ELEC 6131: Error Detecting and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext:

4103. Time and Place: Thursday, 17:45 – 20:15.

Office Hours: Thursday, 15:00 – 17:00

LECTURE 3: More on Galois Fields

- In ordinary algebra, it is very likely that an equation with real coefficients does not have real roots. For example, equation $X^2 + X + 1$ has to have two roots, but neither of them is in \mathbb{R} . The roots of $X^2 + X + 1$ are $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$. That is, they are from the complex field \mathbb{C} .
- ► The same way, a polynomial with coefficients from GF(2), may or may not have roots $\in \{0,1\}$. For example, it is easy to see that $X^4 + X^3 + 1$ over GF(2) is irreducible. So, it does not have roots in GF(2). But it is of degree four, so it has to have four roots. These roots are in $GF(2^4)$. For a small field like $GF(2^4)$ it is easy to try all 16 elements (in fact 14, since we know that 0 and 1 are not answers) to find four that solve the equation.

- Substituting elements of $GF(2^4)$ into the equation $X^4 + X^3 + 1$ we find out that α^7 , α^{11} , α^{13} , and α^{14} are its roots. For example, $(\alpha^7)^4 + (\alpha^7)^3 + 1 = \alpha^{28} + \alpha^{21} + 1 = \alpha^{13} + \alpha^6 + 1 = (1 + \alpha^2 + \alpha^3) + (\alpha^2 + \alpha^3) + 1 = 0$. Similarly, we can check α^{11} , α^{13} , and α^{14} . So,
 - $X^4 + X^3 + 1 = (X + \alpha^7)(X + \alpha^{11})(X + \alpha^{13})(X + \alpha^{14}).$
- ► The following theorem helps us to find other roots of a polynomial after finding one.
- ▶ **Theorem 11:** let $\beta \in GF(2^m)$ be a root of f(X). Then, β^{2^i} , $i \ge 0$ is also a root of f(X).
- **Proof:** we have seen that $[f(X)]^2 = f(X^2)$. So, $[f(\beta)]^2 = f(\beta^2)$. Sine $f(\beta) = 0$, $f(\beta^2) = 0$. Also, $[f(\beta^2)]^2 = f(\beta^2)$. So, $f(\beta^2)^2 = f(\beta^4) = 0$ and so on. Therefore, $f(\beta^2)^i = 0$, $i \ge 0$. These elements β^2 of $GF(2^m)$ are called conjugates of β .
- In the previous example, after finding $\beta = \alpha^7$ as a root of $X^4 + X^3 + 1$, we can see that $\beta^{2^1} = \alpha^{14}$ is a root as well. $\beta^{2^2} = \beta^4 = \alpha^{28} = \alpha^{13}$ is also a root. And also, $\beta^{2^3} = \beta^8 = \alpha^{56} = \alpha^{11}$.

- ▶ **Theorem 12:** the $2^m 1$ non-zero elements of $GF(2^m)$ form all the roots of $X^{2^{m-1}} + 1$.
- ▶ **Proof:** in Theorem 8, we saw that if β is an element of GF(q), then $\beta^{q-1}=1$. So, for $\beta \in GF(2^m)$ we have $\beta^{2^m-1}=1 \Rightarrow \beta^{2^m-1}+1=0$. This means that β is a root of $X^{2^m-1}+1$. Therefor, every non-zero elements of $GF(2^m)$ is a root of $X^{2^m-1}+1$ and since this polynomial has 2^m-1 roots, the 2^m-1 non-zero elements of $GF(2^m)$ form all the roots of $X^{2^m-1}+1$.
- Corollary 12.1: the elements of $GF(2^m)$ form all the roots of $X^{2^m} + X$.
- ▶ **Proof:** this polynomial factors as $X[X^{2^m-1}+1]$. It has a root of <u>zero</u> and all non-zero elements of $GF(2^m)$ as its roots.

- While an element β over $GF(2^m)$ is always a root of $X^{2^m-1}+1$, it may also be a root of a polynomial over GF(2) with degree less than 2^m-1 . Take m=4, i.e., $GF(2^4)$. $X^{2^m-1}+1=X^{15}+1$. We can write $X^{15}+1=(X^4+X^3+1)(X^{11}+X^{10}+X^9+X^8+X^6+X^4+X^3+1)$. We saw that $\beta=\alpha^7$ is a root of X^4+X^3+1 .
- ▶ **Definition:** for any $\beta \in GF(2^m)$ the polynomial $\emptyset(X)$ with lowest degree that has β as its root is called the <u>minimal polynomial</u> of β .
- **Theorem 13:** the minimal polynomial $\emptyset(X)$ of a field element β is irreducible.
- **Proof:** suppose $\emptyset(X)$ is not irreducible and can be written as $\emptyset(X) = \emptyset_1(X)\emptyset_2(X)$. Since $\emptyset(\beta) = \emptyset_1(\beta)\emptyset_2(\beta) = 0$, then either $\emptyset_1(\beta) = 0$ or $\emptyset_2(\beta) = 0$. This contradicts the definition the $\emptyset(X)$ is the smallest degree polynomial with β as a root.

- ▶ **Theorem 14:** If a polynomial f(X) over GF(2) has β as a root, then $\emptyset(X)$ divides f(X).
- ▶ **Proof:** suppose f(X) is not divisible by $\emptyset(X)$. Then, $f(X) = \emptyset(X) \cdot a(X) + r(X)$ with r(X) having degree less than $\emptyset(X)$. But, $f(\beta) = \emptyset(\beta) \cdot a(\beta) + r(\beta)$
- ▶ But $f(\beta) = 0$ and $\emptyset(\beta) = 0 \Rightarrow r(\beta) = 0 \Rightarrow contradiction$.
- Following properties are simple to prove:
- ► Theorem 15: the minimal polynomial $\emptyset(X)$ of $\beta \in GF(2^m)$ divides $X^{2^m} + X$.
- ▶ **Theorem 16:** if f(X) is an irreducible polynomial and $f(\beta) = 0$, then $f(X) = \emptyset(X)$.

- In a previous example, we saw that α^7 , α^{11} , α^{13} , and α^{14} are roots of $f(X) = X^4 + X^3 + 1$. That is,
- $X^4 + X^3 + 1 = (X + \alpha^7)(X + \alpha^{11})(X + \alpha^{13})(X + \alpha^{14}).$
- Note that if we take $\beta=\alpha^7$, we have $\beta^2=\alpha^{14}$, $\beta^4=\alpha^{28}=\alpha^{13}$, $\beta^8=\alpha^{11}$, and $\beta^{16}=\beta=\alpha^7$. That is,
- $X^4 + X^3 + 1 = (X + \beta)(X + \beta^2)(X + \beta^4)(X + \beta^8).$
- ▶ Following theorem relates to this observation.
- ▶ **Theorem 17:** for $\beta \in GF(2^m)$ if e is the smallest number such that $\beta^{2^e} = \beta$, then $f(X) = \prod_{i=0}^{e-1} (X + \beta^{2^i})$ is an irreducible polynomial over GF(2).
- **Proof:** first we show that f(X) is a polynomial over GF(2).

- $[f(X)]^2 = \left[\prod_{i=0}^{e-1} (X + \beta^{2^i}) \right]^2 = \prod_{i=0}^{e-1} (X + \beta^{2^i})^2$
- But $(X + \beta^{2^i})^2 = X^2 + \beta^{2^i}X + \beta^{2^i}X + \beta^{2^{i+1}} = X^2 + (\beta^{2^i} + \beta^{2^i})X + \beta^{2^{i+1}}$ = $X^2 + \beta^{2^{i+1}}$.
- So, $[f(X)]^2 = \prod_{i=0}^{e-1} (X^2 + \beta^{2^{i+1}}) = \prod_{i=1}^e (X^2 + \beta^{2^i}) = \prod_{i=1}^{e-1} (X^2 + \beta^{2^i})(X^2 + \beta^{2^e})$ = $\prod_{i=1}^{e-1} (X^2 + \beta^{2^i})(X^2 + \beta) = \prod_{i=0}^{e-1} (X^2 + \beta^{2^i}) = f(X^2)$
- Let $f(X) = f_0 + f_1 X + \dots + f_e X^e$, then $f(X^2) = f_0 + f_1 X^2 + \dots + f_e X^{2e}$ and $[f(X)]^2 = (f_0 + f_1 X + \dots + f_e X^e)^2 = \sum_{i=0}^e f_i^2 X^{2i} + (1+1) \sum_{i=0}^e \sum_{j=0}^e f_i f_j X^{i+j} = \sum_{i=0}^e f_i^2 X^{2i}$. So, $f(X^2) = [f(X)]^2 \Rightarrow f_i^2 = f_i$ for all i.
- This means that $f_i = 0$ or $f_i = 1$ for all i. Therefore, f(X) is a polynomial over GF(2).
- ▶ The only thing left is to show that f(X) is irreducible.

- We show that if we assume f(X) is not irreducible, we arrive at a contradiction.
- Let f(X) not be irreducible and can be written as f(X) = a(X)b(X). Since $f(\beta) = 0$, either $a(\beta) = 0$ or $b(\beta) = 0$. If $a(\beta) = 0$, then a(X) has β as well as $\beta^2, \dots, \beta^{2^e-1}$ as its roots. So, it has degree e and a(X) = f(X). Similarly, for b(X). Therefore, f(X) must be irreducible.
- **Definition:** $\beta^2, \dots, \beta^{2^{e-1}}$ are called conjugates of β .
- ► Theorem 18: let $\emptyset(X)$ be the minimal polynomial of $\beta \in GF(2^m)$. Let e be the smallest non-negative integer such that $\beta^{2^e} = \beta$. Then, $\emptyset(X) = \prod_{i=0}^{e-1} (X + \beta^{2^i})$.

Example: consider Galois Field $GF(2^4)$ and let $\beta = \alpha^3$. The conjugates of α^3 are $\beta^2 = \alpha^6$, $\beta^{2^2} = \beta^4 = \alpha^{12}$, $\beta^{2^3} = \alpha^{24} = \alpha^9$. So, $\emptyset(X)$ for $\beta = \alpha^3$ is

$$\emptyset(X) = (X + \alpha^3)(X + \alpha^6)(X + \alpha^{12})(X + \alpha^9) = X^4 + X^3 + X^2 + X + 1.$$

Consider $GF(2^4)$ generated by $p(X) = X^4 + X + 1$. Following is a list of minimal polynomials:

Conjugate Roots	$\emptyset(X)$
0	X
1	X + 1
$\alpha, \alpha^2, \alpha^4, \alpha^8$	$X^4 + X + 1$
α^3 , α^6 , α^9 , α^{12}	$X^4 + X^3 + X^2 + X + 1$
α^5, α^{10}	$X^2 + X + 1$
$\alpha^7, \alpha^{11}, \alpha^{13}, \alpha^{14}$	$X^4 + X^3 + 1$

Vector Spaces

- Let V be a set of elements on which an operation called <u>addition (+)</u> is defined. Let F be a field. A <u>multiplication (·)</u> operation between elements of \underline{V} and \underline{F} is defined. The set V is called a <u>vector space</u> over F if the following conditions hold:
 - i) *V* is a commutative group under addition.
 - ii) for any element $a \in F$ and any $\underline{v} \in V$: $a \cdot \underline{v} \in V$.
 - iii) distributive law: $\forall a, b \in F$ and $\forall \underline{u}, \underline{v} \in V$:

$$a \cdot (\underline{u} + \underline{v}) = a \cdot \underline{u} + a \cdot \underline{v}$$
 and $(a + b) \cdot \underline{v} = a \cdot \underline{v} + b \cdot \underline{v}$

iv) associative law:

$$(a \cdot b) \cdot \underline{v} = a \cdot (b \cdot \underline{v})$$

- v) let 1 be the unit element of F. Then, $\forall \underline{v} \in V \Rightarrow 1.\underline{v} = \underline{v}$.
- \triangleright The elements of V are called <u>vectors</u>. The elements of the field F are called <u>scalars</u>.

Properties of Vector Spaces

- ▶ The addition between elements of *V* is called vector addition.
- \triangleright The multiplication between elements of F and V is called <u>scalar multiplication</u>.
- Properties of the vector field:
 - **Property I:** $\forall \underline{v} \in V \Rightarrow \underline{0} \cdot \underline{v} = 0$ where 0 is the zero element of F.
 - **Property II:** $\forall c \in F \Rightarrow c \cdot \underline{0} = \underline{0}$ where $\underline{0}$ is the zero element of V.
 - **Property III:** $\forall c \in F \text{ and } \forall \underline{v} \in V$, we have:

$$(-c) \cdot v = c \cdot (-v) = -(c \cdot v).$$

- ▶ **Definition:** a subset of a vector space *V* say *S* is called a <u>subspace</u> if it is also a vector space.
- ▶ Theorem 22: let $S \subset V$ where V is a vector space over F. Then S is a subspace of V if:
 - i) $\forall \underline{u}, \underline{v} \in S$, $\underline{u} + \underline{v} \in S$.
 - ii) $\forall a \in F \text{ and } \underline{u} \in S \Rightarrow a \cdot \underline{u} \in S$.

Set of Binary *n*-tuples is a Vector Space

Take $\underline{v}=(v_0,v_1,\cdots,v_{n-1})$ where $v_i\in GF(2)$. Define: $\underline{v}+\underline{u}=(v_0+u_0,v_1+u_1,\cdots,v_{n-1}+u_{n-1}),$

where addition is modulo-2.

Also, for $a \in GF(2)$ define:

$$a \cdot \underline{v} = (a \cdot v_0, a \cdot v_1, \cdots, a \cdot v_{n-1}),$$

where multiplication is modulo-2.

▶ Let $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$ be k vectors ∈ V and $a_1, a_2, \dots, a_k \in F$. Then,

$$a_1\underline{v}_1 + a_2\underline{v}_2 + \dots + a_k\underline{v}_k$$

is called a <u>linear combination</u> of $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$. It is clear that sum of two linear combinations of $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$ is a linear combination of $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$. Also, $c \cdot (a_1\underline{v}_1 + a_2\underline{v}_2 + \dots + a_k\underline{v}_k)$ is a linear combination of $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$. So:

▶ Theorem 23: the set of all linear combinations of $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k \in V$ is a <u>subspace</u> of V.

Set of Binary *n*-tuples is a Vector Space

- **Definition:** $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k \in V$ are linearly dependent if there are k scalars $a_1, a_2, \dots, a_k \in F$ such that $a_1\underline{v}_1 + a_2\underline{v}_2 + \dots + a_k\underline{v}_k = \underline{0}$.
- A set of vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k \in V$ are <u>linearly independent</u> if they are not linearly dependent.
- **Consider:**

$$\underline{e}_0 = (1,0,\dots,0)$$
 $\underline{e}_1 = (0,1,\dots,0)$
 \vdots
 $\underline{e}_{n-1} = (0,0,\dots,1)$

by these *n*-tuples $\underline{\text{span}}$ the vector space *V* of all 2^n *n*-tuples.

Set of Binary *n*-tuples is a Vector Space

- ► Each *n*-tuple $(a_0, a_1, \dots, a_{n-1})$ is written as $(a_0, a_1, \dots, a_{n-1}) = a_0 \underline{e}_0 + a_1 \underline{e}_1 + \dots + a_{n-1} \underline{e}_{n-1}$.
- We call $\underline{u} \cdot \underline{v} = u_0 v_0 + u_1 v_1 + \dots + u_{n-1} v_{n-1}$ the inner product of \underline{u} and \underline{v} . If $\underline{u} \cdot \underline{v} = 0$, we say that \underline{u} and \underline{v} are <u>orthogonal</u>.
- Let S be a subspace of V. Let the subset S_d of V be the set of all vectors \underline{u} of S and for any vector $\underline{v} \in S_d$ we have $\underline{u} \cdot \underline{v} = 0$. S_d is called the <u>null space</u> of S.
- **Theorem 24:** let S be a k-dimensional subspace of V_n (set of n-tuples over GF(2)). The dimension of S_d , the null space of S, is n-k.