technique that works based on the maximum a posterior (MAP) probability taking into account the a priori probability of bits. It is very useful in iterative decoding of Turbo codes.
- Example: let's start with a non-systematic feed forward rate $\frac{1}{2}$ code.
- The code is non-systematic as there is no direct connection between the input and any of the outputs. Also, we call the code feed forward as the outputs are not fed back to the input side.

Convolutional Codes

- Let the input sequence be $\underline{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$. The output sequences will be

$$
\begin{gathered}
\underline{\mathrm{v}}^{(0)}=\left(v_{0}^{(0)}, v_{1}^{(0)}, v_{2}^{(0)}, \ldots\right) \\
\text { and } \underline{\mathrm{v}}^{(1)}=\left(v_{0}^{(1)}, v_{1}^{(1)}, v_{2}^{(1)}, \ldots\right)
\end{gathered}
$$

- These outputs can be obtained by convolving \underline{u} with the impulse response of the two branches.
- To find the impulse response let $\underline{u}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ and observe the outputs. Since the memory order is m , the impulse response can last at most $\mathrm{m}+1$ time units so,

$$
\begin{aligned}
\mathrm{g}^{(0)} & =\left(g_{0}^{(0)}, g_{1}^{(0)}, \ldots, g_{m}^{(0)}\right) \\
\text { and } \mathrm{g}^{(1)} & =\left(g_{0}^{(1)}, g_{1}^{(1)}, \ldots, g_{m}^{(1)}\right)
\end{aligned}
$$

- For this example:

$$
\mathrm{g}^{(0)}=\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right)
$$

and

$$
g^{(1)}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)
$$

- These are also called generator sequences.

Convolutional Codes

- Now,

$$
\underline{\mathrm{v}}^{(0)}=\underline{u} \circledast g^{(0)} \text { and } \underline{\mathrm{v}}^{(1)}=\underline{u} \circledast g^{(1)}
$$

\Rightarrow Where ${ }^{*}$ denotes convolution:

$$
v_{l}^{(j)}=\sum_{i=0}^{m} u_{l-i} g_{i}^{(j)}=u_{l} g_{0}^{(j)}+u_{l-1} g_{0}^{(j)}+\cdots+u_{l-m} g_{m}^{(j)} \quad \text { for } \mathrm{j}=0 \text { and } 1 .
$$

- For this example,

$$
\begin{gathered}
v_{l}^{(0)}=u_{l}+u_{l-2}+u_{l-3} \\
v_{l}^{(1)}=u_{l}+u_{l-1}+u_{l-2}+u_{l-3} \\
\underline{\mathrm{v}}=\left(v_{0}^{(0)}, v_{0}^{(1)}, v_{1}^{(0)}, v_{1}^{(1)}, v_{2}^{(0)}, v_{2}^{(1)}, \ldots\right)
\end{gathered}
$$

and

- Assume $\underline{u}=\left(\begin{array}{lllll}1 & 0 & 1 & 1 & 1\end{array}\right)$, then

$$
\begin{aligned}
& \underline{\mathrm{v}}^{(0)}=\left(\begin{array}{llllll}
1 & 0 & 1 & 1 & 1
\end{array}\right) \circledast\left(\begin{array}{lllll}
1 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \underline{v}^{(0)}=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 1
\end{array}\right) \circledast\left(\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

and $\underline{v}=(11,01,00,01,01,01,00,11)$

Convolutional Codes

- When the number of bits encoded is large, we can view the operation of the convolutional encoder as a block encoder by defining the generate matrix:
- Then $\underline{v}=\underline{u} G$. For input $\underline{u}=(101111)$ we have:

$$
\begin{aligned}
& =(10111)\left[\begin{array}{lllllllll}
11 & 0 & 11 & 11 & & & & \\
& 11 & 01 & 11 & 11 & & & \\
& & 11 & 0 & 11 & 11 & & \\
& & & 11 & 01 & 11 & 11 & \\
& & & & 11 & 01 & 11 & 11
\end{array}\right] \\
& =(11,01,00,01,01,01,00,11),
\end{aligned}
$$

Convolutional Codes

Example: A rate $\frac{2}{3}$ non-systematic feed forward convolutional code:

Let $\underline{g}_{i}^{(j)}$ represent the generator sequence corresponding to input i and output j , we have:

$$
\begin{array}{ll}
g_{1}^{(0)}=\left(\begin{array}{lll}
1 & 1
\end{array}\right) & g_{1}^{(1)}=\left(\begin{array}{lll}
0 & 1
\end{array}\right)
\end{array} g_{1}^{(2)}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) ~ 子 ~\left(\begin{array}{ll}
1 & (1) \\
g_{2}^{(0)}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) & g_{2}^{(1)}=\left(\begin{array}{lll}
1 & 0
\end{array}\right) \\
g_{2}^{(2)}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
\end{array}\right.
$$

Convolutional Codes

- Then:
$\triangleright \quad v^{(0)}=u^{1} \circledast g_{1}^{(0)}+u^{(2)} \circledast g_{2}^{(0)}$

$$
\begin{aligned}
& v^{(1)}=u^{1} \circledast g_{1}^{(1)}+u^{(2)} \circledast g_{2}^{(1)} \\
& v^{(2)}=u^{1} \circledast g_{1}^{(2)}+u^{(2)} \circledast g_{2}^{(2)}
\end{aligned}
$$

- So,

$$
\begin{gathered}
v_{l}^{(0)}=u_{l}^{(1)}++u_{l-1}^{(1)}+u_{l-1}^{(2)} \\
v_{l}^{(1)}=u_{l}^{(2)}+u_{l-1}^{(1)} \\
v_{l}^{(2)}=u_{l}^{(1)}+u_{l}^{(1)}+u_{l-1}^{(2)}
\end{gathered}
$$

- While rate $\frac{k}{n}$ codes with $k \neq 1$ can be used, it is easier to use a code $\frac{1}{n}$ rate to generate codes $\frac{k}{n}$. This is done using puncturing. Assume that we have a rate $\frac{1}{2}$ code, we can feed it two bits at a time and out of 4 bits we get at the output throw out one to get a rate $\frac{2}{3}$ code. Or input 3 bits and get 6 bits out and throw out 2 bits to get $\frac{3}{4}$ code .

Convolutional Codes

- Example: Industry Standard Code:

Figre 8. 64.Stat Cenrointiconal Einotar

(1) | $0(1)$ | D_{23} | $0(3)$ | 0.450 |
| :--- | :--- | :--- | :--- | :--- | :--- |

(7) | $0(1)$ | $0(2)$ | $0(3)$ | $\left.D_{4}\right)$ | $0(5)$ | $0^{(5)}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\theta=$ nussurtad hermad

Fgur gh. Purctured Cosirig tor Rata $1 / 4$

Polynomial Domain Representation

- Similar to block codes, we can transform the time domain representation by transforming the generating sequences to generating polynomial and similarly input and output sequences to input and output polynomials:
- For example, for the $(2,1,3)$ code, i.e. rate $\frac{1}{2}$ memory $=3$ code, instead of $g^{(0)}=(101$ 1) and $\quad g^{(1)}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$, we can use:

$$
g^{(0)}(D)=1+D^{2}+D^{3} \text { and } g^{(1)}(D)=1+D+D^{2}+D^{3}
$$

Polynomial Domain Representation:

- If we denote the input sequence as,

$$
u(D)=u_{0}+u_{1} D+u_{2} D^{2}+\cdots
$$

Then

$$
v^{(0)} D=u(D) g^{(0)}(D) \text { and } v^{(1)} D=u(D) g^{(1)}(D)
$$

So,

$$
v(D)=\left[v^{(0)}(D), v^{(1)}(D)\right]=v^{(0)}\left(D^{2}\right)+D v^{(1)}\left(D^{2}\right)
$$

Assume that $\underline{u}=10111 \rightarrow u(D)=1+D^{2}+D^{3}+D^{4}$, then:

$$
\begin{gathered}
v^{(0)}(D)=\left(1+D^{2}+D^{3}+D^{4}\right)\left(1+D^{2}+D^{3}\right)=1+D^{7} \\
v^{(1)}(D)=\left(1+D^{2}+D^{3}+D^{4}\right)\left(1+D+D^{2}+D^{3}\right)=1+D+D^{3}+D^{4}+D^{5}+D^{7}
\end{gathered}
$$ and:

$$
\begin{aligned}
V(D) & =\left[1+D^{14}+D\left(1+D^{2}+D^{6}+D^{8}+D^{10}+D^{14}\right)\right] \\
& =1+D+D^{3}+D^{7}+D^{9}+D^{11}+D^{14}+D^{15}
\end{aligned}
$$

As an exercise try to get 11010001010100 by feeding 10111 to the encoder.

Polynomial Domain Representation:

- Equivalently, we could use $g(D)=g^{(0)}\left(D^{2}\right)+D g^{(1)}\left(D^{2}\right)$ and find the output using

$$
v(D)=u\left(D^{2}\right) g(D)
$$

- For the above example:

$$
\begin{aligned}
g(D) & =1+D^{4}+D^{6}+D\left[1+D^{2}+D^{4}+D^{6}\right] \\
& =1+D^{4}+D^{6}+D+D^{3}+D^{5}+D^{7} \\
& =1+D+D^{3}+D^{4}+D^{5}+D^{6}+D^{7}
\end{aligned}
$$

and

$$
\begin{aligned}
v(D)=u\left(D^{2}\right) g(D) & =\left(1+D^{4}+D^{6}+D^{8}\right)\left(1+D+D^{3}+D^{4}+D^{5}+D^{6}+D^{7}\right) \\
& =1+D+D^{3}+D^{7}+D^{9}+D^{11}+D^{14}+D^{15}
\end{aligned}
$$

In general, for a code with k inputs and n outputs, we have:

$$
g_{i}(D)=g_{i}^{(0)}\left(D^{n}\right)+D g_{i}^{(1)}\left(D^{n}\right)+\cdots+D^{n-1} g_{i}^{n-1}\left(D^{n}\right) \quad \text { for } 1 \leq i \leq k
$$

and

$$
v(D)=\sum_{i=1}^{k} u^{(i)}\left(D^{n}\right) g_{i} D
$$

Graphical representation: Trees, Trellises and FSM

- Consider a code with m memory elements, each bit takes the contents of shift register from one of the 2^{m} possible values to another value. For simplicity take the case of feed forward, $k=1$ code. Let's start from all zero content for m memory elements i.e., start from $00 \ldots 0$. If the bit entering the encoder is zero it moves to the same state. Otherwise goes to $100 \ldots 0$. Next bit takes it to $010 \ldots 0$ or $110 \ldots 0$.
For example: for the 3-bit memory encoder $(2,1,3)$ we will have:

Graphical representation: Trees, Trellises and FSM

- Note that after entering 3 bits, we get to 8 terminal nodes with all possible binary values. If we continue, we get trees with $16,32,64, \ldots$ of terminal nodes. But node labels will still be one of the eight patterns $000,001, \ldots, 111$.
- So, instead of a tree, we can use a trellis. For the above code, we have the following trellis

Graphical representation: Trees, Trellises and FSM

- We label the nodes by state values and the arcs by the input and Ouput.
- let's now draw the state-diagram: Each state is labeled with the content of the memory elements and each transition is labeled with the input and output. So, an input 1 takes the system from state 000 to state 100 generating output 11 , so, $1 / 11$ is the label of the transition from 000 to 1000 . Since this is a binary (one bit) input code, we can represent the input by thickness or shape of line, e.g., using solid line for zero and dashed line for one.

Classification of Convolutional Codes

- A code can be systematic, e.g.,

$$
\text { A }(2,1,3) \text { binary systematic feedforward convolutional encoder. }
$$

- Convolutional encoders can also have feedback.
$>$ Following is an example of $(2,1,2)$ systematic feedback encoder.

Classification of Convolutional Codes

- These codes are defined in terms of their feedback and feedforward transfer functions (or generator functions). The above code has $\mathrm{g}_{0}(\mathrm{D})=1$ and:

$$
g_{1}(D)=\frac{1+D^{2}}{1+D+D^{2}}
$$

Or the generator matrix is

$$
G(D)=\left[1,\left(1+D^{2}\right) /\left(1+D+D^{2}\right)\right]
$$

- Trellis Diagrams list all possible codewords. For example, for a convolutional code with binary input, after entering k bits, i.e., passing through k stages, we have 2^{k} paths to consider. Note that for a rate $\frac{1}{n}$ after entering $k l$ bits, we have an $n l$ bit sequence. So, the search is for one of the $2^{k l}$ trellis paths among $2^{n l}$ possibilities.
- We will have an error if the transmitted sequence belongs to one path of trellis and we decide in favour of another path. That is, if the noise make the path diverge at one node and coverage at another node. To see this, let's try a simple example

Classification of Convolutional Codes

- Consider the $(2,1,2)$ feedback code above.

- Assume, for example, that input the encoder is the all zero sequence. Then the top line is the path taken by the output of the encoder.
- Now assume that at some point there is an error and instead of straight (solid line), the decoder takes the dashed line. Unlike un-coded case, the next output is not unconstraint since the first divergence has caused 00 to be 11 , then the next two bits are either 01 or 10 . This continues until the two paths merge. Any convergence of two diverged paths is called an error event. The shortest error event defines, the minimum or free distance of the code. In this case the free distance is 3 and is a result of 00,00,00 being changed to $11,01,00$. That means decoding 100 instead of 000 .

Classification of Convolutional Codes

- Catastrophic Convolutional encoder:
- A convolutional encoder, is one that creates a trellis diagram in which a stream with an infinite number of errors appears as having a finite distance from the original sequence.
- Example: Take the convolutional code with $G(D)=\left[1+D, 1+D^{2}\right]$.

- Trellis for this encoder is:

Classification of Convolutional Codes

- Now assume that $00 \ldots 0$ be encoded, i.e., $00,00, \ldots 00$ (upper path) be transmitted. The distance between $11,01,00, \ldots, 00$ (the violet path) and the correct path is 3 . But one decodes to all $\underline{0}$ and the other to all one.
- Let's analyze the situation. Note that $1+\mathrm{D}$ is a common divisor to $\mathrm{g}_{0}(\mathrm{D})=1+\mathrm{D}$ and $g_{1}(D)=1+D^{2}=(1+D)(1+D)$ So, the encoder can be conceived as an $\mathrm{m}=1$ encoder $[1,1+\mathrm{D}]$ and a multiplication (say prior to encoding) by $1+\mathrm{D}$.
- Note that:

$$
\begin{gathered}
\frac{1}{1+D}=1+D+D^{2}+D^{3}+\cdots \\
\text { or: } \\
\left(1+D+D^{2}+D^{3}+\cdots\right)(1+D)=1
\end{gathered}
$$

- So, if we feed the all one sequence to the $1+\mathrm{D}$, we get a single 1 and all zero. The same is true for any encoder whose constituent $g_{i}(D)$ have a common divisor other than unity (or shift of unity say D^{l}). A $\frac{1}{n}$ code is not catastrophic if and only if

$$
\operatorname{GCD}\left[g_{0}(D), g_{1}(D), \ldots, g_{n-1}(D)\right]=D^{l} \quad \text { for some integer } l .
$$

Performance of Convolutional Codes

- The performance of convolutional codes is computed based on their distance profile (Spectrum) Assume that in the trellis of a code there are A_{d} error event paths of distance d, for all possible d. Then:

$$
A(X)=\sum_{d=d_{\text {free }}}^{\infty} A_{d} X^{d}
$$

- Assuming that probability of error event for a path of distance d is P_{d}, then:

$$
P(E) \leq \sum_{d=d_{f r e e}}^{\infty} A_{d} P_{d}
$$

- For BSC channel, $\mathrm{P}(\mathrm{E})$ can be approximated (upper bound approximated) as:

$$
P(E)<\sum_{d=d_{\text {free }}}^{\infty} A_{d}[2 \sqrt{p(1-p)}]^{d}=\left.A(X)\right|_{x=2 \sqrt{p(1-p)}}
$$

- For small p , i.e., high SNR, we have the path with distance $d_{\text {free }}$ as dominant so:

$$
P(E) \simeq A_{d_{\text {free }}}[2 \sqrt{p(1-p)}]^{d_{\text {free }}} \cong A_{d_{\text {free }}} 2^{d_{\text {free }}} P^{d_{\text {free } / 2}}
$$

Performance of Convolutional Codes

- Instead of A_{d} which is the number of error event of weight d , we may use B_{d} which is the sum of numbers of non-zero bits on all d paths divided by the number of information bits k. Then:

$$
P_{b}(E)<\sum_{d=d_{f r e e}}^{\infty} B_{d} P_{d}=\sum_{d=d_{f r e e}}^{\infty} B_{d}[2 p \sqrt{1-p}]^{d}
$$

- Again, taking $d_{\text {free }}$ path as the dominant path:

$$
\begin{aligned}
P(E) & \simeq B_{d_{\text {free }}}[2 \sqrt{p(1-p)}]^{d_{\text {free }}} \\
& \cong B_{d_{\text {free }}} 2^{d_{\text {free }} P^{d_{\text {free }} / 2}}
\end{aligned}
$$

- Assuming BPSK:

$$
\begin{gathered}
P=Q\left(\sqrt{\frac{2 E_{s}}{N_{0}}}\right) \simeq \frac{1}{2} e^{-\frac{E_{s}}{N_{0}}} \\
P_{b}(E) \simeq B_{d_{\text {free }}} 2^{\frac{d_{\text {free }}}{2}} e^{-\left(\frac{d_{\text {free }}}{2}\right)\left(\frac{E_{s}}{N_{0}}\right)}
\end{gathered}
$$

Performance of Convolutional Codes

- Note that $E_{b}=\frac{E_{S}}{R}$, So

$$
P_{b}(E) \simeq B_{d_{\text {free }}} 2^{\frac{d_{\text {free }}}{2}} e^{-\left(\frac{R_{\text {. }} d_{\text {free }}}{2}\right)\left(\frac{E_{b}}{N_{0}}\right)}
$$

- Comparing this with un-coded BPSK, i.e.,

$$
P_{b}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \simeq \frac{1}{2} e^{-\frac{E_{b}}{N_{0}}}
$$

- We find that there is power gain of $\frac{R d_{f r e e}}{2}$.
- This in decibel is called the asymptotic coding gain:

$$
\gamma \triangleq 10 \log _{10}\left(\frac{R_{d_{\text {free }}}}{2}\right) \quad d B
$$

Soft Decoding of Convolutional Codes

- If we do not do demodulation prior to decoding, we use Euclidean distance. Then:

$$
P(E)<\sum_{d=d_{\text {free }}}^{\infty} A_{d} Q\left(\sqrt{\frac{2 d R E_{b}}{N_{0}}}\right)
$$

Or $\quad P_{b}(E)<\sum_{d=d_{\text {free }}}^{\infty} B_{d} Q\left(\sqrt{\frac{2 d R E_{b}}{N_{0}}}\right)$

- We can approximate the $\mathrm{Q}($.$) function so that,$

$$
\begin{aligned}
& P_{b}(E)<\sum_{d=d_{f r e e}}^{\infty} B_{d} e^{-\frac{d R E_{b}}{N_{0}}} \\
& \text { or: } \quad P_{b}(E) \simeq B_{d_{f r e e}} e^{-\frac{d_{f r e e^{R} E_{b}}}{N_{0}}}
\end{aligned}
$$

- Comparing with un-coded BPSK, i.e.,

$$
P_{b} \cong e^{-\frac{E_{b}}{N_{0}}}
$$

- We get coding gain (asympthotic):

$$
\gamma \triangleq 10 \log _{10}\left(R d_{\text {free }}\right) \quad d B
$$

which is 3 dB better than hard decision decoding.

Convolutional Codes

TABLE $12.1(\mathrm{~d})$: Optimum rate $R=2 / 3$ convolu-

\boldsymbol{v}	$\mathbf{h}^{(2)}$	$\mathbf{h}^{(0)}$	$\mathbf{h}^{(0)}$	$d_{\text {fore }}$	$A_{\text {doner }}$	$\boldsymbol{\gamma}(\mathbf{d B})$
2	3	5	7	3	1	3.01
3	17	15	13	4	1	4.26
4	23	31	27	5	3	5.23
5	71	57	73	6	7	6.02
6	123	147	121	7	17	6.69
7	313	227	241	8	43	7.27
8	555	631	477	8	6	7.27
9	1051	1423	1327	9	17	7.78
10	2621	2137	3013	10	69	8.24

TABLE 12.1(e): Optimum rate $R=3 / 4$ convolutional

-	$\mathrm{h}^{(3)}$	$\mathbf{h}^{(2)}$	$\mathbf{h}^{(1)}$	$\mathrm{h}^{(0)}$	$d_{\text {pme }}$	$\boldsymbol{A}_{\text {d }}^{\text {forr }}$	$\gamma(\mathrm{dB})$
2	2	5	7	${ }^{6}$	3	6	3.52
3	11	13	15	12	4	10	4.77
4	33	25	37	31	4	2	4.77
5	47	73	57	75	5	7	5.74
6	107	135	133	141	6	27	6.53
7	211	341	315	267	6	5	6.53
8	535	757	1733	${ }_{1}^{661}$	7	27	7.20 788

