
LECTURE 9: Viterbi Algorithm

ELEC 6131: Error Detecting
and Correcting Codes

Instructor:
Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103.
Time and Place: Tuesday, 17:45 – 20:15.
Office Hours: Tuesday, 15:00 – 17:00

Viterbi Algorithm
While many algorithms have been proposed and

used for decoding of convolutional codes, the
Viterbi Algorithm (VA) is by far the most often
used algorithm. Some of the reasons may be due
to the very regular structure of this algorithm
lending itself to modular implementation and
fixed delay. The latter means that the VA
decodes any sequence of a certain length with
the same delay proportional to its length.

Viterbi Algorithm
 VA is a Maximum Likelihood (ML) algorithms, i.e., when

presented with a received sequence say it tries to find the input
sequence that has most likely generated.

 In short if it receives the vector 𝑟 𝑟 , 𝑟 , ⋯ , 𝑟 it outputs a
codeword 𝑣 𝑣 , 𝑣 , ⋯ , 𝑣 such that:

𝑃 𝑟|𝑣 𝑃 𝑟|𝑣 for any 𝑣′ 𝑣.
Finally, the information sequence 𝑢 that resulted in codeword 𝑣 will
be delivered to the user.
 Note that the VA does not maximize the probability of a

codeword 𝑣 being transmitted given that the received vector is 𝑟.
It rather finds the codeword 𝑣 that maximizes the chance of
observing 𝑟.

 We discuss the difference between the two in the next slide.

Maximum a posteriori Probability (MAP) vs ML
 Assume that the vector 𝑣 is transmitted with probability 𝑃 𝑣 .
 𝑃 𝑣 is called the a priori probability of 𝑣. That is, the

probability of 𝑣 before (prior to) observing anything about 𝑣.
 After receiving vector 𝑟 at the receiver side, we can measure, the

conditional probability 𝑃 𝑣|𝑟 . This is the probability that 𝑣 has
been sent given that 𝑟 has been observed. This is called a
posterior (after the fact) probability.

 MAP maximizes 𝑃 𝑣|𝑟 . Using, Bayes formula, we can write:
𝑃 𝑣 𝑟 . | , Eq. 1

where 𝑃 𝑟 ∑ 𝑃 𝑣 𝑃 𝑟|𝑣 .
 In Equation 1, 𝑃 𝑟 is the same for all 𝑣 and does not need to be

considered. Also, if the probability of all vectors 𝑣 at the input of
the channel is the same, we can omit 𝑃 𝑣 . As a result, we
maximize 𝑃 𝑟|𝑣 . So, MAP become ML.

VA: Example
 Consider the rate ½ code (3, 1, 2) with:

𝐺 𝐷 1 𝐷, 1 𝐷 , 1 𝐷 𝐷
 For the input sequence 𝑢 11101 , the trellis is:

Likelihood Function
 Since the number of input bits is ℎ 5 and the memory size is

𝑚 2, the trellis has 7 stages. The number of output bits is 21
3 7 out of which 15 correspond to the input data and the rest

are for clearing the memory before encoding the next packet.
 In general, for an 𝑛, 𝑘, 𝑚 code, encoding ℎ symbols, we have

the input vector 𝒖 𝑢 , 𝑢 , ⋯ , 𝑢 of length 𝐾 𝑘ℎ and the
codeword 𝒗 𝑣 , 𝑣 , ⋯ , 𝑣 of length 𝑁 𝑛 ℎ 𝑚 and
the received vector is: 𝒓 𝑟 , 𝑟 , ⋯ , 𝑟 .

 The likelihood, i.e., the probability 𝑃 𝒓|𝒗 can be written as:

𝑃 𝒓 𝒗 𝑃 𝑟 |𝑣 𝑃 𝑟 |𝑣

Note that we have assumed that the channel is memoryless.

Log Likelihood Function
 Taking the logarithm of 𝑃 𝑟|𝑣 , we get:

𝑙𝑜𝑔𝑃 𝒓 𝒗 𝑙𝑜𝑔𝑃 𝑟 |𝑣 𝑙𝑜𝑔𝑃 𝑟 |𝑣

 𝑙𝑜𝑔𝑃 𝒓|𝒗 is called the path metrics and denoted as 𝑀 𝒓|𝒗 ,

𝑀 𝒓|𝒗 𝑀 𝒓𝒍|𝒗𝒍 𝑙𝑜𝑔𝑃 𝒓𝒍|𝒗𝒍

∑ 𝑀 𝒓𝒍|𝒗𝒍 ∑ 𝑙𝑜𝑔𝑃 𝒓𝒍|𝒗𝒍 .

𝑀 𝒓𝒍|𝒗𝒍 𝑙𝑜𝑔𝑃 𝒓𝒍|𝒗𝒍 are called the branch metrics, or bit
metrics in the case of code.

Add, Compare, Select (ACS) Operation
 At any stage, we can compute a partial path metric for the first 𝑡

branches of a path:

𝑀 𝒓|𝒗 𝑀 𝒓𝒍|𝒗𝒍 𝑙𝑜𝑔𝑃 𝒓𝒍|𝒗𝒍

𝑀 𝒓𝒍 𝒗𝒍 𝑙𝑜𝑔𝑃 𝒓𝒍|𝒗𝒍

 Now to compute 𝑀 𝒓|𝒗 for a given path, we need to take the sum
of the branch metrics of the first 𝑡 stages for paths resulting in the
present path and add to them the metric of the branch connecting each
previous state to the present state and compare the resulting metrics
and select the path with the maximum probability.

 A section a trellis is shown in the next slide in order to calify the above
procedure.

Add, Compare, Select (ACS) Operation

 This is Add, Compare, Select algorithm summarized in the next slide.

Viterbi Algorithm
 The Viterbi Algorithm consists of the following steps:
 Step 1: Starting from 𝑡 𝑚, Compute the partial metric for the single

path coming to each state. Store the path (call it surviving path) and its
metric.

 Step 2: Increase 𝑡 by 1. Compute the partial metric for all 2 paths
entering each state by adding the branch metric entering that state to
the metric of the connecting surviving path in the previous time unit.
For each state compare the 2 paths entering the state. Find the one
with maximum probability (the survivor) and store it together with its
metric. Eliminate all other paths.

 Step 3: If 𝑡 ℎ 𝑚 go to step 2; otherwise stop.
 A practical hint: Since the number of bits coded and decoded can be

very large, in order to reduce the latency and to reduce the storage
requirement after a certain number of stages, we can assume that the
surviving paths for all state have converged for the few bit and release
that bit and continue.

Viterbi Algorithm for BSC Channel
 Consider communication over a Binary Symmetric Channel with

𝑝 (the case of 𝑝 can easily be changed into 𝑝 by
complementing the output bits).

 Assume that the distance between a received vector 𝒓 and a
codeword 𝒗 is 𝑑 𝒓, 𝒗 . Then the likelihood is:

𝑃 𝒓|𝒗 𝑝 𝒓,𝒗 1 𝑝 𝒓,𝒗

 The log likelihood function will be:
𝑙𝑜𝑔𝑃 𝒓|𝒗 𝑑 𝒓, 𝒗 𝑙𝑜𝑔 𝑁𝑙𝑜𝑔 1 𝑝 .

 𝑁𝑙𝑜𝑔 1 𝑝 is a constant and we do not need to consider.
 Also: 𝑙𝑜𝑔 is negative. So, maximizing the path metric

𝑙𝑜𝑔𝑃 𝒓|𝒗 is equivalent to minimizing 𝑑 𝒓, 𝒗 :

𝑑 𝒓, 𝒗 𝑑 𝒓𝒍, 𝒗𝒍 𝑑 𝒓𝒍, 𝒗𝒍

Viterbi Algorithm for BSC Channel
 The Viterbi Algorithm consists of the following steps:

 Step 1: Starting from 𝑡 𝑚, Compute the Hamming distance
from the single path coming to each state. Store the path (call it
surviving path) and its distance.

 Step 2: Increase 𝑡 by 1. Compute the partial Hamming distance
for all 2 paths entering each state by adding the branch metric
(distance) entering that state to the metric of the connecting
surviving path in the previous time unit. For each state compare
the 2 paths entering the state. Find the one with minimum
distance (the survivor) and store it together with its distance.
Eliminate all other paths.

 Step 3: If 𝑡 ℎ 𝑚 go to step 2; otherwise stop.

Viterbi Algorithm for BSC Channel: Example
 Consider the code with the following trellis:

Viterbi Algorithm for BSC Channel: Example
 Assume that the received vector is:

𝒓 110, 110, 110, 111, 010, 101, 101

 Following the Veterbi Algorithm, the codeword is
𝒗 111, 010, 110, 011, 111, 101, 011

 It is shown as the highlighted path in the figure above.

 The decoded information sequence is 𝒖 11001 .

Viterbi Algorithm for AWGN Channel
 Consider communications over Additive White Gaussian Noise

(AWGN) channel. Assume that we use BPSK modulation, i.e.,
the transmitted signal is:

𝑠 𝑡
𝐸
𝑇 cos 2𝜋𝑓 𝑡 .

 This means that we have used the mapping:

1 ⟶ 𝐸 and 0 ⟶ 𝐸 .

 Normalizing by 𝐸 , we consider the codeword:
𝒗 𝑣 , 𝑣 , ⋯ , 𝑣

taking values 1 according to the mapping:

1 ⟶ 1 and 0 ⟶ 1.

Viterbi Algorithm for AWGN Channel
 The received vector 𝒓 𝑟 , 𝑟 , ⋯ , 𝑟 , where each component

is a real-valued number consisting of the corresponding
transmitted symbol plus an additive noise:

𝑟 𝑣 𝑛 .

 The noise being Gaussian, the conditional probability density
function (pdf) of the normalized received symbol 𝑟 given the
transmitted bit 𝑣 is:

𝑝 𝑟 |𝑣 𝑒 𝑒 .

Where 𝑁 is the power spectral density of the noise.

Viterbi Algorithm for AWGN Channel
 Since the channel is white (memoryless), the log-likelihood of the

received vector 𝒓 given the transmitted codeword 𝒗 is:

𝑀 𝒓|𝒗 ln𝑝 𝒓|𝒗 ln 𝑝 𝑟 |𝑣 ln𝑝 𝑟 |𝑣

𝐸
𝑛 𝑟 𝑣

𝑁
2 ln

𝐸
𝜋𝑁

 Note that ln and are constants and do not have any effect on
the maximization of 𝑀 𝒓|𝒗 . Also, there is minus sign in front of the
summation.

 So, in order to maximized 𝑀 𝒓|𝒗 , we just need to minimize the
Euclidean distance of 𝒓 and 𝒗:

𝑑 𝒓, 𝒗 𝑟 𝑣

Viterbi Algorithm for AWGN Channel
 The Viterbi Algorithm for AWGN channel consists of the

following steps:

 Step 1: Starting from 𝑡 𝑚, Compute the Euclidean distance
from the single path coming to each state. Store the path (call it
surviving path) and its distance.

 Step 2: Increase 𝑡 by 1. Compute the partial Euclidean distance
for all 2 paths entering each state by adding the branch metric
(distance) entering that state to the metric of the connecting
surviving path in the previous time unit. For each state compare
the 2 paths entering the state. Find the one with minimum
distance (the survivor) and store it together with its distance.
Eliminate all the other paths.

 Step 3: If 𝑡 ℎ 𝑚 go to step 2; otherwise stop.

Viterbi Algorithm for AWGN Channel
 You may write the Euclidean Distance as:

𝑑 𝒓, 𝒗 𝑟 𝑣 𝑟 𝑣 2 𝑟 𝑣

𝒓 𝑁 2 𝑟 𝑣 𝒓 𝑁 2 𝒓. 𝒗

 Since 𝒓 𝑁 is independent of 𝒗, instead of minimizing the
Euclidean distance, we can maximize the correlation (the inner
products) of the received vector 𝒓 and the codeword 𝒗:

𝒓. 𝒗 𝑟 𝑣

