## ELEC 6131: Error Detecting and Correcting Codes

Instructor:<br>Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103. Time and Place: Thursday, 17:45-20:15.<br>Office Hours: Thursday, 15:00-17:00

## LECTURE 5: Cyclic Codes

## Outline of this lecture

- In this lecture we cover the following:
- Brief discussion of Hamming codes,
- Cyclic Codes.


## Hamming Codes

- Code length: $n=2^{m}-1$
- \# of information bits: $k=2^{m}-1-m$ and \# of parity bits: $n-k=m$

$$
d_{\min }=3 \Rightarrow t=1
$$

- The parity check matrix of this code $H$ contains all $m$-tuples except $00 \cdots 0$ as its columns. They are arranged to look like:

$$
H=\left[I_{m}: Q\right] .
$$

For example, for $m=3$, we have

$$
\text { and } G=\left[Q^{T}: I_{2^{m}}-m-1\right]
$$

$$
H=\underbrace{\left[\begin{array}{lll:llll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]}_{I_{3}} .
$$

## Hamming Codes

- Since $H$ consists all the $m$-tuples as its columns, adding any two columns, we get another column, i.e.,

$$
\underline{h}_{i}+\underline{h}_{j}+\underline{h}_{k}=0 .
$$

- So, the minimum distance of the code is not greater than 3 . Also, since we do not have any two columns that add up to $\underline{0}$, the minimum distance of the code is not less than 3. Therefore, $d_{\text {min }}=3$.
- Hamming codes are perfect codes: if we form standard array, it will contain $2^{n}=2^{2^{m}-1}$ elements. Each row has $2^{k}=2^{2^{m}-m-1}$ elements. So, there will be $\frac{2^{2^{m}-1}}{2^{2^{m}-m-1}}=2^{m}$ cosets. Therefore, in addition to $\underline{0}$ we need $2^{m}-1$ coset leaders. If we take all single error patterns, we have exactly what we need. So, a Hamming code only corrects error patterns with one erroneous bit and corrects all of these. So, Hamming codes are perfect codes.
- The only other binary perfect code is $(23,12)$ Golay code.


## Hamming Codes

- Weight distribution: let $A_{i}$ be the number of codewords of weight $i$. Then, $A(z)=A_{n} z^{n}+A_{n-1} z^{n-1}+\cdots+A_{1} z+A_{0}$ can be formed. It is called weight enumerator. For a Hamming code:

$$
A(z)=\frac{1}{n+1}\left[(1+z)^{n}+n(1-z)\left(1-z^{2}\right)^{\frac{n-1}{2}}\right] .
$$

- Example: Consider $m=3$.

$$
\begin{aligned}
& n=2^{m}-1=2^{3}-1=7 \Rightarrow(7,4) \text { code } \\
& \begin{aligned}
A(z) & =\frac{1}{8}\left[(1+z)^{7}+7(1-z)\left(1-z^{2}\right)^{3}\right] \\
& =1+7 z^{3}+7 z^{4}+z^{7} .
\end{aligned}
\end{aligned}
$$

## Cyclic Codes

- Definition: a linear block code is cyclic if a cyclic shift of any codeword is another codeword.

The $i$ th shift of $\underline{v}=\left(v_{0}, v_{1}, \cdots, v_{n-1}\right)$ is:

$$
\underline{v}^{(i)}=\left(v_{n-i}, v_{n-i+1}, \cdots, v_{n-1}, v_{0}, v_{1}, \cdots, v_{n-i-1}\right) .
$$

- For example, $\underline{v}^{(1)}=\left(v_{n-1}, v_{0}, v_{1}, \cdots, v_{n-2}\right)$ and $\underline{v}^{(2)}=\left(v_{n-2}, v_{n-1}, v_{0}, v_{1}, \cdots, v_{n-3}\right)$.
- Example: $(7,4)$ Hamming Code (see next slide).


## Cyclic Codes

$\mathrm{A}(7,4)$ cyclic code generated by $\mathbf{g}(X)=1+X+X^{3}$.

| Messages | Code vectors | Code polynomials |
| :---: | :---: | :--- |
| $(0000)$ | 0000000 | $0=0 \cdot \mathbf{g}(X)$ |
| $(1000)$ | 1101000 | $1+X+X^{3}=1 \cdot \mathbf{g}(X)$ |
| $(0100)$ | 0110100 | $X+X^{2}+X^{4}=X \cdot \mathbf{g}(X)$ |
| $(1100)$ | 1011100 | $1+X^{2}+X^{3}+X^{4}=(1+X) \cdot \mathbf{g}(X)$ |
| $(0010)$ | 0011010 | $X^{2}+X^{3}+X^{5}=X^{2} \cdot \mathbf{g}(X)$ |
| $(1010)$ | 1110010 | $1+X+X^{2}+X^{5}=\left(1+X^{2}\right) \cdot \mathbf{g}(X)$ |
| $(0110)$ | 0101110 | $X+X^{3}+X^{4}+X^{5}=\left(X+X^{2}\right) \cdot \mathbf{g}(X)$ |
| $(1110)$ | 1000110 | $1+X^{4}+X^{5}=\left(1+X+X^{2}\right) \cdot \mathbf{g}(X)$ |
| $(0001)$ | 0001101 | $X^{3}+X^{4}+X^{6}=X^{3} \cdot \mathbf{g}(X)$ |
| $(1001)$ | 1100101 | $1+X+X^{4}+X^{6}=\left(1+X^{3}\right) \cdot \mathbf{g}(X)$ |
| $(0101)$ | 0111001 | $X+X^{2}+X^{3}+X^{6}=\left(X+X^{3}\right) \cdot \mathbf{g}(X)$ |
| $(1101)$ | 1010001 | $1+X^{2}+X^{6}=\left(1+X+X^{3}\right) \cdot \mathbf{g}(X)$ |
| $(0011)$ | 0010111 | $X^{2}+X^{4}+X^{5}+X^{6}=\left(X^{2}+X^{3}\right) \cdot \mathbf{g}(X)$ |
| $(1011)$ | 1111111 | $1+X+X^{2}+X^{3}+X^{4}+X^{5}+X^{6}$ |
|  |  | $=\left(1+X^{2}+X^{3}\right) \cdot \mathbf{g}(X)$ |
| $(0111)$ | 0100011 | $X+X^{5}+X^{6}=\left(X+X^{2}+X^{3}\right) \cdot \mathbf{g}(X)$ |
| $(1111)$ | 1001011 | $1+X^{3}+X^{5}+X^{6}$ |
|  |  | $=\left(1+X+X^{2}+X^{3}\right) \cdot \mathbf{g}(X)$ |

## Cyclic Codes

L Let $v(X)=v_{0}+v_{1} X+v_{2} X^{2}+\cdots+v_{n-1} X^{n-1}$ be the polynomial representation of $\underline{v}$.

- Then

$$
v^{(i)}(X)=v_{n-i}+v_{n-i+1} X+\cdots+v_{n-1} X^{i-1}+v_{0} X^{i}+v_{1} X^{i+1}+\cdots+v_{n-i-1} X^{n-1} .
$$

Multiply $X^{i}$ by $v(X)$, i.e., shift $\underline{v} i$ times (linearly, not cyclically) to get:

$$
X^{i} v(X)=v_{0} X^{i}+\bar{v}_{1} X^{i+1}+\cdots+v_{n-i+1} X^{n-1}+\cdots+v_{n-1} X^{n+i-1} .
$$

Add $X^{i} v(X)$ and $v^{(i)}(X):$

$$
X^{i} v(X)+v^{(i)}(X)
$$

$$
=v_{n-i}+v_{n-i+1} X+\cdots+v_{n-1} X^{i-1}+v_{n-i} X^{n}+v_{n-i+1} X^{n+1}+\cdots+v_{n-1} X^{n+i-1}
$$

or:

$$
X^{i} v(X)+v^{(i)}(X)=\left[v_{n-i}+v_{n-i+1} X+\cdots+v_{n-1} X^{i-1}\right]\left(X^{n}+1\right) .
$$

So:

$$
X^{i} v(X)=q(X)\left[X^{n}+1\right]+v^{(i)}(X)
$$

That is, the $i$ th cyclic shift of $v(X)$ is generated by dividing $X^{i} v(X)$ by $X^{n}+1$.

## Cyclic Codes

- Theorem 1: the non-zero code polynomial with minimum degree in a cyclic code $C$ is unique.
Proof: let $g(X)=g_{0}+g_{1} X+\cdots+g_{r-1} X^{r-1}+X^{r}$ be the minimal degree code polynomial of $C$. Suppose there is another $g^{\prime}(X)=g_{0}^{\prime}+g_{1}^{\prime} X+\cdots+g_{r-1}^{\prime} X^{r-1}+X^{r}$. Then, $g(X)+g^{\prime}(X)$ is another codeword in $C$ with degree less than $r . \Rightarrow$ contradiction.
- Theorem 2: let $g(X)=g_{0}+g_{1} X+\cdots+g_{r-1} X^{r-1}+X^{r}$ be the minimum degree polynomial of a cyclic code $C$. Then, $g_{0} \neq 0$.
Proof: if $g_{0}=0$ then shifting $g(X)$ once to the left (or $n-1$ times to right) results in $g_{1}+$ $g_{2} X+\cdots+g_{r-1} X^{r-2}+X^{r-1}$ which has a degree $<r \Rightarrow$ contradiction. So, $g(X)=1+$ $g_{1} X+\cdots+g_{r-1} X^{r-1}+X^{r}$.
- Let $g(X)$ be the polynomial of minimum degree of a code $C$. Take $g(X), X g(X), X^{2} g(X), \cdots, X^{n-r-1} g(X)$. These are shifts of $g(X)$ by $0,1, \cdots, n-r-1$. So, they are codewords. Any linear combination of them is also a codeword. Therefore,

$$
\begin{aligned}
v(X)= & u_{0} g(X)+u_{1} X g(X)+\cdots+u_{n-r-1} X^{n-r-1} g(X) \\
& =\left[u_{0}+u_{1} X+\cdots+u_{n-r-1} X^{n-r-1}\right] g(X)
\end{aligned}
$$

is also a codeword.

## Cyclic Codes

- Theorem 3: let $g(X)=1+g_{1} X+\cdots+g_{r-1} X^{r-1}+X^{r}$ be the non-zero code polynomial of minimum degree of an $(n, k)$ cyclic code $C$. A binary polynomial of degree $n-1$ or less is a code polynomial if and only if it is a multiple of $g(X)$.
Proof: let $v(X)$ be a polynomial of degree $n-1$ or less such that:

$$
v(X)=\left(a_{0}+a_{1} X+\cdots+a_{n-r-1} X^{n-r-1}\right) g(X)
$$

Then,

$$
v(X)=a_{0} g(X)+a_{1} X g(X)+\cdots+a_{n-r-1} X^{n-r-1} g(X)
$$

Since $g(X), X g(X), \cdots$ are each codeword of $C$ so is their sum $v(X)$.
Now assume $v(X)$ be a code polynomial in $C$. Then write:

$$
v(X)=a(X) g(X)+b(X)
$$

i.e., divide $v(X)$ by $g(X)$ and get remainder $b(X)$ and quotient $a(X)$.

$$
b(X)=v(X)+a(X) g(X)
$$

$v(X)$ is a codeword and so is $a(X) g(X)$. Therefore, $b(X)$ is also a codeword. But degree of $b(X)$ is less than $r \Rightarrow$ contradiction unless if $b(X)=0$.
$\Rightarrow$ The number of polynomials of degree $n-1$ or less that are multiple of $g(X)$ is $2^{n-r}$. Due to 1 -to- 1 correspondence between these polynomials and the codewords (Theorem 3), we have $2^{n-r}=2^{k} \Rightarrow r=n-k$.

## Cyclic Codes

- Theorem 4: in an ( $n, k$ ) cyclic code, there is one and only one code polynomial of degree $n-k$,

$$
g(X)=1+g_{1} X+g_{2} X^{2}+\cdots+g_{n-k-1} X^{n-k-1}+X^{n-k}
$$

- Every code polynomial is a multiple of $g(X)$. Every binary polynomial of degree $n-1$ or less that is a multiple of $g(X)$ is a code polynomial. So,

$$
v(X)=u(X) g(X)
$$

is a code polynomial, however, not in a systematic form.

- To make a cyclic code systematic, multiply the information polynomial $u(X)$ by $X^{n-k}$. This means placing the $k$ information bits at the head of the shift register (in $k$ rightmost Flip-Flops). Then,

$$
u(X)=u_{0}+u_{1} X+\cdots+u_{k-1} X^{k-1}
$$

will result in:

$$
X^{n-k} u(X)=u_{0} X^{n-k}+u_{1} X^{n-k+1}+\cdots+u_{k-1} X^{n-1}
$$

## Cyclic Codes

- Now divide $X^{n-k} u(X)$ by $g(X)$ to get:

$$
X^{n-k} u(X)=a(X) g(X)+b(X)
$$

where $b(X)$ is a polynomial of degree $n-k-1$ or less:

$$
\begin{gathered}
b(X)=b_{0}+b_{1} X+\cdots+b_{n-k-1} X^{n-k-1} \\
b(X)+X^{n-k} u(X)=a(X) g(X) .
\end{gathered}
$$

This means that $b(X)+X^{n-k} u(X)$ is the representation of a codeword in systematic form, i.e.,

$$
\begin{aligned}
b(X)+X^{n-k} u(X) & =b_{0}+b_{1} X+\cdots+b_{n-k-1} X^{n-k-1} \\
& +u_{0} X^{n-k}+u_{1} X^{n-k+1}+\cdots+u_{k-1} X^{n-1}
\end{aligned}
$$

that represents

$$
\underline{v}=\left(b_{0}, b_{1}, \cdots, b_{n-k-1}, u_{0}, u_{1}, \cdots, u_{k-1}\right)
$$

## Cyclic Codes

- Example: consider the $(7,4)$ cyclic code generated by $g(X)=1+X+X^{3}$. Let $u(X)=1+X^{3}$.

Then,

1. $X^{3} u(X)=X^{3}+X^{6}$
2. Divide by $g(X)=1+X+X^{3}$

$$
\frac{x^{3}+x}{x^{3}+x+1 \sqrt{x^{6}+x^{3}}} \begin{aligned}
& \frac{x^{6}+x^{4}+x^{3}}{x^{4}} \\
& \frac{x^{4}+x^{2}+x}{x^{2}+x}<b(x)
\end{aligned}
$$

3. $v(X)=b(X)+X^{3} u(X)=$
$X+X^{2}+X^{3}+X^{6}$
or $\underline{v}=(0,1,1,1,0,0,1)$

A $(7,4)$ cyclic code in systematic form generated by $g(X)=$

| $1+X+X^{3}$ |  |  |
| :--- | :--- | :--- |
| Message | Codeword |  |
| $(0000)$ | $(0000000)$ | $0=0 \cdot \mathbf{g}(X)$ |
| $(1000)$ | $(1101000)$ | $1+X+X^{3}=\mathbf{g}(X)$ |
| $(0100)$ | $(0110100)$ | $X+X^{2}+X^{4}=X \mathbf{g}(X)$ |
| $(1100)$ | $(1011100)$ | $1+X^{2}+X^{3}+X^{4}=(1+X) \mathbf{g}(X)$ |
| $(0010)$ | $(1110010)$ | $1+X+X^{2}+X^{5}=\left(1+X^{2}\right) \mathbf{g}(X)$ |
| $(1010)$ | $(0011010)$ | $X^{2}+X^{3}+X^{5}=X^{2} \mathbf{g}(X)$ |
| $(0110)$ | $(1000110)$ | $1+X^{4}+X^{5}=\left(1+X+X^{2}\right) \mathbf{g}(X)$ |
| $(1110)$ | $(0101110)$ | $X+X^{3}+X^{4}+X^{5}=\left(X+X^{2}\right) \mathbf{g}(X)$ |
| $(0001)$ | $(1010001)$ | $1+X^{2}+X^{6}=\left(1+X+X^{3}\right) \mathbf{g}(X)$ |
| $(1001)$ | $(0111001)$ | $X+X^{2}+X^{3}+X^{6}=\left(X+X^{3}\right) \mathbf{g}(X)$ |
| $(0101)$ | $(1100101)$ | $1+X+X^{4}+X^{6}=\left(1+X^{3}\right) \mathbf{g}(X)$ |
| $(1101)$ | $(0001101)$ | $X^{3}+X^{4}+X^{6}=X^{3} \mathbf{g}(X)$ |
| $(0011)$ | $(0100011)$ | $X+X^{5}+X^{6}=\left(X+X^{2}+X^{3}\right) \mathbf{g}(X)$ |
| $(1011)$ | $(1001011)$ | $1+X^{3}+X^{5}+X^{6}=\left(1+X+X^{2}+X^{3}\right) \mathbf{g}(X)$ |
| $(0111)$ | $(0010111)$ | $X^{2}+X^{4}+X^{5}+X^{6}=\left(X^{2}+X^{3}\right) \mathbf{g}(X)$ |
| $(1111)$ | $(11111)$ | $1+X+X^{2}+X^{3}+X^{4}+X^{5}+X^{2}$ |

## Cyclic Codes

- Theorem 5: the generator polynomial of an $(n, k)$ code is a factor of $X^{n}+1$.

Proof: divide $X^{k} g(X)$ by $X^{n}+1$.

$$
X^{k} g(X)=\left(X^{n}+1\right)+g^{(k)}(X) \text { or } X^{n}+1=X^{k} g(X)+g^{(k)}(X)
$$

$g^{(k)}(X)$ is a code polynomial. So, $g^{(k)}(X)=a(X) b(X)$ for some $a(X)$. So,

$$
X^{n}+1=\left[X^{k}+a(X)\right] g(X) . \quad Q E D
$$

- Theorem 6: if $g(X)$ is a polynomial of degree $n-k$ and is a factor of $X^{n}+1$. Then $g(X)$ generates an $(n, k)$ cyclic code.
Proof: let $g(X), X g(X), \cdots, X^{k-1} g(X)$. They are all polynomials of degree $n-1$ or less. A linear combination of them:

$$
\begin{aligned}
v(X)= & u_{0} g(X)+u_{1} X g(X)+\cdots+u_{k-1} X^{k-1} g(X) \\
& =\left[u_{0}+u_{1} X+\cdots+u_{k-1} X^{k-1}\right] g(X)
\end{aligned}
$$

is a code polynomial since $u_{i} \in\{0,1\}$. Then $v(X)$ will have $2^{k}$ possibilities. These $2^{k}$ polynomials form the $2^{k}$ codewords of the $(n, k)$ code.

## Cyclic Codes

## Generator polynomial of a cyclic code:

$$
\mathbf{G}=\left[\begin{array}{ccccccccccccccc}
g_{0} & g_{1} & g_{2} & . & . & . & . & . & g_{n-k} & 0 & 0 & 0 & \cdot & . & 0 \\
0 & g_{0} & g_{1} & g_{2} & . & . & . & . & . & g_{n-k} & 0 & 0 & \cdot & . & 0 \\
0 & 0 & g_{0} & g_{1} & g_{2} & \cdot & . & . & . & . & g_{n-k} & 0 & \cdot & \cdot & 0 \\
. & & & & & & & & & & & \cdot & & \cdot \\
. & & & & & & & & & & & & & & \cdot \\
0 & 0 & . & . & . & 0 & g_{0} & g_{1} & g_{2} & . & . & . & . & \cdot \\
0 & 0 & \cdot & \cdot & g_{n-k}
\end{array}\right]
$$

For example, for $(7,4)$ code with $g(X)=1+X+X^{3}, g_{0}=g_{1}=g_{3}=1$ and $g_{i}=0$ otherwise.

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

## Cyclic Codes

- This is not always in systematic form. We can make it into systematic form by row and column operations. For example, for the $(7,4)$ code:

$$
G^{\prime}=\left[\begin{array}{c}
\underline{g}_{0} \\
\underline{g}_{1} \\
\underline{g}_{0}+\underline{g}_{2} \\
\underline{g}_{0}+\underline{g}_{1}+\underline{g}_{3}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Parity check matrix of cyclic codes:

We saw that $g(X)$ divides $X^{n}+1$. Write

$$
X^{n}+1=g(X) h(X)
$$

where $h(X)$ is a polynomial of degree $k$

$$
h(X)=h_{0}+h_{1} X+\cdots+h_{k} X^{k}
$$

## Cyclic Codes

Consider a code polynomial $v(X)$

$$
\begin{aligned}
v(X) h(X) & =u(X) g(X) h(X) \\
& =u(X)\left(X^{n}+1\right) \\
& =u(X) X^{n}+u(X) .
\end{aligned}
$$

- Since $u(X)$ has degree less than or equal $k-1, u(X) X^{n}+u(X)$ does not have $X^{k}, X^{k+1}, \cdots, X^{n-1}$. That is coefficients of these powers of $X$ are zero. So, we get $n-k$ equalities:

$$
\sum_{i=0}^{k} h_{i} v_{n-i-j}=0 \text { for } 1 \leq j \leq n-k
$$

- and we have $H$ as:

$$
\mathbf{H}=\left[\begin{array}{ccccccccccccccc}
h_{k} & h_{k-1} & h_{k-2} & . & . & . & . & . & h_{0} & 0 & . & . & . & 0 \\
0 & h_{k} & h_{k-1} & h_{k-2} & \cdot & . & . & . & . & h_{0} & 0 & . & . & 0 \\
0 & 0 & h_{k} & h_{k-1} & h_{k-2} & \cdot & . & . & . & \cdot & h_{0} & \cdot & \cdot & 0 \\
\vdots & & & & & & & & & & & & \\
0 & 0 & . & . & . & 0 & h_{k} & h_{k-1} & h_{k-2} & . & . & . & \cdot & h_{0}
\end{array}\right]
$$

## Cyclic Codes

- Theorem 7: let $g(X)$ be the generator polynomial of the $(n, k)$ cyclic code $C$.

The dual code of $C$ is generated by $X^{k} h\left(X^{-1}\right)$ where $h(X)=\frac{X^{n}+1}{g(X)}$.

- Example: consider $(7,4)$ code $C$ with $g(X)=1+X+X^{3}$. The generator polynomial of $C^{d}$ is $X^{4} h\left(X^{-1}\right)$ where,

$$
h(X)=\frac{X^{7}+1}{1+X+X^{3}}=1+X+X^{2}+X^{4} .
$$

That is, the generator of $C^{d}$ is:

$$
\begin{aligned}
X^{4} h\left(X^{-1}\right) & =X^{4}\left(1+X^{-1}+X^{-2}+X^{-4}\right) \\
= & 1+X^{2}+X^{3}+X^{4}
\end{aligned}
$$

- So, $C^{d}$ is a $(7,3)$ code with $d_{\text {min }}=4$. Therefore, it can correct any single error and detect any combination of double errors.


## Encoding of Cyclic Codes

- We saw that if we multiply the information polynomial by $X^{n-k}$ and divide by $g(X)$, we get:

$$
X^{n-1} u(X)=a(X) g(X)+b(X)
$$

and

$$
a(X) g(X)=b(X)+X^{n-1} u(X)
$$

is a codeword in systematic form. The following circuit encodes $u(X)$ based on the above discussion.


Encoding circuit for an ( $n, k$ ) cyclic code with generator polynomial Encoding circuit for an $(n, k)$ cyclic
$g(X)=1+g_{1} X^{2}+\cdots+g_{n-k-1} X^{n-k-1}+X^{n-k}$.

## Encoding of Cyclic Codes

- The coding procedure is as follows:

1) Close the gate and enter information bits in and also send them over channel. This does multiplication by $X^{n-k}$ as well as parity bit generation.
2) Open the gate (break the feedback).
3) Output the $n-k$ parity bits.

Example: $(7,4)$ code with $g(X)=1+X+X^{3}$.


Encoder for the $(7,4)$ cyclic code generated by $g(X)=1+X+X^{3}$.

## Syndrome

- Assume $r(X)=r_{0}+r_{1} X+r_{2} X^{2}+\cdots+r_{n-1} X^{n-1}$ is the polynomial representing the received bits. Divide $r(X)$ by $g(X)$ to get:

$$
r(X)=a(X) g(X)+s(X)
$$

$\checkmark s(X)$ is a polynomial of degree $n-k-1$ or less. The $n-k$ coefficients of $s(X)$ are the syndromes.

- Theorem 8: let $s(X)$ be the syndrome of $r(X)=r_{0}+r_{1} X+\cdots+r_{n-1} X^{n-1}$. Then, $s^{(i)}(X)$ resulting from dividing $X^{i} s(X)$ by $g(X)$ is the syndrome of $r^{(i)}(X)$.


An ( $n-k$ )-stage syndrome circuit with input from the left end.

## Syndrome

- Example of $(7,4)$ code:


FIGURE 5.6: Syndrome circuit for the $(7,4)$ cyclic code generated by $\mathbf{g}(X)=1+$ $X+X^{3}$.

TABLE 5.3: Contents of the syndrome register shown in Figure 5.6 with $\mathbf{r}=$ (0010110) as input.

| Shift | Input | Register contents |
| :--- | :---: | :--- |
|  |  | 000 (initial state) |
| 1 | 0 | 000 |
| 2 | 1 | 100 |
| 3 | 1 | 110 |
| 4 | 0 | 011 |
| 5 | 1 | 011 |
| 6 | 0 | 111 |
| 7 | 0 | 101 (syndrome s) |
| 8 | - | 100 (syndrome s ${ }^{(1)}$ ) |
| 9 | - | 010 (syndrome s ${ }^{(2)}$ ) |

## Decoding of Cyclic Codes



General cyclic code decoder with received polynomial $\mathbf{r}(X)$ shifted into the syndrome register from the left end.

## Decoding of Cyclic Codes

- Example: $(7,4)$ Hamming Code:

Error patterns and their syndromes with the received polynomial $\mathbf{r}(X)$ shifted into the syndrome register from the left end.

| Error pattern <br> $\mathbf{e}(\boldsymbol{X})$ | Syndrome <br> $\mathbf{s}(\boldsymbol{X})$ | Syndrome vector <br> $\left(s_{0}, s_{1}, s_{\mathbf{2}}\right)$ |
| :--- | :--- | :---: |
| $\mathbf{e}_{6}(X)=X^{6}$ | $\mathbf{s}(X)=1+X^{2}$ | $(101)$ |
| $\mathbf{e}_{5}(X)=X^{5}$ | $\mathbf{s}(X)=1+X+X^{2}$ | $(111)$ |
| $\mathbf{e}_{4}(X)=X^{4}$ | $\mathbf{s}(X)=X+X^{2}$ | $(011)$ |
| $\mathbf{e}_{3}(X)=X^{3}$ | $\mathbf{s}(X)=1+X$ | $(110)$ |
| $\mathbf{e}_{2}(X)=X^{2}$ | $\mathbf{s}(X)=X^{2}$ | $(001)$ |
| $\mathbf{e}_{1}(X)=X^{1}$ | $\mathbf{s}(X)=X$ | $(010)$ |
| $\mathbf{e}_{0}(X)=X^{0}$ | $\mathbf{s}(X)=1$ | $(100)$ |

## Decoding of Cyclic Codes

- Example: $(7,4)$ Hamming Code:


Decoding circuit for the $(7,4)$ cyclic code generated by $g(X)=1+X+X^{3}$.

## Decoding of Cyclic Codes

- General Cyclic Code Decoder:


General cyclic code decoder with received polynomial $\mathbf{r}(X)$ shifted into the syndrome register from the right end.

## Decoding of Cyclic Codes

- Syndrome decoding of $(7,4)$ code using syndrome decoder fed from right:

Error patterns and their syndromes with the received polynomial $r(X)$ shifted into the syndrome register from the right end.

| Error pattern <br> $\mathbf{e}(\boldsymbol{X})$ | Syndrome <br> $(\mathbf{s})$ <br> $\mathbf{s})$ | Syndrome vector <br> $\left(s_{0}, s_{1}, s_{2}\right)$ |
| :--- | :--- | :---: |
| $\mathbf{e}(X)=X^{6}$ | $\mathbf{s}^{(3)}(X)=X^{2}$ | $(001)$ |
| $\mathbf{e}(X)=X^{5}$ | $\mathbf{s}^{(3)}(X)=X$ | $(010)$ |
| $\mathbf{e}(X)=X^{4}$ | $\mathbf{s}^{(3)}(X)=1$ | $(100)$ |
| $\mathbf{e}(X)=X^{3}$ | $\mathbf{s}^{(3)}(X)=1+X^{2}$ | $(101)$ |
| $\mathbf{e}(X)=X^{2}$ | $\mathbf{s}^{(3)}(X)=1+X+X^{2}$ | $(111)$ |
| $\mathbf{e}(X)=X$ | $\mathbf{s}^{(3)}(X)=X+X^{2}$ | $(011)$ |
| $\mathbf{e}(X)=X^{0}$ | $\mathbf{s}^{(3)}(X)=1+X$ | $(110)$ |

## Decoding of Cyclic Codes

- Syndrome decoding of $(7,4)$ code using syndrome decoder fed from right:


[^0]
## Cyclic Hamming Codes

- A Hamming code of length $n=2^{m}-1$ with $m \geq 3$ is generated by a primitive polynomial of degree $m$. let's see how we can put the Hamming code we discussed earlier in cyclic form:

Divide $X^{m+i}$ by $p(X)$ to get $X^{m+i}=a_{i}(X) p(X)+b_{i}(X)$.
Since $p(X)$ is primitive, $X$ is not a factor of $p(X)$ so $p(X)$ does not divide $X^{m+i} \Rightarrow b_{i}(X) \neq 0$.

- $b_{i}(X)$ has at least two terms. If it had one term:

$$
\begin{gathered}
X^{m+i}=a_{i}(X) p(X)+X^{j} \\
\Rightarrow X^{j}\left(X^{m+i-j}+1\right)=a_{i}(X) p(X)
\end{gathered}
$$

$\Rightarrow p(X)$ divides $X^{m+i-j}+1$ but $m+i-j<2^{m}-1$

$$
\Rightarrow \text { contradiction. }
$$

- If $i \neq j$, then $b_{i}(X) \neq b_{j}(X)$. Let

$$
\begin{aligned}
X^{m+i} & =b_{i}(X)+a_{i}(X) p(X) \\
X^{m+j} & =b_{j}(X)+a_{j}(X) p(X) .
\end{aligned}
$$

## Cyclic Hamming Codes

- If $b_{i}(X)=b_{j}(X)$, then

$$
X^{m+i}\left(X^{j-i}+1\right)=\left[a_{i}(X)+a_{j}(X)\right] p(X)
$$

i.e., $p(X)$ divides $X^{j-i}+1 \Rightarrow$ contradiction.

- Let $H=\left[I_{m}: Q\right]$ be the parity check matrix of this code. $I_{m}$ is an $m \times m$ identity matrix with $Q$ an $m \times\left(2^{m}-m-1\right)$ matrix with $\underline{b}_{i}=$ $\left(b_{i 0}, b_{i 1}, \cdots, b_{i, m-1}\right)$ as its columns. Since no two columns of $Q$ are the same and each has at least two 1 's, then $H$ is indeed a parity-check matrix of a Hamming code.


## Syndrome Decoding of Hamming Codes

- Assume that error is in location with highest order, i.e.,

$$
e(X)=X^{2^{m}-2}
$$

- Then, feeding $r(X)$ from right to syndrome calculator is equivalent to dividing $X^{m} \cdot X^{2^{m}-2}$ by the generator polynomial $p(X)$. Since $p(X)$ divides $X^{2^{m}-1}+1$ then

$$
s(X)=X^{m-1} \text { or } \underline{s}=(0,0, \cdots, 0,1)
$$



Decoder for a cyclic Hamming code.


[^0]:    $1+X+X^{3}$. Decoding circuit for the $(7,4)$ cyclic code generated by $\mathbf{g}(X)=$

