ELEC 6131: Error Detecting and Correcting Codes

Instructor:

Dr. M. R. Soleymani, Office: EV-5.125, Telephone: 848-2424 ext: 4103. Time and Place: Thursday, 17:45 – 20:15. Office Hours: Thursday, 16:00 – 17:00

LECTURE 6: BCH Codes

BCH Codes

Block Length $n=2^{m}-1$ for some $m\geq 3$

Number of Parity-check bits $n - k \le mt$

Minimum Distance $d_{\min} \ge 2t+1$

- ▶ The generator polynomial is defined in terms of its roots over GF (2^m).
- For a t-error correcting BCH Code, g(x) is the lowest-degree polynomial with roots α , α^2 ..., α^{2t} .
- Let $\varphi_i(x)$ be the minimal polynomial of α^i for i = 1, 2, ..., 2t. Then: $g(x) = LCM\{\varphi_1(x), \varphi_2(x), ..., \varphi_{2t}(x)\}$

Where LCM stands for least Common Multiple.

BCH Codes

If *i* is even then we can write $i = i' \cdot 2^l$,

Where i' is odd and $l \ge 1$. Then:

 $\alpha^i = (\alpha^{i'})^{2l}$

So α^i and $\alpha^{i'}$ are conjugate of each other and have the same minimal polynomial and:

$$g(x) = LCM\{\varphi_1(x), \varphi_3(x), \dots, \varphi_{2t-1}(x)\}$$

Since the degree of each of $\Phi_i(x)$, i = 1,3,... is less than or equal to m, the degree of g(x) is less than or equal to mt So,

$$n-k \leq mt$$

as the degree of g(x) is n - k.

- Table 6.1 lists BCH Codes for lengths $2^m 1$, m = 3, ... 10 that is length 7 to 1023.
- Refer to Appendix C for the list of <u>BCH Codes</u> and their generating polynomial.
- These are <u>narrow sense</u> or primitive BCH Codes. In general, α does not need to be primitive and roots can be non-Consecutive.

BCH Codes

TABLE 6.1: BCH codes generated by primitive elements of order less than 2¹⁰.

t	k	n	1	k	n	2	k	n
29	71	255	13	50	127	1	4	7
30	63		14	43		1	11	15
31	55		14	36		2	7	
42	47		21	29		3	5	
43	45		23	22		1	26	31
45	37		27	15		2	21	
47	29		31	8		3	16	
55	21		1	247	255	5	11	
59	13		2	239		7	6	
63	9		3	231		1	57	63
1	502	511	4	223	1991	2	51	
2	493	1180	5	215		3	45	
3	484		6	207		4	39	
4	475		7	199	1100	5	36	
5	466		8	191	and the	6	30	
6	457		9	187	-	7	24	

			ABLE 6			a.)									
л	k			k	•		k	-							
	18	10		179	10		448	7							
	16	11		171	11		439	8							
	10	13		163	12		430	9							
	7	15		155	13		421	10			Τ/	NBLE	6.1: (continu	ued)
127	120	1		147	14		412	11			-	1			
	113	2		139	18		403	12	11	k	6	11	k	1	
	106	3		131	19		394	13		_					
	99	4		123	21		385	14		728	30		433	74	
	92	5		115	22		376	15		718	31	1.1	423	75	1
	85	6		107	23		367	16							
	78	7		99	24		358	18		708	34		413	77	1.1
	71	9		91	25		349	19		698	35		403	78	10.0
	64	10		87	26		340	20		688	36	*****	393	79	14.0
	57	11		79	27		331	21							
511	322	22	511	166	47	511	10	121		678	37		383	82	
	313	23		157	51	1023	1013	1		668	38	1.1	378	83	1.1.1
	304	25		148	53		1003	2		658	39		368	85	10.00
	295	26		139	54		993	3							1.1
	286	27		130	55		983	4		648	41		358	86	
	277	28		121	58		973	5		638	42	11.	348	87	1.1
	268	29		112	59		963	6		628	43	-	338	89	1.00
	259	30		103	61		953	7		618					
	250	31		94	62		943	8			44		328	90	
	241	36		85	63		933	9		608	45	10.10	318	91	1000
	238	37		76	85		923	10		598	46		308	93	
	229	-38		67	87		913	11		588	47		298		
	220	39		58	91		903	12						94	1
	211	41		49,	93		893	13		578	49		288	95	
	202	42		40	95		883	14		573	50		278	102	
	193	43		31	109		873	15		563	51			1.44	192
	184	45		28	111		863	16		303	31				
	175	46		19	119		858	17							
1023	848	18	1023	553	52	1023	268	103							
	838	19		543	-53		258	106							
	828	20		533	54		249	107							
	818	21		523	55		238	109					/		
	808	22		513	57		228	110							
	798	23		503	58		218	111				/			
	788	24		493	59		208	115			/	/			
	-778	25		483	60		203	117							
	768	26		473	61		193	118		/					
	758	27		463	62		183	119		/					
	748	28		453	63		173	122	/						
	738	29		443	73		163	123	/						

k

11 255

Relationship with Hamming Codes

▶ Consider a single error correcting BCH Code of length n=2^m-1. Then:

 $g(x) = \phi_1(x)$

• $\varphi_1(\mathbf{x})$ is polynomial of degree *m*. So,

$$n-k=m \rightarrow k=2^m-1-m$$

So, a Hamming Code is just a single error correcting BCH code.

BCH Codes: Example

Example: Design a triple error correcting BCH Code of length 15.

 $n = 15 = 2^m - 1 \rightarrow m = 4$

So, we need to find primitive element α over $GF(2^4)$ and form: $g(x) = LCM\{\varphi_1(x), \varphi_3(x), \varphi_5(x)\}$

From table 2.9, we have:

$$\phi_1(x) = 1 + x + x^4$$

$$\phi_3(x) = 1 + x + x^2 + x^3 + x^4$$

$$\phi_5(x) = 1 + x + x^2$$

TABLE 2.9: Minim elements in $GF(2^4 + X + 1)$.	al polynomials of the b) generated by $p(X) =$
Conjugate roots	Minimal polynomials
$\begin{array}{c} 0 \\ 1 \\ \alpha, \alpha^{2}, \alpha^{4}, \alpha^{8} \\ \alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12} \\ \alpha^{5}, \alpha^{10} \\ \alpha^{7}, \alpha^{11}, \alpha^{13}, \alpha^{14} \end{array}$	

So,

$$g(x) = (1+x+x^4)(1+x+x^2+x^3+x^4)(1+x+x^2)$$
$$= 1+x+x^2+x^4+x^5+x^8+x^{10}$$

Therefore, $n - k = 10 \rightarrow (15, 5)$ BCH Code with $d_{min} = 7 \rightarrow t=3$.

• See Appendix B for minimal polynomials for m = 2, ..., 10.

BCH Codes Over $GF(2^6)$

- Do this derivation of g(x) for all BCH Codes of length 2⁶-1=63 in order to become familiar with concepts involved.
- First, using the primitive polynomial p(x)= 1+x+x⁶, generate all elements of *GF*(2⁶). They are listed below, but I strongly encourage you to create the table yourself manually (don't use a computer program).

	TA	BLE	6.2:	Galo	xis fie	ld G	F(2 ⁶)	with p(a	x) =	$1 + \alpha$	$+ \alpha^{6} = 0.$
0	0										(000000)
L	1										(100000)
2 3 4			α								(010000)
2					α^2						(001000)
							α^3				(000100)
								α^4			(000010)
										α ⁵	(000001)
	1	+	α							-	(110000)
			α	+	α^2						(011000)
5					α^2 α^2	+	a3				(001100)
•					_		α^3 α^3	$\pm \alpha^4$			
0							u	$- \alpha^4$		5	(000110)
1	1		~					α.	+	α ⁵	(000011)
2	î	Ŧ	α		α^2				+	α ⁵	(110001)
3				+	α^{-}						(101000)
			α		2		α^3				(010100)
4					α^2			$+ \alpha^{4}$			(001010)
5							α^3		+	a ⁵	(000101)
6	1	+	α					$+ \alpha^4$			(110010)
7			α	+	α^2				+	α ⁵	(011001)
в	1	+	α	+	α^2	+	α ³				(111100)
9			α	+	α^2	+	α^3	$+ \alpha^4$			(011110)
0					α^2	+	α^3	$+ \alpha^4$	+	α^{5}	(001111)

BCH Codes Over $GF(2^6)$

a ²¹	1					-		(conti	-			
a ²²	1		- 0		a ²	1	α ³	$+\alpha^4$	+		_	(110111)
a ²³	1			+	- α*		1	$+ \alpha^4$		as		(101011)
a ²⁴	1					+	α ³		+	α5		(100101)
a25	1							$+ \alpha^4$				(100010)
a ²⁶	1	۰.	α		α ²				+	α5		(010001)
a27	- 1	-	α		a ²							(111000)
a ²⁸			α	+	a ²		α3					(011100)
a ²⁹					α*	+	a3	$+ \alpha^4$				(001110)
a ³⁰	1	۰.					α^3	$+ \alpha^4$	+	a ⁵		(000111)
a ³¹	1		α	1.1	2							(110011)
a ³²	1			+	a ²					+	α^5	(101001)
a ³³	- 1					+	α^3					(100100)
a ³⁴			α						α^4			(010010)
a ³⁵					α^2					+	α ⁵	(001001)
a ³⁶	1	+	α			+	α^3					(110100)
a ³⁷			α	+	α ²			+	α^4			(011010)
a38					a ²		α ³			+	a ⁵	(001101)
a ³⁹	1	+	α			+	α^3	+	α^4			(110110)
40			α	+	α^2		1.1	+	α^4	+	α5	(011011)
α ⁴⁰ α ⁴¹	1	+	α	+	α^2	+	a ³			+	a ⁵	(111101)
an	1			+	α^2	+	α^3	+	α^4			(101110)
a42			α			+	α^3	+	α^4	+	a ⁵	(010111)
a43	1	+	α	+	α^2			+	α^4	+	α^5	(111011)
a44	1			+	α^2	+	α^3			+	a ⁵	(101101)
a45	1					+	a ³	+	α^4			(100110)
a46			α					+	α^4	+	as	(010011)
a47	1	+	α	+	α^2					+	α^5	(111001)
a ⁴⁸	1			+	α^2	+	α^3					(101100)
a ⁴⁹			α		100	+	a ³	+	α^4			(010110)
a ⁵⁰					α^2			+	α^4		a ⁵	(001011)
a ⁵¹	1	+	α			+	α^3			+	as	(110101)
a ⁵²	1			+	α^2			+	α^4			(101010)
a ⁵³			α		1	+	α ³			+	α ⁵	(010101)
a ⁵⁴	1	+	α	+	α^2			+	α^4			(111010)
a ⁵⁵			α	+	α^2	+	a ³			+	a ⁵	(011101)
a ⁵⁶	1	+	α	+	α^2	+	α ³	+	α^4			(111110)
a ⁵⁷			α	+	α^2	+	a ³	+	α^4	+	a ⁵	(011111)
a ⁵⁸	1	+	α	+	α^2	+	a3	+	a4	+	as .	(111111)
a ⁵⁹	1			+	a ²	+	a ³	+	α^4		a.5	(101111)
a ⁶⁰	1					+	a ³	+	a4	+	as	(100111)
a ⁶¹	1							+	a4	+	a ⁵	(100011)
a ⁶²	1								-		a ⁵	(100001)

BCH Codes Over $GF(2^6)$

From the above table you can find minimal polynomial for all elements of $GF(2^6)$:

Elements	Minimal polynomials
$\alpha, \alpha^2, \alpha^4, \alpha^{16}, \alpha^{32}$ $\alpha^3, \alpha^6, \alpha^{12}\alpha^{24}, \alpha^{48}\alpha^{33}$ $\alpha^5, \alpha^{10}, \alpha^{20}, \alpha^{40}, \alpha^{17}, \alpha^{40}, \alpha^{17}, \alpha^{41}, \alpha^{28}, \alpha^{56}, \alpha^{49}, \alpha^{49}, \alpha^{49}, \alpha^{49}, \alpha^{41}, \alpha^{22}, \alpha^{44}, \alpha^{25}, \alpha^{50}, \alpha^{11}, \alpha^{22}, \alpha^{44}, \alpha^{25}, \alpha^{51}, \alpha^{51}, \alpha^{51}, \alpha^{52}, \alpha^{51}, \alpha^{52}, \alpha^{51}, \alpha^{52}, \alpha^{54}, \alpha^{45}, \alpha^{59}, \alpha^{55}, $	$ \begin{array}{r} 1 + X + X^{6} \\ 1 + X + X^{2} + X^{4} + X^{6} \\ x^{34} & 1 + X + X^{2} + X^{5} + X^{6} \\ x^{35} & 1 + X^{3} + X^{6} \\ 1 + X^{2} + X^{3} \\ x^{37} & 1 + X^{2} + X^{3} + X^{5} + X^{6} \\ x^{38} & 1 + X + X^{3} + X^{4} + X^{6} \\ x^{43} & 1 + X + X^{2} \\ x^{43} & 1 + X + X^{4} + X^{5} + X^{6} \\ 1 + X + X^{4} + X^{5} + X^{6} \\ 1 + X + X^{3} \end{array} $

TABLE 6.3: Minimal polynomials of the elements in $GF(2^6)$.

Finally for any value of t generate

 $g(x) = LCM\{\varphi_1(x), \varphi_3(x), ..., \varphi_{2t-1}(x)\}$

n	k	1	g(X)
63	57	1	$g_1(X) = 1 + X + X^6$
	51	2	$g_2(X) = (1 + X + X^6)(1 + X + X^2 + X^4 + X^6)$
	45	3	$\mathbf{g}_3(X) = (1 + X + X^2 + X^5 + X^6)\mathbf{g}_2(X)$
	39	4	$g_4(X) = (1 + X^3 + X^6)g_3(X)$
	36	5	$g_5(X) = (1 + X^2 + X^3)g_4(X)$
	30	6	$\mathbf{g}_6(X) = (1 + X^2 + X^3 + X^5 + X^6)\mathbf{g}_5(X)$
	24	7	$g_7(X) = (1 + X + X^3 + X^4 + X^6)g_6(X)$
	18	10	$g_{10}(X) = (1 + X^2 + X^4 + X^5 + X^6)g_7(X)$
	16	11	$g_{11}(X) = (1 + X + X^2)g_{10}(X)$
	10	13	$\mathbf{g}_{13}(X) = (1 + X + X^4 + X^5 + X^6)\mathbf{g}_{11}(X)$
	7	15	$g_{15}(X) = (1 + X + X^3)g_{13}(X)$

Parity Check Matrix of BCH Codes

We know that each code polynomial v(x) is divisible by g(x) and that g(x) is: $g(x) = LCM\{g_1(x), g_2(x), \dots, g_{2t}(x)\}$

So, α , α^2 , α^3 , ..., α^{2t} are the root of v(x), i.e.,

 $V(\alpha^{i}) = v_{0} + v_{1}\alpha^{i} + v_{2}\alpha^{2i} + ... + v_{n-1}\alpha^{(n-1)i} = 0$ for i = 1, 2, ..., 2tIf we form

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & (\alpha^2)^2 & \cdots & (\alpha^2)^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \alpha^{2t} & (\alpha^{2t})^2 & \cdots & (\alpha^{2t})^{n-1} \end{bmatrix}$$

we have

$$\underline{v}.H^T = \underline{0}$$

for any code vector $\underline{v} = (v_0, v_1, \dots, v_{n-1})$

Parity Check Matrix of BCH Codes

Since if α^i is conjugate of α^j then v (α^i)=0 implies v (α^j)=0 and vice versa. So, we can drop even rows and write:

$$H = \begin{bmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \cdots & \alpha^{n-1} \\ 1 & \alpha^{3} & (\alpha^{3})^{2} & (\alpha^{3})^{3} & \cdots & (\alpha^{3})^{n-1} \\ 1 & \alpha^{5} & (\alpha^{5})^{2} & (\alpha^{5})^{3} & \cdots & (\alpha^{5})^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1\alpha^{2t-1} (\alpha^{2t-1})^{2} (\alpha^{2t-1})^{3} \cdots (\alpha^{2t-1})^{n-1} \end{bmatrix}$$

Example: Consider double- error correcting BCH Code of length 15.

 $15=2^4-1 \rightarrow m=4$ and from table 2.9:

$$\phi_1(x) = 1 + x + x^4, \ \phi_3(x) = 1 + x + x^2 + x^3 + x^4$$

So, $g(x) = \varphi_1(x) \varphi_3(x) = 1 + x^4 + x^6 + x^7 + x^8$ and we have $n - k = 8 \rightarrow k = 15 - 8 = 7$

So, this is the BCH Code (15,7) with $d_{min} = 5$, i.e., t=2.

$$H = \begin{bmatrix} 1 \ \alpha \ \alpha^{2} \ \alpha^{3} \ \alpha^{4} \ \alpha^{5} \ \alpha^{6} \ \alpha^{7} \ \alpha^{8} \ \alpha^{9} \ \alpha^{10} \ \alpha^{11} \ \alpha^{12} \ \alpha^{13} \ \alpha^{14} \\ 1 \ \alpha^{3} \ \alpha^{6} \ \alpha^{9} \ \alpha^{12} \ \alpha^{15} \ \alpha^{18} \ \alpha^{21} \ \alpha^{24} \ \alpha^{27} \ \alpha^{30} \ \alpha^{33} \ \alpha^{36} \ \alpha^{39} \ \alpha^{42} \end{bmatrix}$$

Non-primitive BCH Codes

- Substituting α^i 's, so we get:
- $H = \begin{bmatrix} 100010011010111 \\ 010011010111100 \\ 001001101011110 \\ 000100110101111 \\ 100011000110001 \\ 000110001100011 \\ 001010010100101 \\ 011110111101111 \end{bmatrix}$
- **Example of a non-primitive BCH Code:**

Consider $GF(2^6)$ and take $\beta = \alpha^3$. β has order n = 21: $\beta^{21} = (\alpha^3)^{21} = \alpha^{63} = 1$

- Let g(x) be the minimal degree polynomial with roots: β , β^2 , β^3 , β^4
- **β**, β^2 and β^4 have the same minimal polynomial:

 $\phi_1(x) = 1 + x + x^2 + x^4 + x^6$

and B³ has: $\phi_3(x)=1+x^2+x^3$. So $g(x)=\phi_1(x) \phi_3(x)=1+x+x^4+x^5+x^7+x^8+x^9$

It can be easily verified that g(x) divides $x^{21}+1$. The code generated by g(x) is a (21,12) <u>non-primitive</u> BCH Code that corrects two errors.

Decoding of BCH Codes:

• Let codeword \underline{v} represented by code polynomial $v(x) = v_0 + v_1 x + v_2 x^2 + \dots + v_{n_1} x_{n_1}$

be the transmitted codeword.

• The received polynomial is:

$$r(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n_1} x^{n_1}$$

• Denoting the <u>error</u> polynomial by e(x), we have:

r(x)=v(x)+e(x)The syndrome is calculated multiplying <u>r</u> by H^T: <u>s</u> = (s₁, s₂, ..., s_{2t}) = <u>r</u>. H^T

• This means that the i - th component of <u>s</u> is:

 $s_i = r(\alpha^i) = r_0 + r_1 \alpha^i + r_2 \alpha^{2i} + \dots + r_{n-1} \alpha^{(n-1)i}$

for i = 1, 2, ..., 2t.

- Let's divide r(x) by $\varphi_i(x)$, i.e., the minimal polynomial of α^i : $r(x) = \alpha_i(x)\varphi_i(x) + b_i(x)$
- $\varphi_i(\alpha^i) = 0$, therefore,

$$S_i = r(\alpha^i) = b_i(\alpha^i)$$

Example: Consider (15,7) BCH Code. Let the received vector be (100000001000000). So, $r(x)=1+x^8$. Let's find, $\underline{S}=(s_1, s_2, s_3, s_4)$. The minimal polynomial for $\alpha, \alpha^2, \alpha^4$ is the same,

$$\varphi_1(x) = \varphi_2(x) = \varphi_4(x) = 1 + x + x^4$$

and for α^3 we have,

$$\varphi_3(x) = 1 + x + x^2 + x^3 + x^4$$

• Dividing $r(x)=1+x^8$ by $\varphi_1(x)$ we get,

 $b_1(x) = x^2$

• Dividing r(x) by $\varphi_3(x)$, we get

$$b_3(x) = 1 + x^3$$

So,

$$s_1 = b_1(\alpha) = \alpha^2$$
, $s_2 = \alpha^4$, $s_4 = \alpha^8$

and

$$s_3 = b_3(\alpha^3) = 1 + \alpha^9 = 1 + \alpha + \alpha^3 = \alpha^7$$

 $\underline{S} = (\alpha^2, \alpha^4, \alpha^7, \alpha^8)$

Therefore,

Since

$$V(\alpha^{i}) = 0, for \ i = 1, 2, ..., 2t$$

we have

$$S_i = r(\alpha^i) = v(\alpha^i) + e(\alpha^i) = e(\alpha^i)$$

Now, assume that we have ν errors at locations $j_1, j_2, ..., j_{\gamma}$. That is, $e(x) = x^{j_1} + x^{j_2} + \dots + x^{\nu}$

► Then we have,

$$S_{1} = \alpha^{j_{1}} + \alpha^{j_{2}} + \dots + \alpha^{j_{\nu}}$$

$$S_{2} = (\alpha^{j_{1}})^{2} + (\alpha^{j_{2}})^{2} + \dots + (\alpha^{j_{\nu}})^{2}$$

$$\vdots$$

$$S_{2t} = (\alpha^{j_{1}})^{2t} + (\alpha^{j_{2}})^{2t} + \dots + (\alpha^{j_{\nu}})^{2t}$$

Let $\beta_1 = e^{j_1} \beta_2 = e^{j_2} \dots, \beta_{\gamma} = e^{j_{\gamma}}, \beta_{1,\beta_2,\dots,\beta_{\gamma}}$ are called error location numbers. Then we have:

$$S_{1} = \beta_{1} + \beta_{2} + \dots + \beta_{\nu}$$

$$S_{2} = \beta_{1}^{2} + \beta_{2}^{2} + \dots + \beta_{\nu}^{2}$$

:

$$S_{2t} = \beta_1^{2t} + \beta_2^{2t} + \ldots + \beta_{\nu}^{2t}$$

These 2t equations are symmetric function of $\beta_{1}, \beta_{2}, ..., \beta_{\nu}$

Define the following polynomial

 $\sigma(x) = (1 + \beta_1 x) (1 + \beta_2 x) (1 + \beta_3 x) \dots (1 + \beta_\nu x)$ This is called the <u>error locator polynomial</u> and has $\beta_1^{-1} \beta_2^{-1} \dots \beta_\nu^{-1}$ as its roots. $\sigma(X)$ can also be represented as:

$$\sigma(x) = \sigma_0 + \sigma_1 x + \sigma_2 x^2 + \dots + \sigma_\nu x^\nu$$

It is clear that:

 $\sigma_{0} = 1$ $\sigma_{1=} \beta_{1} + \beta_{2} + \dots + \beta_{\nu}$ $\sigma_{2=} \beta_{1} \beta_{2} + \beta_{2} \beta_{3} + \dots + \beta_{\nu-1} \beta_{\nu}$ $\sigma_{\gamma=} \beta_{1} \beta_{2} \dots \beta_{\nu}$ $s_{1} + \sigma_{1} = 0$ $s_{2} + \sigma_{1} s_{1} + 2\sigma_{2} = 0$ $s_{3} + \sigma_{1} s_{2} + \sigma_{2} s_{1} + 3s_{3} = 0$ \vdots $s_{\nu} + \sigma_{1} s_{\nu-1+\dots+} \sigma_{\nu-1} s_{1} + \nu \sigma_{\nu} = 0$ $s_{\nu+1} + \sigma_{1} s_{\nu+\dots+} \sigma_{\nu-1} s_{2} + \nu s_{1} = 0$ \vdots

► These are called Newton identities.

For the binary case

$$i\sigma_i = \begin{cases} \sigma_i & for \ odd \ i \\ 0 & for \ even \ i \end{cases}$$

Berlekamp Algorithm

Berlekamp Algorithm is an Iterative Algorithm for finding Error-Location Polynomial:

This algorithm tries to generate polynomials of degree 1,2,.. that has β_1,β_2 ... as it roots.

- First we define $\sigma^{(1)}(x)$ that satisfies the first Newton equality: $\sigma^{(1)}(x)=1+S_1x$ Since $S_1+\sigma_1=0 \rightarrow \sigma_1=S_1$
- Then we check whether σ⁽¹⁾(x) satisfies the second Newton equality or not. If it satisfies we let σ⁽²⁾(x) = σ⁽¹⁾(x) otherwise we add another term to σ⁽¹⁾(x) to form σ⁽²⁾(x) that satisfies the first and second equalities.
- Then for σ⁽³⁾(x): if σ⁽²⁾(x) satisfies the third equality we let σ⁽³⁾(x) = σ⁽²⁾(x) otherwise add a correction term that makes σ⁽³⁾(x) satisfy the first three equalities.
- We continue this iterative approach until we get $\sigma^{(2t)}(x)$ and set $\sigma(x) = \sigma^{(2t)}(x)$.
- Now let's see how we can go from one stage say μ to μ +1.

Berlekamp Algorithm

• Assume that at stage μ , the polynomial is

$$\sigma^{(\mu)}(x) = 1 + \sigma_1^{(\mu)}x + \sigma_2^{(\mu)}x^2 + \dots + \sigma_{L_{\mu}}^{(\mu)}x^{L_{\mu}}$$

• If $\sigma^{(\mu)}(x)$ satisfies also $(\mu + 1)st$ equality then, $S_{\mu+1}$ should be

$$\sigma_1^{(\mu)} s_\mu + \sigma_2^{(\mu)} s_{\mu-1} + \dots + \sigma_{L_\mu}^{(\mu)} s_{\mu+1-L_\mu}$$

We compare this with actual $s_{\mu+1}$. That is why we add this to $S_{\mu+1}$ and check whether we get zero or not. Let the sum be denoted by d_{μ} and call it discrepancy.

$$d_{\mu} = s_{\mu+1} + \sigma_1^{(\mu)} s_{\mu} + \sigma_2^{(\mu)} s_{\mu-1} + \dots + \sigma_{L_{\mu}}^{(\mu)} s_{\mu+1-L_{\mu}}$$

• If this is zero, then $\sigma^{(\mu)}(x)$ also satisfies the μ +1-st equality and therefore, $\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x)$

But if $d_{\mu} \neq 0$, then $\sigma^{(\mu)}(x)$ does not satisfy the μ +1-st equality.

Berlekamp Algorithm

► Note that

Now, let's go to a previous stage say,
$$\rho$$
, where $d_{\rho}^{\mu} \neq 0$.
 $d_{\rho} = \sum_{i=0}^{L\rho} \sigma_{i}^{(\rho)} s_{\rho+1-i}$
 $\sigma^{(\rho)}(x) = 1 + \sigma_{1}^{(\rho)} x + \sigma_{2}^{(\rho)} x^{2} + \dots + \sigma_{L\rho}^{(\rho)} x^{L\rho}$
Let's form $\sigma^{(\mu+1)}(x)$ as:
 $\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + AX^{\mu-\rho}\sigma^{(\rho)}(x)$
Then
 $d'_{\mu} = \sum_{i=0}^{L\mu} \sigma_{i}^{(\mu)} S_{\mu+1-i} + \sum_{i=0}^{L\rho} \sigma_{i}^{(\rho)} S_{\mu-\rho+1-i}$

or

$$d'_{\mu} = d_{\mu} + A d_{\rho}$$

• In order for $d'_{\mu}=0$ we need

$$A = d_{\mu}/d_{\rho}$$

Summary of Berlekamp Algorithm

- In summary, Berlekamp algorithm is as follows:
- Initialization: start with first two rows according to the following table:

μ	$\sigma^{(\mu)}(X)$	d_{μ}	lμ	$\mu - l_{\mu}$
-1	1	1	0	-1
0	1	S_1	õ	-1
1		-1	0	0
2				
:				
Zt				

• Iteration: For each μ form $d_{\mu} = s_{\mu+1} + \sigma_1^{(\mu)} s_{\mu} + \dots + \sigma_{L\mu}^{(\mu)} s_{\mu+1-L_{\mu}}$

Where L_{μ} is the degree of $\sigma^{(\mu)}(x)$

Summary of Berlekamp Algorithm

- 1) If $d_{\mu} = 0$ then $\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x)$
- 2) If $d_{\mu} \neq 0$ then:

$$\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + d_{\mu}d_{\rho}^{-1}x^{\mu-\rho}\sigma^{(\rho)}(x)$$

Where ρ is the row (the stage) where $d_{\rho} \neq 0$ and is closest to μ , i.e., μ - ρ is the smallest

- Termination:
- Continue until you find $\sigma^{(2t)}(x)$ and let:

$$\sigma(x) = \sigma^{(2t)}(x)$$

Example

- Consider the (15,5) code we saw previously assume that, v= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) is transmitted and r= (000101000000100) is received.
 Then r(x) = x³ + x⁵ + x¹².
- The minimal polynomial for α, α^2 and α^4 is

$$\varphi_1(x) = \varphi_2(x) = \varphi_4(x) = 1 + x + x^4$$

For α^3 and α^6

$$\varphi_3(x) = \varphi_6(x) = 1 + x + x^2 + x^3 + x^4$$

For α^5 ,

$$\varphi_5(x) = 1 + x + x^2$$

• Dividing r(x) by $\varphi_1(x)$, we get

$$b_1(x) = 1$$

• Dividing r(x) by $\varphi_3(x)$, we get

$$b_3(x) = 1 + x^2 + x^3$$

And dividing by $\varphi_5(x)$,

$$b_5(x) = x^2$$

Example

So:

$$s_{1} = s_{2} = s_{4} = 1$$

$$s_{3} = 1 + \alpha^{6} + \alpha^{9} = \alpha^{10}$$

$$s_{6} = 1 + \alpha^{12} + \alpha^{18} = \alpha^{5}$$

$$s_{5} = \alpha^{10}$$

Using Berlekamp method, we get $\sigma(x) = \alpha^{(6)}(x) = 1 + x + \alpha^5 x$.

μ	$\sigma^{(\mu)}(X)$	d _µ	l _µ	$\mu - l_{\mu}$
-1	1	1	0	-1
0	1	1	0	0
1	1 + X	0	1	0 (take $\rho = -1$)
2	1 + X	α^5	1	1
3	$1 + X + \alpha^5 X^2$	0	2	1 (take $\rho = 0$)
4	$1 + X + \alpha^5 X^2$	α^{10}	2	2
5	$1 + X + \alpha^5 X^3$	0	3	2 (take $\rho = 2$)
6	$1 + X + \alpha^5 X^3$	_	_	

Example

We can verify that
$$\alpha^3$$
, α^{10} and α^{12} are the roots of $\sigma(x)$.

$$\begin{aligned}
(\alpha^3)^{-1} &= \alpha^{12} \\
(\alpha^{10})^{-1} &= \alpha^5 \\
\end{aligned}$$
and
$$\begin{aligned}
(\alpha^{12})^{-1} &= \alpha^3
\end{aligned}$$

So:

$$e(x) = x^3 + x^5 + x^{12}$$

Error Correction Procedure

- 1) Calculate syndrome.
- 2) Form error- location polynomial $\sigma(x)$
- 3) Solve $\sigma(x)$ to get error locations (Chien Search)

Chien Search:

1) Load $\sigma_{1,\sigma_{2,\dots,\sigma_{2t}}}$ in 2t registers.

(If $\sigma(x)$ has degree less than 2t, i.e., $\mu < 2t$ then $\sigma_{\mu+1} = \sigma_{\mu+2} = \cdots = \sigma_{2t} = 0$)

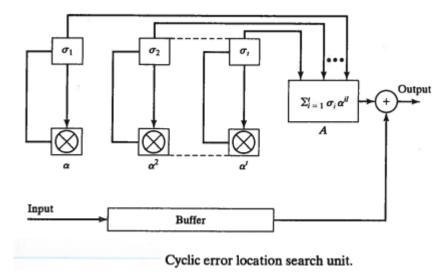
1) The multipliers multiply σ_i by α^i and the circuit generates

$$\sigma_1 \alpha + \sigma_2 \alpha^2 + \dots + \sigma_\mu \alpha^\mu$$

If α is a root of $\sigma(x)$ then

$$1 + \sigma_1 \alpha + \sigma_2 \alpha^2 + \dots + \sigma_\mu \alpha^\mu = 0$$

Chien Search



Load $\sigma_{1,}\sigma_{2,...,}\sigma_{2t}$ in 2t registers. (If $\sigma(x)$ has degree less than 2t, i.e., $\mu < 2t$ then $\sigma_{\mu+1} = \sigma_{\mu+2} = \cdots = \sigma_{2t} = 0$) The multipliers multiply σ_i by α^i and the circuit generates

$$\sigma_1 \alpha + \sigma_2 \alpha^2 + \dots + \sigma_\mu \alpha^\mu$$

• If α is a root of $\sigma(x)$ then

$$1 + \sigma_1 \alpha + \sigma_2 \alpha^2 + \dots + \sigma_\mu \alpha^\mu = 0$$

Error Correction Procedure

- Or the output of A is 1.
- So if output of A is 1 then α is a root and $\alpha^{-1} = \alpha^{n-1}$ is error location and r_{n-1} should be corrected.
- Multipliers are clocked so we get

$$(\alpha^{2}, (\alpha^{2})^{2}, ..., (\alpha^{2})^{\mu})$$

Or the output of A is

$$\sigma_1 \alpha^2 + \sigma_2 (\alpha^2)^2 + \cdots \sigma_\mu (\alpha^2)^\mu$$

If this is 1, r_{n-2} should be corrected and so on for 3,..., ν .