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Convolutional Codes
 In Block Code’s data is encoded using a Combinational circuit. That is, a circuit with

only logic gates and no memory.

 Convolutional Codes on the other hand, have encoders that are Sequential Circuits. A
Convolutional encoder receives k bits as the input and generates 𝑛𝑛 ≥ 𝑘𝑘 output symbols
based on the input at a given time and past inputs (or outputs) still in the memory. A
convolutional code usually has m memory units resulting in 2m states. m is called the
constraint length, sometimes m+1 is called the constraint length taking into account the
present input and m bits in the memory as the bits affecting the output. k and n are
usually small integers. Codes with k=1 resulting in code rate 1

𝑛𝑛
are of special interest.

 For example, if 𝑘𝑘 = 1 and 𝑛𝑛 = 2, we have a code of rate 𝑘𝑘
𝑛𝑛

= 1
2
.



Convolutional Codes
 It is important to note the fact that while k=1 or 2 or some other small number, the

input and output are streams of bits. Assume that L symbols enter the encode. This
means 𝑘𝑘𝑘𝑘 input bits and 𝑛𝑛𝑘𝑘 output bits we need also to flush the encoder to make it
ready for next block of data, e.g., by feeding 𝑘𝑘𝑘𝑘 bits. So, the output will actually be
𝑛𝑛(𝑘𝑘 + 𝑘𝑘) bits long and the rate is

𝑘𝑘𝑘𝑘
𝑛𝑛(𝑘𝑘 + 𝑘𝑘)

=
𝑘𝑘
𝑛𝑛

.
𝑘𝑘

𝑘𝑘 + 𝑘𝑘
→
𝑘𝑘
𝑛𝑛

when 𝑘𝑘 ≪ 𝑘𝑘.

Since the codewords of a Convolutional code are generated using a Finite State Machine
(FSM), i.e. a sequential circuit, the decoder can be a scheme that finds the best match for
the received sequence (based on minimum distance), by going through all possible outputs
of the FSM. The scheme used is the travelling salesman algorithm. It is called the Viterbi
Algorithm (VA) in coding literature as it was first used for decoding of convolutional codes
by Andrew Viterbi (the relationship between VA and travelling salesman problem was later
discovered. So, in fact, Viterbi re-invented the algorithm).



Convolutional Codes
 VA finds a solution that is optimal over the whole received sequence and not 

necessarily having lower probability of error for each symbol. 
 Another Scheme called BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm is another 

decoding technique that works based on the maximum a posteriori (MAP) probability 
taking into account the a priori probability of bits. It is very useful in iterative decoding 
of Turbo codes.

 Example: let’s start with a non-systematic feed forward rate 1
2

code.
 The code is non-systematic as there is no direct connection between the input and any

of the outputs. Also, we call the code feed forward as the outputs are not fed back to
the input side.



Convolutional Codes
 Let the input sequence be 𝑢𝑢=(𝑢𝑢0,𝑢𝑢1,𝑢𝑢2, …). The output sequences will be

v(0)=(𝑣𝑣0
(0),𝑣𝑣1

(0), 𝑣𝑣2
(0), … )

and v(1)=(𝑣𝑣0
(1),𝑣𝑣1

(1), 𝑣𝑣2
(1), … )

 These outputs can be obtained by convolving 𝑢𝑢 with the impulse response of the two
branches.

 To find the impulse response let 𝑢𝑢=(1 0 0 …) and observe the outputs. Since the
memory order is m, the impulse response can last at most m+1 time units so,

g (0) =(𝑔𝑔0
(0),𝑔𝑔1

(0), … ,𝑔𝑔𝑚𝑚
(0) )

and g (1) =(𝑔𝑔0
(1),𝑔𝑔1

(1), … ,𝑔𝑔𝑚𝑚
(1) )

 For this example:
g (0) =(1 0 1 1)

and

g (1) =(1 1 1 1)

 These are also called generator sequences.



Convolutional Codes
 Now,

v(0)=𝑢𝑢 ⊛ 𝑔𝑔(0) and v(1)=𝑢𝑢 ⊛ 𝑔𝑔(1)

 Where ⊛ denotes convolution:
𝑣𝑣𝑙𝑙

(𝑗𝑗) = ∑𝑖𝑖=0𝑚𝑚 𝑢𝑢𝑙𝑙−𝑖𝑖 𝑔𝑔𝑖𝑖
(𝑗𝑗) = 𝑢𝑢𝑙𝑙 𝑔𝑔0

(𝑗𝑗) + 𝑢𝑢𝑙𝑙−1 𝑔𝑔0
(𝑗𝑗) + ⋯+ 𝑢𝑢𝑙𝑙−𝑚𝑚 𝑔𝑔𝑚𝑚

(𝑗𝑗) for j=0 and 1.
 For this example,

𝑣𝑣𝑙𝑙
(0) = 𝑢𝑢𝑙𝑙 + 𝑢𝑢𝑙𝑙−2 + 𝑢𝑢𝑙𝑙−3

𝑣𝑣𝑙𝑙
(1) = 𝑢𝑢𝑙𝑙 + 𝑢𝑢𝑙𝑙−1 + 𝑢𝑢𝑙𝑙−2 + 𝑢𝑢𝑙𝑙−3

and                                     v= (𝑣𝑣0
(0), 𝑣𝑣0

(1),𝑣𝑣1
(0), 𝑣𝑣1

(1), 𝑣𝑣2
(0),𝑣𝑣2

(1), … )

 Assume 𝑢𝑢=(1 0 1 1 1 ), then  
v(0)= (1 0 1 1 1) ⊛ (1 0 1 1) = (1 0 0 0 0 0 0 1)
v(0)= (1 0 1 1 1) ⊛ (1 1 1 1) = (1 1 0 1 1 1 0 1)

and v = (11, 01, 00, 01, 01, 01, 00 ,11)



Convolutional Codes
 When the number of bits encoded is large, we can view the operation of the 

convolutional encoder as a block encoder by defining the generate matrix:

 Then v =uG. For input u= (101111) we have:



Convolutional Codes
Example: A rate 2

3
non-systematic feed forward convolutional code:

 Let 𝑔𝑔𝑖𝑖
(𝑗𝑗) represent the generator sequence corresponding to input 𝑖𝑖 and output j, we 

have:
𝑔𝑔1

0 = 1 1 𝑔𝑔1
(1) = 0 1 𝑔𝑔1

(2) = (1 1)
𝑔𝑔2

0 = 0 1 𝑔𝑔2
(1) = 1 0 𝑔𝑔2

(2) = (1 0)



Convolutional Codes
 Then:
 𝑣𝑣(0) = 𝑢𝑢1 ⊛ 𝑔𝑔1

(0) + 𝑢𝑢(2) ⊛𝑔𝑔2
(0)

𝑣𝑣(1) = 𝑢𝑢1 ⊛ 𝑔𝑔1
(1) + 𝑢𝑢(2) ⊛𝑔𝑔2

(1)

𝑣𝑣(2) = 𝑢𝑢1 ⊛ 𝑔𝑔1
(2) + 𝑢𝑢(2) ⊛𝑔𝑔2

(2)

 So,
𝑣𝑣𝑙𝑙

(0) = 𝑢𝑢𝑙𝑙
(1) + +𝑢𝑢𝑙𝑙−1

(1) + 𝑢𝑢𝑙𝑙−1
(2)

𝑣𝑣𝑙𝑙
(1) = 𝑢𝑢𝑙𝑙

(2) + 𝑢𝑢𝑙𝑙−1
(1)

𝑣𝑣𝑙𝑙
(2) = 𝑢𝑢𝑙𝑙

(1) + 𝑢𝑢𝑙𝑙
(1) + 𝑢𝑢𝑙𝑙−1

(2)

 While rate 𝑘𝑘
𝑛𝑛

codes with 𝑘𝑘 ≠ 1 can be used, it is easier to use a code 1
𝑛𝑛

rate to 

generate codes 𝑘𝑘
𝑛𝑛
. This is done using puncturing. Assume that we have a rate 1

2
code, we can feed it two bits at a time and out of 4 bits we get at the output 
throw out one to get a rate  2

3
code. Or input 3 bits and get 6 bits out and 

throw out 2 bits to get 3
4

code .



Convolutional Codes
 Example: Industry Standard Code:



Polynomial Domain Representation
 Similar to block codes, we can transform the time domain representation by

transforming the generating sequences to generating polynomial and similarly input
and output sequences to input and output polynomials:

 For example, for the (2,1,3) code, i.e. rate 1
2

memory = 3 code, instead of g(0) = (1 0 1
1) and g(1) = (1 1 1 1), we can use:

𝑔𝑔 0 𝐷𝐷 = 1 + 𝐷𝐷2 + 𝐷𝐷3 𝑎𝑎𝑛𝑛𝑎𝑎 𝑔𝑔 1 𝐷𝐷 = 1 + 𝐷𝐷 + 𝐷𝐷2 + 𝐷𝐷3



Polynomial Domain Representation:
 If we denote the input sequence as, 

𝑢𝑢 𝐷𝐷 = 𝑢𝑢0 + 𝑢𝑢1𝐷𝐷 + 𝑢𝑢2𝐷𝐷2 + ⋯
Then

𝑣𝑣(0)𝐷𝐷 = 𝑢𝑢(𝐷𝐷)𝑔𝑔 0 (𝐷𝐷) and 𝑣𝑣(1)𝐷𝐷 = 𝑢𝑢(𝐷𝐷)𝑔𝑔 1 (𝐷𝐷)
So,

𝑣𝑣 𝐷𝐷 = 𝑣𝑣 0 𝐷𝐷 , 𝑣𝑣 1 𝐷𝐷 = 𝑣𝑣(0) 𝐷𝐷2 + 𝐷𝐷𝑣𝑣 1 (𝐷𝐷2)

Assume that u = 1 0 1 1 1 → u(D) = 1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4, then:

𝑣𝑣 0 𝐷𝐷 = 1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4 1 + 𝐷𝐷2 + 𝐷𝐷3 = 1 + 𝐷𝐷7

𝑣𝑣 1 𝐷𝐷 = 1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4 1 + 𝐷𝐷 + 𝐷𝐷2 + 𝐷𝐷3 = 1 + 𝐷𝐷 + 𝐷𝐷3 + 𝐷𝐷4 + 𝐷𝐷5 + 𝐷𝐷7

and: 
𝑉𝑉 𝐷𝐷 = [1 + 𝐷𝐷14 + 𝐷𝐷 1 + 𝐷𝐷2 + 𝐷𝐷6 + 𝐷𝐷8 + 𝐷𝐷10 + 𝐷𝐷14 ]

= 1 + 𝐷𝐷 + 𝐷𝐷3 + 𝐷𝐷7 + 𝐷𝐷9 + 𝐷𝐷11 + 𝐷𝐷14 + 𝐷𝐷15

As an exercise try to get 1 1 0 1 0 0 0 1 0 1 0 1 0 0 by feeding 1 0 1 1 1 to the encoder.



Polynomial Domain Representation:
 Equivalently, we could use 𝑔𝑔 𝐷𝐷 = 𝑔𝑔 0 𝐷𝐷2 + 𝐷𝐷𝑔𝑔 1 (𝐷𝐷2) and find the output using        

𝑣𝑣 𝐷𝐷 = 𝑢𝑢 𝐷𝐷2 𝑔𝑔(𝐷𝐷)
 For the above example:

𝑔𝑔 𝐷𝐷 = 1 + 𝐷𝐷4 + 𝐷𝐷6 + 𝐷𝐷[1 + 𝐷𝐷2 + 𝐷𝐷4 + 𝐷𝐷6]
= 1 + 𝐷𝐷4 + 𝐷𝐷6 + 𝐷𝐷 + 𝐷𝐷3 + 𝐷𝐷5 + 𝐷𝐷7
= 1 + 𝐷𝐷 + 𝐷𝐷3 + 𝐷𝐷4 + 𝐷𝐷5 + 𝐷𝐷6 + 𝐷𝐷7

and 
𝑣𝑣 𝐷𝐷 = 𝑢𝑢 𝐷𝐷2 𝑔𝑔 𝐷𝐷 = (1 + 𝐷𝐷4 + 𝐷𝐷6 + 𝐷𝐷8)(1 + 𝐷𝐷 + 𝐷𝐷3 + 𝐷𝐷4 + 𝐷𝐷5 + 𝐷𝐷6 + 𝐷𝐷7)

= 1 + 𝐷𝐷 + 𝐷𝐷3 + 𝐷𝐷7 + 𝐷𝐷9 + 𝐷𝐷11 + 𝐷𝐷14 + 𝐷𝐷15
In general, for a code with k inputs and n outputs, we have:

𝑔𝑔𝑖𝑖 𝐷𝐷 = 𝑔𝑔𝑖𝑖
0 𝐷𝐷𝑛𝑛 + 𝐷𝐷𝑔𝑔𝑖𝑖

1 𝐷𝐷𝑛𝑛 + ⋯+ 𝐷𝐷𝑛𝑛−1𝑔𝑔𝑖𝑖𝑛𝑛−1 𝐷𝐷𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘
and 

𝑣𝑣 𝐷𝐷 = �
𝑖𝑖=1

𝑘𝑘

𝑢𝑢(𝑖𝑖)(𝐷𝐷𝑛𝑛)𝑔𝑔𝑖𝑖𝐷𝐷



Graphical representation: Trees, Trellises and FSM
 Consider a code with 𝑘𝑘 memory elements, each bit takes the contents of shift register

from one of the 2m possible values to another value. For simplicity take the case of feed
forward, 𝑘𝑘 = 1 code. Let’s start from all zero content for 𝑘𝑘 memory elements i.e., start
from 0 0…0. If the bit entering the encoder is zero it moves to the same state.
Otherwise goes to 1 0 0 … 0. Next bit takes it to 0 1 0 … 0 or 1 1 0 … 0.

For example: for the 3-bit memory encoder (2,1,3) we will have:



Graphical representation: Trees, Trellises and FSM
 Note that after entering 3 bits, we get to 8 terminal nodes with all possible 

binary values. If we continue, we get trees with 16, 32, 64, … of terminal 
nodes. But node labels will still be one of the eight patterns 000, 001, …,111.

 So, instead of a tree, we can use a trellis. For the above code, we have the following 
trellis



Graphical representation: Trees, Trellises and FSM
 We label the nodes by state values and the arcs by the input and Ouput.
 let’s now draw the state-diagram: Each state is labeled with the content of the memory 

elements and each transition is labeled with the input and output. So, an input 1 takes 
the system from state 000 to state 100 generating output 11, so, 1/11 is the label of the 
transition from 000 to 1000. Since this is a binary (one bit) input code, we can 
represent the input by thickness or shape of line, e.g., using solid line for zero and 
dashed line for one.



Water Lilies in Monets Garden in Giverny 
France



Classification of Convolutional Codes
 A code can be systematic, e.g.,

 Convolutional encoders can also have feedback. 
 Following is an example of (2,1,2) systematic feedback encoder.



Classification of Convolutional Codes
 These codes are defined in terms of their feedback and feedforward transfer functions 

(or generator functions). The above code has g0(D)=1 and:

𝑔𝑔1 𝐷𝐷 =
1 + 𝐷𝐷2

1 + 𝐷𝐷 + 𝐷𝐷2
Or the generator matrix is

𝐺𝐺 𝐷𝐷 = [1, (1 + 𝐷𝐷2)/(1 + 𝐷𝐷 + 𝐷𝐷2)]
 Trellis Diagrams list all possible codewords. For example, for a convolutional code 

with binary input, after entering 𝑙𝑙 bits, i.e., passing through 𝑙𝑙 stages, we have 2𝑙𝑙 paths 
to consider. Note that for a rate 𝑘𝑘

𝑛𝑛
after entering 𝑘𝑘𝑙𝑙 bits, we have an 𝑛𝑛𝑙𝑙 bit sequence. So, 

the search is for one of the 2𝑘𝑘𝑙𝑙 trellis paths among 2𝑛𝑛𝑙𝑙 possibilities. 

 We will have an error if the transmitted sequence belongs to one path of trellis and we 
decide in favour of another path. That is, if the noise make the path diverge at one node 
and coverage at another node. To see this, let’s try a simple example



Classification of Convolutional Codes
 Consider the (2,1,2) feedback code above.

 Assume, for example, that input of the encoder is the all zero sequence. Then the top 
line is the path taken by the output of the encoder.

 Now assume that at some point there is an error and instead of straight (solid line), the
decoder takes the dashed line. Unlike un-coded case, the next output is not un-
constrained since the first divergence has caused 00 to be 11, then the next two bits are
either 01 or 10. This continues until the two paths merge. Any convergence of two
diverged paths is called an error event. The shortest error event defines, the minimum
or free distance of the code. In this case the free distance is 3 and is a result of 00,00,00
being changed to 11,01,00. That means decoding 100 instead of 000.



Classification of Convolutional Codes
 Catastrophic Convolutional encoder:
 A convolutional encoder, is one that creates a trellis diagram in which a stream with an

infinite number of errors appears as having a finite distance from the original sequence.
 Example: Take the convolutional code with 𝐺𝐺 𝐷𝐷 = [1 + 𝐷𝐷, 1 + 𝐷𝐷2].

 Trellis for this encoder is:



Classification of Convolutional Codes
 Now assume that 0 0…0 be encoded, i.e., 00,00, … 00 (upper path) be transmitted. The 

distance between 11,01,00, … , 00 (the violet path) and the correct path is 3. But one 
decodes to all 0 and the other to all one.

 Let’s analyze the situation. Note that 1+D is a common divisor to g0(D)= 1+D and
𝑔𝑔1 𝐷𝐷 = 1 + 𝐷𝐷2 = (1 + 𝐷𝐷)(1 + 𝐷𝐷) So, the encoder can be conceived as an m=1
encoder [1, 1+D] and a multiplication (say prior to encoding) by 1+D.

 Note that:
1

1 + 𝐷𝐷 = 1 + 𝐷𝐷 + 𝐷𝐷2 + 𝐷𝐷3 + ⋯
or:    1 + 𝐷𝐷 + 𝐷𝐷2 + 𝐷𝐷3 + ⋯ 1 + 𝐷𝐷 = 1

 So, if we feed the all one sequence to the 1+D, we get a single 1 and all zero. The same
is true for any encoder whose constituent 𝑔𝑔𝑖𝑖(𝐷𝐷) have a common divisor other than
unity (or shift of unity say 𝐷𝐷𝑙𝑙). A 1

𝑛𝑛
code is not catastrophic if and only if

𝐺𝐺𝐺𝐺𝐷𝐷 𝑔𝑔0 𝐷𝐷 ,𝑔𝑔1 𝐷𝐷 , … ,𝑔𝑔𝑛𝑛−1 𝐷𝐷 = 𝐷𝐷𝑙𝑙 for some integer 𝑙𝑙.



Performance of Convolutional Codes
 The performance of convolutional codes is computed based on their distance profile

(Spectrum) Assume that in the trellis of a code there are Ad error event paths of distance d,
for all possible d. Then:

𝐴𝐴 𝑋𝑋 = �
𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∞

𝐴𝐴𝑑𝑑 𝑋𝑋𝑑𝑑

 Assuming that probability of error event for a path of distance d is 𝑃𝑃𝑑𝑑, then:

𝑃𝑃 𝐸𝐸 ≤ �
𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∞

𝐴𝐴𝑑𝑑𝑃𝑃𝑑𝑑

 For BSC channel, P(E) can be approximated (upper bound approximated) as:

𝑃𝑃 𝐸𝐸 < �
𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∞

𝐴𝐴𝑑𝑑[2 𝑝𝑝(1 − 𝑝𝑝)]𝑑𝑑 = 𝐴𝐴 𝑋𝑋 |𝑥𝑥=2 𝑝𝑝(1−𝑝𝑝)

 For small p , i.e., high SNR, we have the path with distance 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as dominant so:

𝑃𝑃 𝐸𝐸 ≃ 𝐴𝐴𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[2 𝑝𝑝(1 − 𝑝𝑝)]𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≅ 𝐴𝐴𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑃𝑃𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/2



Performance of Convolutional Codes
 Instead of Ad which is the number of error event of weight d, we may use 𝐵𝐵𝑑𝑑which is

the sum of numbers of non-zero bits on all d paths divided by the number of
information bits k. Then:

𝑃𝑃𝑏𝑏(𝐸𝐸) < �
𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∞

𝐵𝐵𝑑𝑑𝑃𝑃𝑑𝑑 = �
𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∞

𝐵𝐵𝑑𝑑[2 𝑝𝑝(1 − 𝑝𝑝)]𝑑𝑑

 Again, taking 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 path as the dominant path:
𝑃𝑃(𝐸𝐸) ≃ 𝐵𝐵𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[2 𝑝𝑝(1 − 𝑝𝑝)]𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

≅ 𝐵𝐵𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑃𝑃𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/2

 Assuming BPSK:

𝑃𝑃 = 𝑄𝑄
2𝐸𝐸𝑠𝑠
𝑁𝑁0

≃
1
2 𝑒𝑒

−𝐸𝐸𝑠𝑠𝑁𝑁0

𝑃𝑃𝑏𝑏(𝐸𝐸) ≃ 𝐵𝐵𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2
𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2 𝑒𝑒−(

𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2 )(𝐸𝐸𝑠𝑠𝑁𝑁0

)



Performance of Convolutional Codes
 Note that 𝐸𝐸𝑏𝑏 = 𝐸𝐸𝑠𝑠

𝑅𝑅
, So

𝑃𝑃𝑏𝑏(𝐸𝐸) ≃ 𝐵𝐵𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2
𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2 𝑒𝑒−(

𝑅𝑅.𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2 )(𝐸𝐸𝑏𝑏𝑁𝑁0

)

 Comparing this with un-coded BPSK, i.e.,

𝑃𝑃𝑏𝑏 = 𝑄𝑄
2𝐸𝐸𝑏𝑏
𝑁𝑁0

≃
1
2
𝑒𝑒−

𝐸𝐸𝑏𝑏
𝑁𝑁0

 We find that there is power gain of 
𝑅𝑅 𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

2
.

 This in decibel is called the asymptotic coding gain:

𝛾𝛾 ≜ 10 𝑙𝑙𝑓𝑓𝑔𝑔10
𝑅𝑅𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

2 𝑎𝑎𝐵𝐵.



Soft Decoding of Convolutional Codes
 If we do not do demodulation prior to decoding, we use Euclidean distance. Then:

𝑃𝑃 𝐸𝐸 < �
𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∞

𝐴𝐴𝑑𝑑 𝑄𝑄
2𝑎𝑎𝑅𝑅𝐸𝐸𝑏𝑏
𝑁𝑁0

Or   𝑃𝑃𝑏𝑏 𝐸𝐸 < ∑𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∞ 𝐵𝐵𝑑𝑑 𝑄𝑄

2𝑑𝑑𝑅𝑅𝐸𝐸𝑏𝑏
𝑁𝑁0

 We can approximate the Q(.) function so that,

𝑃𝑃𝑏𝑏 𝐸𝐸 < �
𝑑𝑑=𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∞

𝐵𝐵𝑑𝑑𝑒𝑒
−𝑑𝑑𝑅𝑅 𝐸𝐸𝑏𝑏𝑁𝑁0

or:    𝑃𝑃𝑏𝑏 𝐸𝐸 ≃ 𝐵𝐵𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒
−
𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑅𝑅 𝐸𝐸𝑏𝑏

𝑁𝑁0

 Comparing with un-coded BPSK, i.e.,

𝑃𝑃𝑏𝑏 ≅ 𝑒𝑒−
𝐸𝐸𝑏𝑏
𝑁𝑁0

 We get coding gain (asymptotic):
𝛾𝛾 ≜ 10𝑙𝑙𝑓𝑓𝑔𝑔10 𝑅𝑅𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝐵𝐵

which is 3 dB better than hard decision decoding.



Convolutional Codes
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