
ELEC 6131: Error Detecting and Correcting Codes

Lecture 11: Low Density Parity Check

(LDPC) Codes

Low Density Parity Check Codes were invented in 1963 by R.G. Gallager. In addition to
suggesting the use of codes with sparse parity check matrices, Gallager suggested an iterative
decoding algorithm (message –passing decoders) and showed that using this type of decoder, one
can come close to Shannon’s bounds.

In general, an LDPC coed is the null space of a sparse (low-density) matrix H , i.e.,

𝑣𝑣𝐻𝐻𝑇𝑇 = 0

Where 𝐻𝐻𝑇𝑇 is a low-density matrix in the following sense:

Assume that H has j rows and n columns, and there are (on the average) 𝑖𝑖 ones in the columns and
(on the average) L 1’s on rows. In 𝑖𝑖 ≪ 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙 ≪ 𝑎𝑎, we call the matrix H low-density or sparse.

In the regular or Gallager LDPC codes, the number of 1’s in each column or on each row are the
same.

Example: (3,6) Regular LDPC code.

𝐻𝐻 =

⎣
⎢
⎢
⎢
⎢
⎡
1
1
0
1
0
0

1
1
0
0
1
0

1
1
0
0
0
1

0
1
0
1
1
0

0
1
0
0
1
1

1
0
1
0
0
1

1
0
1
0
1
0

0
0
1
1
1
0

0
0
0
1
1
1

0
0
1
1
0
1

1
0
1
0
0
1

0
1
1
1
0
0⎦
⎥
⎥
⎥
⎥
⎤

This matrix has 3 one’s in each column and 6 1’s on each row.

Graphically, LDPC code can be represented bi-partite graphs as suggested by Tanner.

On one side are the message nodes also called variable nodes; on the other side of the graph are
constraint nodes or check nodes.

A legitimate pattern, i.e., a code word is a bit stream that when fed to variable nodes, the check
nodes will all have value zero.

The above code is a regular LDPC code since each node on the left is incident by 3 edges and
each node on right receives 6 edges. We say that message nodes have degree 3 and check nodes
have degree 6.

The code whose Tanner graph is shown here is an irregular LDPC code. Nodes 𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥7, 𝑥𝑥9, 𝑥𝑥10
have degree 3. Nodes 𝑥𝑥2, 𝑥𝑥5, have degree 2. Nodes 𝑥𝑥4 and 𝑥𝑥8 have degree 4 and 𝑥𝑥6 has degree 1.

Check nodes have degree 7,7,3,6,5.

An LDPC code is specifies in terms of an edge degree distribution for variable nodes and another
degree distribution for check nodes.

Let 𝜆𝜆𝑖𝑖 be the fraction of edges that enter/exit variable nodes of degree i. define degree
distribution polynomial:

𝜆𝜆(𝑥𝑥) = �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖−1
𝑖𝑖≥1

It is clear that

𝜆𝜆(1) = �𝜆𝜆𝑖𝑖 = 1
𝑖𝑖≥1

For the above example:

𝜆𝜆(𝑥𝑥) =
1

28
+

1
7
𝑥𝑥 +

15
28

𝑥𝑥2 +
2
7
𝑥𝑥3

𝜆𝜆1 = 1
28

 since only 1 of 2 edges is incident on an edge of degree 1.

𝜆𝜆2 = 4
28

= 1
7
 since 2 × 2 edges full upon two nodes of degree 2. Similarly, 𝜆𝜆3and 𝜆𝜆4 are found to

be 15
28

 and 2
7
, respectively.

�𝜆𝜆(𝑥𝑥)𝑎𝑎𝑥𝑥 = �
𝜆𝜆𝑖𝑖
𝑖𝑖
𝑥𝑥𝑖𝑖

𝑖𝑖≥1

1

0

|01 = �
𝜆𝜆𝑖𝑖
𝑖𝑖

𝑖𝑖≥1

In a similar way, a degree distribution ρ(x) can be defined for the check nodes:

𝜌𝜌(𝑥𝑥) = �𝜌𝜌𝑖𝑖
𝑖𝑖≥1

𝑥𝑥𝑖𝑖−1

Where 𝜌𝜌𝑖𝑖 is the fraction of edges incident on a check node of degree 𝑖𝑖.

The rate of a (𝜆𝜆,𝜌𝜌) code is given by

𝑃𝑃(𝜆𝜆,𝜌𝜌) = 1 −
∫𝜌𝜌
∫𝜆𝜆

Where integrals are taken from 0 to 1.

Rate of the regular LDPC code:

Take the example of the (3,6) code discussed above. Since all variable nodes are of degree 3 then
𝜆𝜆3 = 1 and 𝜆𝜆(𝑥𝑥) = 𝑥𝑥2.

Similarly 𝜌𝜌6 = 1 → 𝑃𝑃(𝑥𝑥) = 𝑥𝑥5.

∫ 𝜆𝜆(𝑥𝑥)𝑎𝑎𝑥𝑥1
0 = 1

3
 and ∫ 𝜌𝜌(𝑥𝑥)𝑎𝑎𝑥𝑥1

0 = 1
6

So, the rate is 𝑟𝑟 = 1 − ∫𝜌𝜌
∫𝜆𝜆

= 1 −
1
6�

1
3�

= 1
2

Assignment: Find the rate of the irregular code discussed above (graph of page 2).

Encoding of LDPC Codes

While sparsity of the check matrix makes the decoding of LDPC codes, the fact that they are
defined in terms of parity check matrix makes their encoding complex.

Now it is a good time to reflect on the question of why we prefer cyclic codes and systematic
codes. If a linear code is not cyclic, we need to find code words by multiplying the information
vector U by G. It means n vector multiplications (as the number of columns of G is n). It also is
evident that for each vector multiplication, we need on the average 𝑛𝑛

2
 operations (say XOR and

add). So, the complexity is 𝑂𝑂(𝑎𝑎2). For a cyclic code the complexity is 𝑂𝑂(𝑎𝑎), i.e. , it is linear in n.
For a non-cyclic but systematic code, we need to find (𝑎𝑎 − 𝑘𝑘) parities each requiring (on the
average 𝑘𝑘

2
) operation. So, the order of encoding is 𝑂𝑂(𝑎𝑎𝑘𝑘).

For LDPC codes encoding is difficult since the graph can only show whether a bit pattern is a code
word or not. It cannot be used for relating the messages to code words. To ease encoding there are
several different approaches:

• To use cascaded rather than bi-partite graphs. This means doing encoding in several stages.
By choosing the number and size of the stages, one can design codes that are encodeable
and decodable in linear time. The dis-advantage of this technique is that since each stage
adds parity to the message and parity form previous stage. The length of data to the total
code word length is small (low rate). This results in performance loss compared to a
standard LDPC code.

• The other approach is to use codes that have lower triangular form. This is similar to
solving system of linear equations using Gauss elimination.

This approach while guarantees linear time encoding complexity, results in some loss of
performance due to being restricted to a class of LDPC codes.

• Starting from a standard LDPC code, we try to make its parity check matrix lower
triangular and stop when you cannot go further (Richardson and Urbanke).

 This results in an approximate lower triangular matrix.

Then it is shown that encoding complexity is 𝑂𝑂(𝑎𝑎 + 𝑔𝑔2) where g is the gap.

For example: for the (3,6) LDPC code H can be transformed into:

1,2,3,4,5,6,7,10,11,12,8,9

By column re-ordering. This is an approximate lower triangular matrix with g=2.

Then E can be made into �0
0

0
0

0
0

 0
 0� by Gauss elimination

To remove singularity of 𝜑𝜑 = �1
1

 1
 1� one can exchange column 8 with 5. This corresponds to the

following equivalent H with column ordering.

1,2,3,4,10,6,7,5,11,12,8,9

Then dividing code word to (𝑠𝑠,𝑝𝑝1,𝑝𝑝2) we have:

𝑆𝑆.𝐴𝐴𝑇𝑇 + 𝑃𝑃1𝐵𝐵𝑇𝑇 + 𝑃𝑃2𝑇𝑇𝑇𝑇 = 0

𝑆𝑆.𝑀𝑀𝑇𝑇 + 𝑃𝑃1𝜑𝜑𝑇𝑇 = 0

Where 𝐴𝐴 = �

1
1
0
1

1
1
0
0

1
1
0
0

 0
 1
 0
 1

0
0
1
1

1
0
1
0

� , 𝐵𝐵 = �

1
0
1
0

 0
 1
 0
 0

�, 𝑇𝑇 = �

1
0
1
0

0
1
1
1

0
0
1
1

0
0
0
1

� , 𝑀𝑀 = �0
1

0
0

1
1

1
1

1
1

0
0�

𝜑𝜑 = �1
1

0
1�

Let’s encode (1,0,0,0,0,0) = s

𝑆𝑆.𝐴𝐴𝑇𝑇 = [1, 0, 0, 0, 0, 0]

⎣
⎢
⎢
⎢
⎢
⎡
1
1
1
0
0
1

1
1
1
1
0
0

0
0
0
0
1
1

1
0
0
1
1
0⎦
⎥
⎥
⎥
⎥
⎤

𝑆𝑆.𝐴𝐴𝑇𝑇 = [1 1 0 1]

𝑆𝑆.𝑀𝑀𝑇𝑇 = [0 1]

𝑆𝑆.𝑀𝑀𝑇𝑇 + 𝑃𝑃1𝜑𝜑𝑇𝑇 = 0 → (𝜑𝜑𝑇𝑇)−1 = �1
0

1
1�

𝑃𝑃1 = 𝑆𝑆.𝑀𝑀𝑇𝑇(𝜑𝜑𝑇𝑇)−1 = [0 1] �1
0

1
1�

𝑃𝑃1 = [0 1]

𝑆𝑆.𝐴𝐴𝑇𝑇 + 𝑃𝑃1𝐵𝐵𝑇𝑇 + 𝑃𝑃2𝑇𝑇𝑇𝑇 = 0

[1 1 0 1] + [0 1] �

1
0
1
0

0
1
0
0

�

𝑇𝑇

+ 𝑃𝑃2𝑇𝑇𝑇𝑇 = 0

[1 1 0 1] + [0 1 0 0] + 𝑃𝑃2𝑇𝑇𝑇𝑇 = 0

[1 0 0 1] = 𝑃𝑃2𝑇𝑇𝑇𝑇 = �𝑃𝑃2,1,𝑃𝑃2,2,𝑃𝑃2,3,𝑃𝑃2,4� �

1
0
0
0

0
1
0
0

1
1
1
0

0
1
 1
1

�

→ 𝑃𝑃2,1 = 1 ,𝑃𝑃2,2 = 0,𝑃𝑃2,3 = 1,𝑃𝑃2,4 = 0

So

𝑉𝑉 = [1 0 0 0 0 0 0 1 1 0 1 0]

(From Shokrollahi’s Paper)

Decoding of LDPC Codes

Decoding of LDPC Codes is performed message passing or belief propagation (BP) algorithm. BP
is an iterative algorithm where in each iteration message nodes send the likelihood of their value
to all check nodes to which they are connected and check nodes send message to variable

(message) nodes based on what they have received from other message nodes. Message nodes and
check nodes exclude what they have received from one another when they send a message.

In BP the message sent from a message node is based on that node’s received information and
what it gets from check nodes connected to it (except the one it wants to send the message to).
These are in the form of probability or likelihood ratio.

In particular, a message node v sends to a check node c (the probability or likelihood) of v having
a certain value given its observation and what it has received in the previous iteration from its
neighboring check nodes other than c. In the same way, the message c sends to v is the probability
that c has a certain value given all the message passed to c in the previous iteration from message
nodes other than v.

Likelihood ratio of a binary random variable x is:

𝐿𝐿(𝑥𝑥) =
𝑃𝑃(𝑥𝑥 = 0)
𝑃𝑃(𝑥𝑥 = 1)

And the condition likelihood ratio of x given y is:

𝐿𝐿(𝑥𝑥|𝑦𝑦) =
𝑃𝑃(𝑥𝑥 = 0|𝑦𝑦)
𝑃𝑃(𝑥𝑥 = 1|𝑦𝑦)

If x is an equi-probable random variable

𝐿𝐿(𝑥𝑥|𝑦𝑦) = 𝐿𝐿(𝑦𝑦|𝑥𝑥)

So, if 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑑𝑑 are independent random variables:

𝐿𝐿(𝑥𝑥) = �𝐿𝐿(𝑥𝑥|𝑦𝑦)
𝑑𝑑

𝑖𝑖=1

Or

log 𝐿𝐿(𝑥𝑥) = � log 𝐿𝐿(𝑥𝑥|𝑦𝑦)[log 𝑖𝑖𝑠𝑠 𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏𝑎𝑎 𝑏𝑏 𝑖𝑖. 𝑏𝑏 𝑙𝑙𝑎𝑎
𝑑𝑑

𝑖𝑖=1

Now assume 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑙𝑙 are binary random variables and 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑙𝑙 are random variables.

We would like to find

ln 𝑙𝑙 (𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕ …⊕𝑥𝑥𝑙𝑙|𝑦𝑦1, … ,𝑦𝑦𝑙𝑙)

Note that if we let:

2𝑃𝑃[𝑥𝑥1 = 0|𝑦𝑦1] − 1 = 𝑝𝑝

And

2𝑃𝑃[𝑥𝑥2 = 0|𝑦𝑦2] − 1 = 𝑞𝑞

Then

𝑃𝑃[𝑥𝑥1 ⊕ 𝑥𝑥2 = 0|𝑦𝑦1,𝑦𝑦2] = 𝑃𝑃[𝑥𝑥1 = 0, 𝑥𝑥2 = 0|𝑦𝑦1,𝑦𝑦2] + 𝑃𝑃[𝑥𝑥1 = 1, 𝑥𝑥2 = 1|𝑦𝑦1,𝑦𝑦2] =

= 𝑃𝑃[𝑥𝑥1 = 0|𝑦𝑦1] 𝑃𝑃[𝑥𝑥2 = 0|𝑦𝑦2] + 𝑃𝑃[𝑥𝑥1 = 1|𝑦𝑦1]𝑃𝑃[𝑥𝑥2 = 1|𝑦𝑦2]

=
1 + 𝑝𝑝

2
.
1 + 𝑞𝑞

2
+

1 − 𝑝𝑝
2

.
1 − 𝑞𝑞

2
=

2 + 2𝑝𝑝𝑞𝑞
2

= 1 + 𝑝𝑝𝑞𝑞

So

2𝑃𝑃[𝑥𝑥1 ⊕ 𝑥𝑥2 = 0|𝑦𝑦1,𝑦𝑦2] − 1 = 𝑝𝑝𝑞𝑞

Therefore,

2𝑃𝑃[𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕ …⊕𝑥𝑥𝑙𝑙|𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑙𝑙] − 1 = �[2𝑃𝑃(𝑥𝑥𝑖𝑖 = 0|𝑦𝑦𝑖𝑖) − 1]
𝑙𝑙

𝑖𝑖=1

Let 𝜆𝜆𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙
𝑃𝑃(𝑥𝑥𝑖𝑖=0|𝑦𝑦𝑖𝑖)
𝑃𝑃(𝑥𝑥𝑖𝑖=1|𝑦𝑦𝑖𝑖)

 be the log-likelihood ratio of 𝑥𝑥𝑖𝑖 given 𝑦𝑦𝑖𝑖.

So,

𝑃𝑃(𝑥𝑥𝑖𝑖 = 0|𝑦𝑦𝑖𝑖) =
𝑏𝑏𝜆𝜆𝑖𝑖

𝑏𝑏𝜆𝜆𝑖𝑖 + 1

2 𝑃𝑃(𝑥𝑥𝑖𝑖 = 0|𝑦𝑦𝑖𝑖) − 1 =
𝑏𝑏𝜆𝜆𝑖𝑖 − 1
𝑏𝑏𝜆𝜆𝑖𝑖 + 1

=
𝑏𝑏
𝜆𝜆𝑖𝑖

2� − 𝑏𝑏−
𝜆𝜆𝑖𝑖

2�

𝑏𝑏
𝜆𝜆𝑖𝑖

2� + 𝑏𝑏
𝜆𝜆𝑖𝑖

2�

Or

2𝑃𝑃(𝑥𝑥𝑖𝑖 = 0|𝑦𝑦𝑖𝑖) = tanh (
𝜆𝜆𝑖𝑖
2

)

Finally,

ln 𝐿𝐿[𝑥𝑥1 ⊕ …⊕𝑥𝑥𝑙𝑙|𝑦𝑦1, … ,𝑦𝑦𝑙𝑙] = 𝑙𝑙𝑎𝑎
1 + ∏ tanh (𝜆𝜆𝑖𝑖2)𝑙𝑙

𝑖𝑖=1

1 −∏ tanh (𝜆𝜆𝑖𝑖2)𝑙𝑙
𝑖𝑖=1

Let 𝑚𝑚𝑣𝑣𝑣𝑣
(𝑙𝑙) be the message passed from message node v to check node c in iteration L. Similarly,

denote by 𝑚𝑚𝑣𝑣𝑣𝑣
(𝑙𝑙) the message from c to v. Then the update equations in BP are

Where 𝐶𝐶𝑣𝑣 is the set of check nodes connected to v. Similarly 𝑉𝑉𝑣𝑣 are variable nodes connected to c.

Bit-Flip Decoding Algorithm:

This method was devised by Gallager. When we compute syndromes the value of check nodes, if
they are all zero then we assume there is no error and stop.

Then we find for each variable node, the number of failed (1). Check nodes and flip the one with
maximum number of failed check nodes connected to it.

We then re-calculate the syndromes and flip the bit that is most connected to those with value 1.
We continue iteration above until either all check nodes have zero value or until a certain number
of pre-determined iterations have been done with no success (failure in this case). This simple BP
algorithm is given below:

1. Compute syndromes by 𝑟𝑟.𝐻𝐻𝑇𝑇 = 𝑆𝑆 . If all check-sums are 0 stop.
2. Find the number of failed parity check equations for each node.

Decode the number of failed check node for each message node by 𝑓𝑓𝑖𝑖 , 𝑖𝑖 = 1,2, . . , 𝑎𝑎.

3. Identify the set of bits S for which 𝑓𝑓𝑖𝑖 is the largest.
4. Flip bits in S.
5. Repeat steps 1 to 4 until the parity-check sums are zero (success), or a preset maximum

number of iterations is reached (decoding failure)

Example: Assume that we have used this code and have received 0000000100 that is 𝑥𝑥8 = 1 and
𝑥𝑥𝑖𝑖 = 0 𝑖𝑖 ≠ 8

Step 1: Compute syndromes:

We have:

𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥10} = {0,0,0,0,0,0,0,1,0,0}

This results in syndromes as:

𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5} = {1,1,1,1,0}

Obviously, this indicates an error.

Step 2: Find the number of failed parity check equations for each node:

Below table shows the frequency of occurrence of each node in the failed parity check equations:

𝑥𝑥𝑖𝑖 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6 𝑥𝑥7 𝑥𝑥8 𝑥𝑥9 𝑥𝑥10
𝑓𝑓𝑖𝑖 3 2 2 3 1 1 2 4 2 3

Step 3: Identify the bits for which the frequency of occurrence is the largest. From step 2, this is
clearly x8, which has occurred in all four failed parity check equations.

Step 4: Flip bits from step 3.

By flipping x8, the code word will be 𝑋𝑋 = {0,0,0,0,0,0,0,0,0,0}

This results in all zero syndromes, which means successful LDPC decoding.

