ELEC 6131: Error Detecting and Correcting Codes
Lecture 11: Low Density Parity Check
(LDPC) Codes

Low Density Parity Check Codes were invented in 1963 by R.G. Gallager. In addition to
suggesting the use of codes with sparse parity check matrices, Gallager suggested an iterative
decoding algorithm (message —passing decoders) and showed that using this type of decoder, one
can come close to Shannon’s bounds.

In general, an LDPC coed is the null space of a sparse (low-density) matrix H , i.e.,
vHT =0
Where HT is a low-density matrix in the following sense:

Assume that H has j rows and n columns, and there are (on the average) i ones in the columns and
(on the average) L 1’s on rows. In i < j and | < n, we call the matrix H low-density or sparse.

In the regular or Gallager LDPC codes, the number of 1’s in each column or on each row are the
same.

Example: (3,6) Regular LDPC code.

1111001100010
111110000001
000001110111
100100011101
010110111000

1001011001110-

This matrix has 3 one’s in each column and 6 1’s on each row.

Graphically, LDPC code can be represented bi-partite graphs as suggested by Tanner.

Variable NModes Check Modes

Graphical representation of a (3. 4)-regular LDP'C code of length 12.
The left nodes represent the variable nodes whereas the night nodes represent
the check nodes.

On one side are the message nodes also called variable nodes; on the other side of the graph are
constraint nodes or check nodes.

A legitimate pattern, i.e., a code word is a bit stream that when fed to variable nodes, the check
nodes will all have value zero.

The above code is a regular LDPC code since each node on the left is incident by 3 edges and
each node on right receives 6 edges. We say that message nodes have degree 3 and check nodes
have degree 6.

The code whose Tanner graph is shown here is an irregular LDPC code. Nodes x4, x3, X7, Xq, X19
have degree 3. Nodes x,, x5, have degree 2. Nodes x, and xg have degree 4 and x has degree 1.

Check nodes have degree 7,7,3,6,5.

An LDPC code is specifies in terms of an edge degree distribution for variable nodes and another
degree distribution for check nodes.

Let A; be the fraction of edges that enter/exit variable nodes of degree i. define degree
distribution polynomial:
Alx) = Z Axit

i>1
It is clear that
A1) = z A =1
i>1
For the above example:
15

1 1 2
—_ _ A2 — a3
A(x)—28+7x+28x +7x

A= % since only 1 of 2 edges is incident on an edge of degree 1.

Ay = 24—8 = % since 2 X 2 edges full upon two nodes of degree 2. Similarly, A3and 4, are found to

15 2 .
be P and p respectively.

1

A . A;
fl(x)dx = Z%x‘ I3 = ZTl
. .

=1 =1
In a similar way, a degree distribution p(x) can be defined for the check nodes:
p(x) = Z pix !
i1
Where p; is the fraction of edges incident on a check node of degree i.

The rate of a (4, p) code is given by

/p

P(Lp)=1—"=

2
Where integrals are taken from 0 to 1.

Rate of the regular LDPC code:

Take the example of the (3,6) code discussed above. Since all variable nodes are of degree 3 then
A; = 1and A(x) = x2.

Similarly pg = 1 = P(x) = x5.
1 1 1 1
Jo A dx = 5 and Jo p()dx = p

1
So,therateisr=1—f—p— Jo_ 1

[sy 2
Assignment: Find the rate of the irregular code discussed above (graph of page 2).
Encoding of LDPC Codes

While sparsity of the check matrix makes the decoding of LDPC codes, the fact that they are
defined in terms of parity check matrix makes their encoding complex.

Now it is a good time to reflect on the question of why we prefer cyclic codes and systematic
codes. If a linear code is not cyclic, we need to find code words by multiplying the information
vector U by G. It means n vector multiplications (as the number of columns of G is n). It also is

evident that for each vector multiplication, we need on the average % operations (say XOR and

add). So, the complexity is O(n2). For a cyclic code the complexity is O(n), i.e. , it is linear in n.
For a non-cyclic but systematic code, we need to find (n — k) parities each requiring (on the

average g) operation. So, the order of encoding is O (nk).

For LDPC codes encoding is difficult since the graph can only show whether a bit pattern is a code
word or not. It cannot be used for relating the messages to code words. To ease encoding there are
several different approaches:

To use cascaded rather than bi-partite graphs. This means doing encoding in several stages.
By choosing the number and size of the stages, one can design codes that are encodeable
and decodable in linear time. The dis-advantage of this technique is that since each stage
adds parity to the message and parity form previous stage. The length of data to the total
code word length is small (low rate). This results in performance loss compared to a
standard LDPC code.

The other approach is to use codes that have lower triangular form. This is similar to
solving system of linear equations using Gauss elimination.

This approach while guarantees linear time encoding complexity, results in some loss of
performance due to being restricted to a class of LDPC codes.

Starting from a standard LDPC code, we try to make its parity check matrix lower
triangular and stop when you cannot go further (Richardson and Urbanke).

This results in an approximate lower triangular matrix.

u A TR y
i
T I

e (m m s LY
k | ' | t
By | | (& - s) B !
: ey ¥ s e IR i '

- 1 - - -

An equivalent parity-check matrix in kwer triangalar form. The parity-check matrix in approximate lower miangolar form.

Then it is shown that encoding complexity is O(n + g2) where g is the gap.

0. EFFICIENT ENCODERS BASED (2 APPRONIMATE LOWER
TRIANGULATIONS

In this secten, we shall develop an alponthm for con-
smcting eficient encoders for LDPC codes. The efficiency
of the encoder amses Som the sparsensss of the panty-check
matriz 4 =nd the alponithm can be applied to any (sparse)
H. Althoush our example is binary, the algorthm applies
senarally to matrices 4 whose entries belong toa Seld /. We
aszume thromshout that the rows of [are linearly imdependent
If the rows are linearly dependent then the algorithm which
constucts the encoder will detect the dependency and either
one can choose a diferent matmix i or one can eliminate the
recumdant rows from & in the encoding process.

Azzume we 3Te ZIVED 30y s Paniy-check mame | over [
By definition. the associzted code consists of the set of r-fuples
r over J such that

Hrt =0,

Probably the most straizghdfiorward way of construcing an en-
coder for such a code is the followine. By means of Gaussian
eliminston bring 5 into sn egquivalent lower misngular fomm
as showm in Fig 2. Split the vector & into & Hoiemanic par g,
§E PN and 5 perity part e, p € 8T such that = L" f'.:l'
Consmuct a fysiemanc encoder as follows: 1) Fill 5 with the
[m —) desired information symbels. if) Determine the
party-check symbols nsing back-substinion. More precicely,
for [& [m] cabculate

FI—IT

= Z H B 'I'ZHr = .
=l =l

What is the complexany of such an enceding scheme? Bringing
the matrix H into the desired form requires (") operations of
preprocessing. The actual encoding then requires ((F) opers-
tioms since, in general afierthe preprocessing the mamx will no
longer be sparse. More precisely, we expect that we need about
JEL;'-"- NOR operations to accomplish this encoding, where »
i5 the rate of the code.

Given that the original panity-check matrix f is sparse, one
might wonder if encoding can be acconplished in 0 w). As we
will show, typically for codes which allow Tansmission at rates
close to capacity, linesr time encoding is mdeed possible. And
for those codes for which our encoding scheme sl leads to
quadratic encoding complexity the constant fctor in front of the

H=

7= term is fypically very small so that the encoding compledty
stays mena geable up 1o very large block lengths.

Cnr proposed encoder is motvated by the above example.
Assime that by perfbeming row ard collonn DErmuGTTens o
we can bring the pariny-check mamx nto the form indicated
Fig. 3. We say that H i= in approximane lower raanglar form.
HMote that since this ansformation was accomplished solaly by
permmtiions, the marmex is sl sparse. More precizely, assume
that we bring the matrix in the form

4 BT
w281

where L1 (i~ (), & 18 (g g, 188 g e (i)
' is g (m—me, D5 gy, and, finalty, s g me—y). Further,
all these matrices are sparse” and {15 lower mianglar with ones
along the dizgonal. Multiplying this matix from the left by

(T
—ET-1 :J

&)

&)
we Zet

(A n i -

—ETA+C —ETR4D u)' '

Lat r = (5 .) whers & denotes the systematic part,
and yr» combined denote the parity part, py haﬁlmgthlr and jrs
has length (e —). The defining equation Ha?d = ¥ splits
naturally info fwo equations, namely

AT+ Bl +TpE =0 (@)

and
(=BT A+ Cw? +(—ET B+ Dypf =0 (@)
Define & == —ET=4 8 o+ Y and assumes for the moment that

15 nonsingular. We will discuss the general case shortly. Then
from (%) we conchade thet

P == —ET A+ O

Hence, once the g% (2 —m) mamx —5H—ET 4+ C)
]m.be&npm:um;nned. the determination of py can be accom-
plished in complesity (g (n—)} simply by performing

“Mor precily, sach mairix conming af most(4 o | alements.

For example: for the (3,6) LDPC code H can be transformed into:

:1|B|T

¢ | D|E

111001 10 1 0 0 0
111110 0 0 01 0 0
000001 11 1 1 110
=1 00100 01 01 1 1
0101180 10 0011
001011 0 1 1 001
1,2,3,4,5,6,7,10,11,12,8,9

By column re-ordering. This is an approximate lower triangular matrix with g=2.

: 0000 C
Then E can be made into [000 0] by Gauss elimination

1 11001 1 0 1 00 0

11111000 01 0 0

000001 11 1 1 10

4 (R I1T] 1 001 00|01 01 11
S| e

= 001100 11 00 00

M e 0 101110110000

To remove singularity of ¢ = H ﬂ one can exchange column 8 with 5. This corresponds to the

following equivalent H with column ordering.

;1|B|T
(cr|1::|a:)

1 1 1 001 1 0 1 000
1 1 11 00 0 1 01 0 0
000011 1 0 1 1 10
=1 00110 0 0 01 11
01 01 00 11 00 11
00 1L 011 0 1 1 00 1
1,2,3,4,10,6,7,5,11,12,8,9
Then dividing code word to (s, p;, p,) we have:
E.AT+P1BT+P2TTZQ
S.-MT+Po" =0
111001 10 1000
_|111100 101 _]10100 _[001110
Whered=lo00011|° B |10 T|111 0 ’M_[1o111o]
100110 00 0111

Let’s encode (1,0,0,0,0,0) =s

S.AT =[1,0,0,0,0,0]

_ =0 O OO0
O R PR O OoOR

_ OO R R,
COR R R, R

S.AT=[1101]
S.MT =[01]

T T — T—1_11

Py =S.M"(p")™ =0 1] [é ﬂ
P, =10 1]
S.AT+PBT+P,TT =0
101"
[1101]+[01] |} | +RTT=0
00
[1101]+[0100]+PT" =0
1010
[10 0 1] = P,TT = [Py, P55, Py3, Po] 8 é 1 11
0001

=P, =1,P,,=0,P,3=1,P,,=0
So
V=[100000011010]
(From Shokrollahi’s Paper)
Decoding of LDPC Codes

Decoding of LDPC Codes is performed message passing or belief propagation (BP) algorithm. BP
is an iterative algorithm where in each iteration message nodes send the likelihood of their value
to all check nodes to which they are connected and check nodes send message to variable

(message) nodes based on what they have received from other message nodes. Message nodes and
check nodes exclude what they have received from one another when they send a message.

In BP the message sent from a message node is based on that node’s received information and
what it gets from check nodes connected to it (except the one it wants to send the message to).
These are in the form of probability or likelihood ratio.

In particular, a message node v sends to a check node c (the probability or likelihood) of v having
a certain value given its observation and what it has received in the previous iteration from its
neighboring check nodes other than c. In the same way, the message ¢ sends to v is the probability
that ¢ has a certain value given all the message passed to c in the previous iteration from message
nodes other than v.

Likelihood ratio of a binary random variable x is:

P(x =0)
L@ =56=1
And the condition likelihood ratio of x given y is:
P(x =0ly)
Lxly) = 57—
P(x =1ly)

If x 1s an equi-probable random variable

L(xly) = L(y|x)

So, if ¥4, Y5, ..., ¥4 are independent random variables:

da
L@ = [Ledy

Or

d
logL(x) = z log L(x|y)[logis based ei.e In
i=1

Now assume Xy, X5, ..., X; are binary random variables and y;, 5, ..., ¥; are random variables.
We would like to find
Inl (x; @ x; @ ... B x11y1, -, Y1)
Note that if we let:
2P[x; =0ly,] —-1=p
And
2P[x; = 0|y,] —1=¢q

Then
Plx; @ x, = 0|y, 2] = P[x; = 0,x; = 0|y, y2] + Plxy = 1, x5, = 1|y,, y2] =

= P[x; = 0|y1] P[x; = Oly,] + P[x; = 1{y,]P[x; = 1]y,]
1+p14+q 1-p1l—-q 2+2pq

. . =1
2 T2 2 T2 2 TPq
So
2P[x; @ x; = 0lyy,¥,] — 1 =pgq
Therefore,
l
2P, @ % @ . ® 1lyr, o, vl = 1= | [12PGr = 0Ly — 1]
i=1
Let 4; = log, % be the log-likelihood ratio of x; given y;.
So,
A
P(x; = 0ly;) = pYTE]
2 P(= Oy — 1= S A
P Xp=VUly;))— 1= 1 = s 1
e+l Ay, M,
Or
Ai
2P(x; = 0]y;) = tanh (3)
Finally,

1+]}, tanh (%)

InLlx, @ .. ® xlys, ., y1] = In =
1 —IIi-, tanh (3)
Let ml(,lc) be the message passed from message node v to check node c in iteration L. Similarly,

denote by mﬁ? the message from c to v. Then the update equations in BP are

My, ifé= ﬂ:
9 - i
My 4 ZG"EC.H{’:] mn,' " if ¢ 2 :l.=|

by 1+ [Tvev\qv) tanh (ﬂfﬁif 2)
1~ Mvev) tanh (a2/2)

Where C,, is the set of check nodes connected to v. Similarly V. are variable nodes connected to c.
Bit-Flip Decoding Algorithm:

This method was devised by Gallager. When we compute syndromes the value of check nodes, if
they are all zero then we assume there is no error and stop.

Then we find for each variable node, the number of failed (1). Check nodes and flip the one with
maximum number of failed check nodes connected to it.

We then re-calculate the syndromes and flip the bit that is most connected to those with value 1.
We continue iteration above until either all check nodes have zero value or until a certain number
of pre-determined iterations have been done with no success (failure in this case). This simple BP
algorithm is given below:

1. Compute syndromes by r. HT = S . If all check-sums are 0 stop.
2. Find the number of failed parity check equations for each node.

Decode the number of failed check node for each message node by fi,i = 1,2,..,n.

3. Identify the set of bits S for which fi is the largest.

4. Flip bits in S.

5. Repeat steps 1 to 4 until the parity-check sums are zero (success), or a preset maximum
number of iterations is reached (decoding failure)

Example: Assume that we have used this code and have received 0000000100 that is xg = 1 and
X; = 0i+8

—PWI1+Ta+ T3+ Ta+Ta+ T+ 210 =10
= D+t ittt rgtog=0
A T4z +zs=0

i +T+tIr+Te+ I+ Tig=0

M3+ Ty +xs+ T+ =0

Step 1: Compute syndromes:
We have:
X = {xq, x5, X3, X4, X5, Xg, X7, Xg, Xo, X10} = {0,0,0,0,0,0,0,1,0,0}
This results in syndromes as:
C ={cy,cy,¢3,¢4,c53 = {1,1,1,1,0}

Obviously, this indicates an error.

Step 2: Find the number of failed parity check equations for each node:

Below table shows the frequency of occurrence of each node in the failed parity check equations:

Xi X1 X2 X3 X4 X5 X6 X7 Xg X9 X10

fi 3 2 2 3 1 1 2 4 2 3

Step 3: Identify the bits for which the frequency of occurrence is the largest. From step 2, this is
clearly xg, which has occurred in all four failed parity check equations.

Step 4: Flip bits from step 3.
By flipping xs, the code word will be X = {0,0,0,0,0,0,0,0,0,0}

This results in all zero syndromes, which means successful LDPC decoding.

