ELEC 6131: Error Detecting and Correcting Codes
Lecture 2: Introduction to Algebra

You are certainly familiar with the concept of “set”. A set is a “shapeless” ensemble of objects.
What gives shape (structure) to a set is a relationship between its elements or an operation
transforming elements of the set to each other.
A “binary” operation (it does not have anything to do with zero and one) is an operation that takes
two elements (that is why it is called binary) and gives another element. Addition or multiplication
are operations defined for the set of integers, reals, and rational numbers.
A set is said to be closed under an operation if the result of applying the operation to two elements
of the set results in an element in the set.
Take a set G with operation *. We say G is closed under * if:

forany a,b € G wehavea *b € G.
Example: the set of positive integers is closed under addition but not closed under subtraction.
Example: the set of integers is closed under multiplication but not under division.
Definition: a set G with a binary operation * is a group if the set is closed under * and:
1) The binary operation is associative:

ax(bxc)=(axb)=xc,
i.e., no need for parentheses.
i1) G contains an element e such that:
foralla D a*xe=e*xa=a

iii)For any element a € G thereisa’ € G suchthata xa’ = a’ * a = e. a’ is called the inverse of
a.

Theorem: the identity element of a group G is unique.
Proof: assume that G has two identities, say e and é. Then,
é=¢éxe=e.
Theorem: the inverse of an element of group is unique.
Proof: assume that a € G has two inverses a’ and a . Then,
a=a'+xe=ax*(a*xa)=("*a)*a =e*xa =a.
Example: the set of integers with operation + forms a group. The identity element is zero.
Example: the set of integers with multiplication is not a group. Why?

Question: is the set of rational numbers with multiplication a group? If not, what should we do to
form a group under multiplication?

Finite groups:



Take a set consisting of 5 elements, G = {0, 1,2, 3,4}. It is obvious that under addition (usual
addition) this is not a group. For one thing it is not even closed under addition. For example, 3 +
2 =5 € G. Secondly, there is no way we can define inverse.

To find an operation that when applied to G makes it a group, we can use addition followed by
some “truncation” or in proper terms make “modulo” operation. This means to divide the result of
ordinary addition by 5 and take the remainder as the modulo-5 sum.

H: | 0 1 2 3 4
ol o 1 2 3 4
1 1 2 3 4 0
2 | 2 3 4 0 1
3 3 4 0 1 2
4 1 4 o 1 2 3

In general, for G = {0, 1, 2, ..., m — 1} we use modulo-m addition. That is, we divide the result
a + b by m and take the remainder r as the modulo-m sum.

G =1{0,1,2,...,m — 1} forms a group under modulo-m addition:

a)

b)

c)
d)

First of all, when we divide a + b by mwe geta+b =mq +r, where 0 <r <m — 1.
Thatisr =aH b € G. So, G is closed under H.
Since the ordinary is associative we have a+b+c=(a+b)+c=a+ (b+c).
Dividinga+b+cbym,wegeta+b+c=qm+r with 0 <r <m. Dividing a + b
by m, we get a + b = gym + 1y, where again 0 < r; <m. Soa HH b = ry. Dividing r; +
¢ by m, we get

rn+c=qym+ry, 0<rn<m
So mHc=rnand (aElHb)Hc=r,. Addinga+b=qgqm+rtor; +c =qg,m+r,,
we get

a+b+c=(q+q)m+n

Therefore, (a HH b) HH ¢ = r,. We can also show that a HH (b H ¢) = r,. Hence, (a H
b) Hc = a H (b H c). That is modulo-m addition is associative.
0 is the identity element since 0 FHa = a HH0 = a forany a € G.
a+(m—a)=msoal (m—a)=0. Therefore, m — a is the inverse of a and since
0 <m —a <m— 1, we can say that each element of G has an inverse.

This is called an additive group.

Multiplicative Group:

Let p be a prime. The set G = {0, 1, 2, ..., p — 1} under modulo-p multiplication [-] form a group.

a [-]1 b is defined as the remainder of dividing the real multiplication result of a - b by p. Since a -
b =gqp +rfor 0 <r <p,theset G is closed under [-].

It is easy to show that [-] is also commutative, associative, and the identity element is 1.



Take i € G. It is clear that since p is a prime, i and G are mutually prime and we can find a and
bsuchthata-i+b-p=1lora-i=—-b-p+1.Thatisa [[] i=1i [] a= 1fori € G and for
i € G, then we divide a by p to geta = g - p + r and 7 is the inverse of i since:

ai=(q-p+n)i=-b-p+l-or-i=—(b+qip+1

Modulo-5 multiplication:

A woo — 1]
AW =~
W —= BN
N A=W W
— N W AN

Sub-groups:

A subset of G say H is said to be a sub-group of the group G if it is group under the group operation
(of group G).

1) first of all, H has to be closed under the operation *.
2) secondly, any element of H should have an inverse with respect to * that is in H.

There is no need for checking other two properties since for a € H we have its inverse a’ € H and
therefore, a x a’ = e € H (due to H being closed under *).

Also, since elements of H are also elements of G, associative property holds automatically. So, we
have:

Theorem 3: Let G be a group under * and let H € G. The H is a subgroup of G iff:
1) H is closed under *

ii) for any a € H, a’ € H where a' is the inverse of a.

Example: The set of integers Z is a group under + (read addition).

a) set of even numbers is a subgroup of Z.
b) the set of odd numbers is not a subgroup of Z.

Definition: let H be a subgroup of the group G. let a be an element of G.

- the set of elements a * H = {a * h: h € H} is called the left coset of H.
- the set of elements H * a = {h * a: h € H} is the right coset of H.

If the group G is commutative (Abelian), then every left coset a * H is identical to the right coset
H * a. We refer to them as just cosets.



The importance of the notation of coset is that cosets of a subgroup partition the elements of the
original group. That is, they divide the elements of the original group into non-overlapping sets.
The following theorems show this.

Theorem 4: Let H be a subgroup of a group G with operation *. No two elements of a coset of H
are identical.

Proof: consider the coset a * H = {a x h: h € H}. Assume that two elements of a * H say a * hy
and a * h, are identical, where h; # h,. Let a! be the inverse of a. Then,

atx(axhy) =a"*(axhy)
or
(atxa)*h; =(at*a)=h,
exh, =exh, = hy=h, = contradiction.

Theorem 5: two different cosets are disjoint. That is, no two elements in two different cosets of a
subgroup H of the group G are identical.

Proof: let a * H and b * H be two different cosets of H witha € G and b € G. Let a * h; and b *
h, be two elements in a * H and b * H, respectively. Assume that a * h; = b * h,. Denote the
inverse of hy by h; ~'. Then,

(@xhy)*hy ™ = (bxhy)*hy ™
Sax(hyxh, ) =bx(hy*xh ")
>axe=bxh
= a =b * hy, where hy = hy * hy "
Now,

a=bxh; = axH=(bx*h3)*H
={(b x h3) xh:h € H}
={b* (h*h3):h; € H}
={b * hy:hy € H}
= b * H = contradiction.

Theorem 6 (Lagrange’s theorem): let G be a finite group of order n and let H be a subgroup of
order m. Then, m divides n and the partition G /H consists of % cosets of H.

Proof: due to Theorem 4, every coset of H consists of m elements of G. Let i be the number of
cosets of H. Then, we have n = i - m. Therefore, m dividesn and i = %



Fields:

A field is a set with two operations. These two operations can be called addition and multiplication.
However, they do not need necessarily be identical to real addition and real multiplication as is the
case in real field (set of real numbers under normal addition and multiplication).

A field is roughly speaking a set of elements with two operations such that performing these two
operations and their inverse we do not leave the set. In another word, the set is closed under two
operations and their inverse.

Example: the set of real numbers R under addition (and its inverse subtraction) and multiplication
(also division) form a field.

Definition of a field:

Let F be a set of elements. Let two operations “addition (+)” and “multiplication (-)” be defined
on elements of F. The set F together with + and . is a field if:

1) F is a commutative (Abelian) group under +. The identity element under + is called “zero
element” or “additive identity”.

i1) the set of non-zero elements of F form a commutative group under multiplication. The identity
element with respect to - is called “unit element” or “multiplicative element”. It is denoted by 1.

ii1) multiplication is distributive with respect to addition. That is, for a, b, ¢ € F, we have:
a-(b+c)=a-b+a-c
Properties of fields:
Property I: for every element a € F, we have:
a-0=0-a=0.
Proof:
a=a-1=a-(1+0)=a+a-0 (add —a to both sides)
—-at+a=—-a+a+a-0
>0=0+a-0
=a-0=0
Property II: fora # Oand b # 0, a,b € F, wehavea-b # 0.
Proof: since the set of non-zero elements of F is closed under multiplication, a - b # 0.
PropertyIlll: a-b =0anda # 0= b = 0.
Proof: Direct consequence of II. Since if b # 0, thena - b # 0.

Property IV: for any two elements a and b of F, we have:



—(a-b)=(—a)-b=a-(-b)
Proof:
0=O-b=(a+(—a))-b=a-b+(—a)-b
So, (—a) - b is the additive inverse of a * b, i.e.,

—(a-b) =(=a)-b

Similarly, we can show —(a - b) = a - (—b).
Property V:fora # 0,a-b=a-c > b =c.
Proof: let multiplication inverse of a be a~1. Multiply both sides of a-b = a-c by a™?!
al-(a-b)=al-(a-0)
s>@t'a)b=(@'a)c
=>1b=1c>b=c

Example: consider the set {0, 1} with modulo-2 addition and modulo-2 multiplication.

+ 0 1 mod-2 +

0 0 1

1 1

. 0 1 mod-2 multiplication
0 0

1 0 1

This is called the Galois Field and is denoted by GF(2).
Example: let p be a prime. The set {0,1,2,-:-,p — 1} forms a commutative group under
multiplication modulo-p.

Using the fact that real multiplication is distributive over real addition, we can easily show that
modulo-p multiplication is distributive over modulo-p addition. So, the set {0,1,2,+--,p — 1}isa
field of order p under modulo-p multiplication and addition. It is called a prime field since p is a
prime. GF(2) is a special case of prime field for p = 2.

Some properties of finite fields:

Take the finite field with g elements, say GF(q). Let’s add 1 to itself to get the following sums:

1 2 3
Zl:l , 21:1-}-1 ) 21:1_}_14_1 e
i i i=1

K, 1=1+1+-+1 ktimes



Since the field is finite, all these sums cannot belong to it and be different. Since the field is closed
under +, these sums have to belong to GF(q). So, they cannot be all different. Hence, for some
m < n, we should have:

So, there is a smallest number A that ¥, 1 = 0. A is called the characteristic of GF(q).
Theorem 7: the characteristic A of a finite field is prime.

Proof: assume that A is not a prime. Therefore, A = km for integers k and m which are smaller
than A. Since the field is closed under multiplication,

k m
(Z 1) : <Z 1) € GF(q).
i=1 i=1
From the distributive law, we have
k m km
>1)(X1)-2n

i=1 i=1 i=1
But since YX 1 = ¥}, 1 = 0, either ¥, 1 or ¥™, 1 should be equal to zero. It contradicts the
fact that A is the smallest number such that Z?‘zl 1=0.
For any two integers k and m < 1 we have, ¥¥ , 1 # Y™, 1. This is true since if ¥, 1 = Y™, 1,

then Y77%1 = 0. But m — k < 1 and this contradicts the fact that A is the characteristic of the
field. So, the sums
1= Z 1,

1 2 A
1,
i=1 =1 =1

3
1’...’21 =0
i=1 i

are A distinct elements of GF(q). This set of sums a subset of GF(q) is itself a field under + and -
and 1s denoted by GF (A). It is a subfield of GF (q).

Therefore, any finite field of q elements with characteristic A has a subfield of A elements. It can
be proved that if g # A, then g is a power of A.

Now, let’s see how multiplication works when applied repeatedly. Take an element of the field
say a

Cll = 1,a2 :a'a'a3 =a-a-a,-
Since GF(q) has a finite number of elements and also it is closed under multiplication, these

products have to belong to GF (q) and therefore, cannot be distinct. So, there must be some k < m
such that



ak=am = am k=1

So, there must be a smallest number n such that a™ = 1. This number, n, is called the order of the
field element a.

Now, the products al,a?,---,a™ 1,a™ = 1 are all distinct. They form a field with n elements.
Firstly, it has the unit element 1. Secondly, considering a‘-a’ = a'*/ ifi+j<nandi+j=
n+r if i+j>n for some r<n. So, at-a/ =a™" =a"-a" =1-a" =a” € field of n
elements. Also, a' - @™t = a™ = 1so a™ ! is the inverse of a’. The properties of associativity and
commutativity are inherited from GF(q). So, a® = 1,a',a?,---,a™ ! form a commutative group
under multiplication. A group such as this, i.e., one that has one element whose powers constitute
the whole group is called cyclic.

Theorem 8: let a be a non-zero element of a finite field GF(q). Then, a7 = 1.

Proof: let by, by, -+, by_1 be the g — 1 non-zero elements of GF(q). Multiply each by a,
a-by,a-by,-,abg_q.

These are non-zero and distinct. Multiply them to get

(a'bl)'(a'bz)""'(a'bq_l) =by by byq
ora?q1- (by - by - ""bq—l) =by-b,- ""bq—l

= qil=1
Theorem 9: let a be a non-zero element of GF(q). The order of a, say n, divides ¢ — 1.

Proof: suppose n does not divide ¢ — 1. Then, g —1 =k -n +r for some 0 < r < n. Then,
al™t = gk"*7 = gkn . g" = (@™* -a". But a¥"' =1 and a™ = 1. Therefore, a” = 1. This
contradicts the assumption that n is the order of a since r < a.

In a finite field GF(q), a non-zero element is called primitive if its order is g — 1. It is clear that
powers of a primitive element generate all the non-zero elements of GF(q).

Every finite field has a primitive element.
Example: take GF (7) with modulo-7 operations:

+ 0 2 3 4 5 6 modulo-7 addition

ANV BN W —=O
NN Bk WD — O
S NN BN WN ==
—_— O N L N W DN
N = OO kW
W= OO N b
A WD —= OO W
WD W~

and



modulo-7 multiplication

DN W~ B NDON
A= NN WOW
WA N —= O+
N B ON—= WL Ol

6
0
6
5
4
3
2
1

AN B W~ O
SO OO OO OO
NN B W = O

Take element 3
31 =3, 32=3-3=2, 33 =6, 3% =4, 35 =5, 36 =1.
So, 3 is a primitive element of GF (7). But take 4,
41 =4, 42 =44 =2, 43 =4-4% =1,
So, order of 4 is 3.
Binary field:

Recall that we said (showed) that a finite field with g elements only exists when g is prime or it is
a power of a prime. So, we have GF (q) or GF (q™). The smallest prime is 2 and we saw that GF (2)
with respect to modulo-2 addition (in digital electronic and logic you may have seen it as exclusive
OR: XOR) and modulo-2 multiplication (AND in digital logic) form a field. In fact, this is the field
that we will be most interested in (also its extended field G (2™)) in this course.

GF(2) has elements 0 and 1. Addition is performed modulo-2 that is 0+1=1, 1+1=0, and 1+1+1=1
etc. any equation relating variables in this field has coefficient 0 or 1. For example, X +Y + Z =
1. We do not have terms such as 2X, 3Y etc,since 2X =X+ X =0and3Y =Y +Y +Y =Y.

Polynomials over GF(2):

Assume that you have a binary number f = f,, f,_1 - fo Written in a shift register. To find the
value of f in decimal you add f, to 2f;,4f,, ---. That is,

f=f0+f1'2+f2'22+f3-23+..._|_fn.2n.

2 in fact is the shift operation in shift register. Replacing 2 by a generic variable X, we get a
polynomial in X with binary coefficients

f(X) =f0 +f1X+f2X2 -I-ng3 + "'+ann.

The largest power of X with non-zero coefficient is the degree of the polynomial. In f(X) above
if f, # 0, then f(X) has degree n. If we have f; = 0,i > 1, then f(X) = f,, i.e., it is constant
function with degree zero. If f; # 0, but f; = 0 for i > 2, then we have a polynomial of degree
one:

f&X) = fo+ fiX.



So, we have two functions X and 1 + X. For 2, we have four functions X2, 1 + X2, X + X2, and
1+ X + X?2. In general, we have 2" functions of degree n over GF(2).

Addition and multiplication of functions:

fFX)=fo+iX+ X2+ X3+ -+ f, X" can be added to g(X)=go+g: X+ -+
fmX™ m < nto get

fX)+ gX) = (fo+g0) +(fr +g)X + -+ (fn + gGndX™ + - + X"
For example, if f(X) =1+ X+ X3+ X%and g(X) =1+ X? + X3 + X* + X7, then
FXO+ g =X+X*+X*+X°+X.
Multiplying f(X) by g(X) we get
fX) gX) =[fo + X + LX2 + X% + -+ 1 X"] - [go + g1 X + - + fX™]

= fogo + (fog1 + 9of)X + (foga + fr91 + f290)X% + -+ (fogi + f1gi—1 + - + figo) X"
+ ot fugm X

Properties of polynomial operations over GF(2):
1) commutativity:
a(X)+ b(X) = b(X) + a(X) and
a(X)-b(X) = b(X) -a(X)

ii) associativity:

a(X) + [b(X) + c(X)] = [a(X) + b(X)] + c(X) and

a(X) - [b(X) - c(X)] = [a(X) - b(X)] - c(X)

iii) distributivity of - over +:

a(X) - [b(X) +c(X)] =aX)-b(X) + a(X) - c(X).
Division of polynomials:

Dividing f(X) by g(X) we either get a remainder zero and say g(X) divides f(X) or we get a
function r(X) with degree less than that of g(X). That is

fX) =qX) - gX) +r(X)

and q(X) is called the quotient. Let’s divide f(X) = 1+ X + X*+ X> + X6 byg(X) =1+ X +
X3,



Sy x2 e 9N
X5x%) ) Pa xSt e X x)
/g-r,ﬁrﬂ
;\'/7%4(’8+X+!
Xgim/"-;-x?'

X?-:r)(-\-‘ e« T(X)

SO, X+ X+ X*+X+1=(X3+XHX3+X+1D+X>+X+1.

Now, let’s divide f(X) = X* + X3 + X? + 1 by X + 1. What do you expect to get as remainder?

Let’s see:

X35 X+

X+ Iﬂa— X% )
/Lr-fﬂ
e,
x?+#

X+
X+ !

Could we have found out that f(X) is dividable by X + 1 without doing the division?

Notethat X +1 =0 = X = 1. Now, let X = 1 in f(X).
fHO=1+12+13+1*=1+1+1+1=0.
So, X = 1 is aroot of f(X) and therefore, it is divisible by X + 1.

Definition: a polynomial is called irreducible if it is not divisible by any polynomial.



If the degree of f(X) is n, we only need to check those with degrees in the range of 1 ton — 1,
e, 0 <k <n.

Take the polynomial of degree 2, i.e.,
X% X?+1, X*+X,and X*>+X+ 1.

Only the last function X? + X + 1 is irreducible. The others have roots 1 or 0 and therefore, are
divisible by X or 1 + X.

Theorem 10: any irreducible polynomial of degree m divides X" ~* + 1.

Example: the polynomial f(X)=X3>+X+1 is irreducible since f(0)=f(1) =1 and
therefore, it is not divisible by X and X + 1. Note that we do not check for polynomials of degree
2 (why?). According to Theorem 10, X3 + X + 1 should divide X2°~1 + 1 = X7 + 1. Let’s verify:

)(z{"rxz»fxﬂ

e X1 ) P2

Xy Sy

/’g-r)(q'-!-J
/X{\«XS-* )/2

/Vr-*)(&-w/i-rl
X % x

X3 X+
X34 x+)
U )

Definition: an irreducible polynomial p(X) of degree m is called primitive if the smallest positive
integer n for which p(X) divides X" + 1isn = 2™ — 1.

Example: recall the example of f(X) = X?+ X + 1 with degree 2. We showed that it is
irreducible. We can see that the smallest n for which f(X) divides X™ + 1isn = 2™ — 1 = 22 —
1=3.S0, f(X) = X? + X + 1 is a primitive polynomial.

GF(4) or GF(22) field:

We said that if q is a prime or power of a prime, then we can have a field GF (q). It is obvious that
we cannot form a field over integers 0, 1, 2, 3 with modulo-4 addition and multiplication due to
the fact that 4 is not a prime and 1, 2, 3 cannot form a group under modulo-4 multiplication. So,



we choose elements of GF (4) as polynomials. Since the field will have only 3 non-zero elements,

if we take an element a of it and form:
a®=1 al=aq, a?=a-a, a®=a-a?, ..

so all these powers of a have to collapse into 3. This means that a® = a - a? has to be one of the
non-zero elements 1, a, a?.

Letting a® = a - a? = a = a? = 1 = not even 3 distinct elements.
And a® = a- a? = a? = a = 1 = not a solution either.
Lettinga® =a-a?=1=>a?=a L.
So, we have the field:

GF(2) ={0,1,a,a” 1} ={0,1, a, a?}.

a? = a~! needs to be the sum (modulo addition) of two other members 0 + 0 =0, 0+ 1 = 1,
0O+a=a,1+1=0,1+ a. Among these only 1 + « is different from the first three elements
of 0,1, a. So, we write GF(2?) = {0,1,a,1+ a}. Thatisa’? =1+ aora’?+a+1=0.

Important observation:

Recall that p(X) = X% + X + 1 is a primitive polynomial. In fact we have used this polynomial to
generate GF (4). The procedure is as follows:

Write p(a) = a? + « + 1 = 0 and get a® = a + 1. Use this to generate:

a® =1
al =«
a’=1+a

ad=a(l+a)=a+a’?=a+1+a=1
etc.

GF(4) is very important in Quantum Physics and Quantum Coding as they represent four Pauli
Matrices gy, 01,05,03 or I, X, Y, Z.



m m

3 1+x+x3 14 1+ X+ X6+ x10 4 x14
4 1+Xx+x* 15 14X+ X015
5 1+4+Xx24+ %5 16 1+ x+ x>+ x12 4 x16
6 1+X+x6 17 1+x3+xV
7 1+x3+x7 18 1+ Xx7+x18
8 14+X2+X3+X'+X8 19 14+ X+X24+x54x019
9 1+Xx*+Xx° 20 1+ X34 x20
10 14 x3+x10 21 14+ x24x2
11 14+ x24+x1 2 1+X+Xx2

12 14 X+X+Xx0+x12 23 14x54x2
13 14+4X+X3+x4+x3 24 14+X+X2+X74+x%

List of some primitive polynomials

A useful property of polynomials over GF(2): f2(X) = f(X?). That is if f(X) = fo + 1X +
[ X%+ + fX" then, f2(X) = fo + fiX? + LX* + -+ [ X2

Proof: forn =0= f(X) = fo, = f2(X) = fo - fo = foand f(X?) = fo = f2(X) = f(X?)

Induction step: if f2(X) = f(X?) for f(X) = fo + f1X + -~ + f X¥ then, it is true for g(X) =
fot+ fiX + o+ filX¥ + frrr X = OO + frp X

G200 = [f(X) + fisr X2
G2(X) = F2(0) + F) fiert XK+ FX) fropn XEFL 4 2, X204
= f2(X) + fiora X20HD
= g(X?).

So, since the property is true for n = 0, it is true for n = 1, and since it is true for n = 1, it is true
for n = 2 and so on.

Constructing GF(2™):

We saw earlier how to form GF(4) = GF(2%). We start with an element a and form a® = 1,a' =
a,a’=a-a,a=a-a? . So, we will have the set

F={01,aa?,a,-}
However, we need to collapse the set somehow to have only 2™ distinct elements.

Take a primitive polynomial p(X) and let p(«@) = 0. That is let a be a root of p(X). We know that
p(X) divides X2" "1 4+ 1.S0, X2" "1 + 1 = q(X)p(X).Let X = atoget a®" 1 4+ 1 = q(a)p(a).
Since p(a) =0, we have a? 14+ 1=0 or a?"~1 =1. So, the field will have elements

m_
0,1,aa? ,a% ~? So
b

GF(2™) ={0,1,a,a?, -, a? 2}



Example: GF (2%)
We use the primitive polynomial p(X) = 1+ X + X*. Letting p(a) = 1+ a + a* = 0, we get
a*=a+1.

Three representations for the 1
of GF2%) generatedby p(X) =1+ X +;:fﬂeﬂts

Power Polynomial 4-Tu
le
representation representation represell:tation

0 0 (0000)
. 1 (1000)
o « (0100)
o a (0010)
o @  (0001)
25 lta , (1100)
& a+tal (0110)
7 a’+a®  (0011)
o l+a +a?  (1101)
ob 1 2
) +a (1.010)
:m L 2+ar3 (0101)
tetea (1110)
":; a+a? +a3 (0111)
. l+te+a?+a®  (1111)
" 1 +e®+a®  (1011)
alé 1 :
+a®  (1001)

The usefulness of having both polynomial and power representation is that we can use polynomial
representation to do modulo-2 addition of bits of a symbol and the power representation

performing multiplication using a log and an anti-log table to get the result.



