ELEC 6131 - Error Detecting and Correcting Codes
 Final Exam
 April 28, 2015

1)

a) List all elements of $\operatorname{GF}\left(2^{3}\right)$ generated by $p(x)=x^{3}+x+1(1$ Mark).
b) Find the generating polynomial of $(7,5)$ RS code over $\operatorname{GF}\left(2^{3}\right)(3$ Marks).
c) Encode the binary sequence 010101010101010 in systematic form using the above code (3 Marks).
d) Decode 000000000101000000000 (3 Marks)
2) Derive the generating polynomial of double-error correcting primitive BCH code of length 15 (7 Marks). Draw the systematic encoder for this code (2 Marks). What is the rate of the code (1 Mark)?
3) Consider the following convolutional encoder:

a) Draw the trellis diagram for the code (2 Marks).
b) What is the minimum free distance of the code (2 Marks).
c) Encode 1101011 staring from state zero (2 Marks).
d) Using the Viterbi Algorithm decode 0101001010 (4 Marks).

Note: The encoding has started from an unknown state.
4) Let x_{1} and x_{2} be two independent binary random variables and $y=x_{1} \oplus x_{2}$. Let λ_{1} and λ_{2} be the Log-Likelihood Ratio (LLR) of x_{1} and x_{2}, respectively.
a) Find the LLR of y (5 Marks).
b) Find the LLR of y for $\lambda_{1}=3$ and $\lambda_{2}=-1$ (2 Marks). What is the probability that y is equal to zero? (1 Mark)
c) For a given λ_{1}, find λ_{2} such that $P(y=0)=P(y=1)=0.5$ (2 Mark)
5) Consider a code with the parity check matrix:

$$
\mathbf{H}=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

a) Draw the bi-partite (Tanner) graph for this code (2 Marks).
b) Find the rate of the code (3 Marks).
c) Is 010111 a codeword? (1 Mark).
d) Decode e1ee11 where e is an erasure (2 Marks).
e) Find a very SIMPLE encoding rule for this code (2 Marks). (by simple, I mean intuitive).

