
ELEC 6131: Error Detecting and Correcting Codes 
Lecture 4: Linear Block Codes 

 

Linear block codes: 

In a digital communication system, the sequence of bits to be transmitted are arranged as blocks 
of 𝑘𝑘 bits. So, there are 2𝑘𝑘 possible 𝑘𝑘-tuples to be transmitted. In a block code, the encoder assigns 
𝑛𝑛 bits to each 𝑘𝑘-tuple where 𝑛𝑛 > 𝑘𝑘. For a block code to be useful we require that all of 2𝑘𝑘, 𝑛𝑛-tuples 
(called codewords) be distinct. That is there should be a 1-to-1 correspondence between the input 
𝑢𝑢 and the output 𝑣𝑣 of the encoder. 

Unless the codewords are structured according to a certain structure, the encoding (and obviously 
decoding) will be prohibitively complex. That is why we are interested in linear block codes. A 
code is linear if a linear combination of any two of its codewords is a codeword, or equivalently:  

Definition: a block code of length 𝑛𝑛 and 2𝑘𝑘 codewords is an (𝑛𝑛, 𝑘𝑘) linear code if and only if its 
2𝑘𝑘 codewords form the 𝑘𝑘-dimensional subspace of the vector space of 𝑛𝑛-tuples over 𝐺𝐺𝐺𝐺(2).  

A linear (𝑛𝑛, 𝑘𝑘) code 𝐶𝐶 is a 𝑘𝑘-dimensional subspace of all the binary 𝑛𝑛-tuples (𝑉𝑉𝑛𝑛). So, we can find 
𝑘𝑘 linearly independent members of 𝐶𝐶, say 𝑔𝑔0,𝑔𝑔1,⋯ ,𝑔𝑔𝑘𝑘−1 such that any 𝑣𝑣 ∈ 𝑉𝑉 can be written as: 

𝑣𝑣 = 𝑢𝑢0𝑔𝑔0 + 𝑢𝑢1𝑔𝑔1 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑔𝑔𝑘𝑘−1. 

Arranging these 𝑘𝑘 linearly independent in a matrix: 

𝐺𝐺 =

⎣
⎢
⎢
⎡
𝑔𝑔0
𝑔𝑔1
⋮

𝑔𝑔𝑘𝑘−1⎦
⎥
⎥
⎤

= �

𝑔𝑔00 𝑔𝑔01 ⋯ 𝑔𝑔0,𝑛𝑛−1

𝑔𝑔10 𝑔𝑔11 ⋯ 𝑔𝑔1,𝑛𝑛−1
⋮

𝑔𝑔𝑘𝑘−1,0

⋮
𝑔𝑔𝑘𝑘−1,1

     ⋮
⋯ 𝑔𝑔𝑘𝑘−1,𝑛𝑛−1

� 

where 𝐺𝐺 is a 𝑘𝑘 × 𝑛𝑛, binary matrix.  

Let 𝑢𝑢 = (𝑢𝑢0, 𝑢𝑢1,⋯ , 𝑢𝑢𝑘𝑘−1) be the message to be sent. Then, the codeword can be given as: 

𝑣𝑣 = 𝑢𝑢 ∙ 𝐺𝐺 = (𝑢𝑢0, 𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1)

⎣
⎢
⎢
⎡
𝑔𝑔0
𝑔𝑔1
⋮

𝑔𝑔𝑘𝑘−1⎦
⎥
⎥
⎤

= 𝑢𝑢0𝑔𝑔0 + 𝑢𝑢1𝑔𝑔1 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑔𝑔𝑘𝑘−1. 

That is, rows of 𝐺𝐺, span or generate 𝐶𝐶. That is why 𝐺𝐺 is called the generator matrix. 

Example: (Hamming code) 

Consider (7,4) code we saw before: 



𝐺𝐺 =

⎣
⎢
⎢
⎡
𝑔𝑔0
𝑔𝑔1
𝑔𝑔2
𝑔𝑔3⎦
⎥
⎥
⎤

= �

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1
1

1
0

1 0 0 1 0
1 0 0 0 1

� 

Let’s message be 𝑢𝑢 = (1 1 0 1). Then, 

𝑣𝑣 = 1 ∙ 𝑔𝑔0 + 1 ∙ 𝑔𝑔1 + 0 ∙ 𝑔𝑔2 + 1 ∙ 𝑔𝑔3 

= (1101000) + (0110100) + (1010001) 

= (0001101) 

Example: (7,4) linear block code: 

message codeword 
0000 0000000 
1000 1101000 
0100 0110100 
1100 1011100 
0010 1110010 
1010 0011010 
0110 1000110 
1110 0101110 
0001 1010001 
1001 0111001 
0101 1100101 
1101 0001101 
0011 0100011 
1011 1001011 
0111 0010111 
1111 1111111 

 

Definition: a block code is called systematic if its message bits are consecutive and so are its parity 
bits. 

parity message 
 

 

The generator of a systematic code consists of a 𝑘𝑘 × 𝑘𝑘 identity matrix (to repeat the message bits) 
and a 𝑘𝑘 × (𝑛𝑛 − 𝑘𝑘) parity matrix to generate parity bits. 

𝐺𝐺 =

⎣
⎢
⎢
⎡
𝑔𝑔0
𝑔𝑔1
⋮

𝑔𝑔𝑘𝑘−1⎦
⎥
⎥
⎤

= �

𝑝𝑝00 𝑝𝑝01 ⋯ 𝑝𝑝0,𝑛𝑛−𝑘𝑘−1    1 0 ⋯ 0
𝑝𝑝10 𝑝𝑝11 ⋯ 𝑝𝑝1,𝑛𝑛−𝑘𝑘−1     0 1 ⋯ 0
⋮

𝑝𝑝𝑘𝑘−1,0

⋮
𝑝𝑝𝑘𝑘−1,1

 ⋮     
⋯ 𝑝𝑝𝑘𝑘−1,𝑛𝑛−𝑘𝑘−1 0 0 ⋯ 1

� 

𝑛𝑛 − 𝑘𝑘 digits 𝑘𝑘 digits 



So, 𝐺𝐺 = [𝑃𝑃  𝐼𝐼𝑘𝑘].  

For an input 𝑢𝑢 = (𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1), the output of the encoder is: 

𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−1) = (𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1)𝐺𝐺. 

So, 𝑣𝑣𝑖𝑖 = 𝑢𝑢0𝑝𝑝0𝑖𝑖 + 𝑢𝑢1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑝𝑝𝑘𝑘−1,𝑖𝑖 for 0 ≤ 𝑖𝑖 < 𝑛𝑛 − 𝑘𝑘 and 𝑣𝑣𝑛𝑛−𝑘𝑘+𝑖𝑖 = 𝑢𝑢𝑖𝑖 for 0 ≤ 𝑖𝑖 < 𝑘𝑘. 

Going back to our (7,4) example: 

𝑣𝑣 = (𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1) �

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1
1

1
0

1 0 0 1 0
1 0 0 0 1

�. 

Therefore, 

𝑣𝑣0 = 𝑢𝑢0 + 𝑢𝑢2 + 𝑢𝑢3 

𝑣𝑣1 = 𝑢𝑢0 + 𝑢𝑢1 + 𝑢𝑢2 

𝑣𝑣2 = 𝑢𝑢1 + 𝑢𝑢2 + 𝑢𝑢3 

𝑣𝑣3 = 𝑢𝑢0 

𝑣𝑣4 = 𝑢𝑢1 

𝑣𝑣5 = 𝑢𝑢2 

𝑣𝑣6 = 𝑢𝑢3. 

Parity check matrix: 

Let 𝐺𝐺 be the generating polynomial of a code 𝐶𝐶. Form an (𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛 matrix 𝐻𝐻 whose rows are 
orthogonal to all rows of 𝐺𝐺. For a systematic code 𝐺𝐺 = [𝑃𝑃  𝐼𝐼𝑘𝑘] and 𝐻𝐻 = [𝐼𝐼𝑛𝑛−𝑘𝑘  𝑃𝑃𝑇𝑇], where 𝑃𝑃𝑇𝑇 is 
the transpose of 𝑃𝑃. That is: 

𝐻𝐻 = [𝐼𝐼𝑛𝑛−𝑘𝑘  𝑃𝑃𝑇𝑇] = �

1 0 0 ⋯ 0         𝑝𝑝00  ⋯          𝑝𝑝𝑘𝑘−1,0

0 1 0 ⋯ 0         𝑝𝑝01  ⋯          𝑝𝑝𝑘𝑘−1,1

⋮
0

⋮
0

  ⋮    
0 ⋯ 1 𝑝𝑝0,𝑛𝑛−𝑘𝑘−1 ⋯ 𝑝𝑝𝑘𝑘−1,𝑛𝑛−𝑘𝑘−1

� 

Then, we have: 

𝐺𝐺 ∙ 𝐻𝐻𝑇𝑇 = 0. 

Therefore, for any 𝑣𝑣 ∈ 𝐶𝐶 ⇒ 𝑣𝑣 = 𝑢𝑢 ∙ 𝐺𝐺 ∙ 𝐻𝐻𝑇𝑇 = 0. 

For the (7, 4) Hamming code: 

�
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

�. 



Note that a parity check matrix can generate an (𝑛𝑛,𝑛𝑛 − 𝑘𝑘) code. Each codeword of this code, 𝐶𝐶𝑑𝑑 
is orthogonal to each codeword of 𝐶𝐶. 𝐶𝐶𝑑𝑑 is called the dual code of 𝐶𝐶. 

To encode a linear block code, we use XOR gates to form parities. Following figure shows how a 
systematic linear block code is encoded: 

Bits of the message are fed to a shift register and also go to the channel. When they are in the shift 
register, they are linearly combined according to: 

𝑣𝑣𝑖𝑖 = 𝑢𝑢0𝑝𝑝0𝑖𝑖 + 𝑢𝑢1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑝𝑝𝑘𝑘−1,𝑖𝑖, 

and placed in an output register and fed to channel. 

 

For the (7, 4) code: 

 



Syndrome: 

Assume that the message 𝑢𝑢 is encoded as 𝑣𝑣 = 𝑢𝑢 ∙ 𝐺𝐺. If there is no error, at the receiver we have 
𝑟𝑟 = 𝑣𝑣 and no need for error detection and error correction. But if there is an error, we get: 

𝑟𝑟 = 𝑣𝑣 + 𝑒𝑒, 

where 𝑒𝑒 = (𝑒𝑒0, 𝑒𝑒1,⋯ , 𝑒𝑒𝑛𝑛) is an error vector. If we multiply 𝑟𝑟 by 𝐻𝐻𝑇𝑇, we get: 

𝑟𝑟 ∙ 𝐻𝐻𝑇𝑇 = �𝑣𝑣 + 𝑒𝑒� ∙ 𝐻𝐻𝑇𝑇 = 𝑣𝑣 ∙ 𝐻𝐻𝑇𝑇 + 𝑒𝑒 ∙ 𝐻𝐻𝑇𝑇 = 𝑒𝑒 ∙ 𝐻𝐻𝑇𝑇 

It is important to note that the result does not depend on the message, but on the error pattern 𝑒𝑒. 
We call the vector 𝑠𝑠 = 𝑟𝑟 ∙ 𝐻𝐻𝑇𝑇 the syndrome. Since 𝑟𝑟 is an 𝑛𝑛-vector and 𝐻𝐻𝑇𝑇 is 𝑛𝑛 × (𝑛𝑛 − 𝑘𝑘), there 
are (𝑛𝑛 − 𝑘𝑘) bits in vector 𝑠𝑠. So, 𝑠𝑠 can point to 2𝑛𝑛−𝑘𝑘 patterns (one correct transmission 0, 0,⋯ , 0 
and 2𝑛𝑛−𝑘𝑘 − 1 error patterns). 

Example: consider the (7, 4) code. Let 𝑟𝑟 = (𝑟𝑟0, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5, 𝑟𝑟6) be the received vector (output 
of demodulator). Then the syndrome  

𝑠𝑠 = (𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2) = (𝑟𝑟0, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5, 𝑟𝑟6)

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0
1
0
1
1

0
1
1
1
0

1
0
1
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

or: 

𝑠𝑠0 = 𝑟𝑟0 + 𝑟𝑟3 + 𝑟𝑟5 + 𝑟𝑟6 

𝑠𝑠1 = 𝑟𝑟1 + 𝑟𝑟3 + 𝑟𝑟4 + 𝑟𝑟5 

 
Syndrome circuit for a linear systematic (𝑛𝑛,𝑘𝑘) code 



 

 
Syndrome circuit for the (7, 4) code 

 
We saw that: 

𝑠𝑠 = 𝑟𝑟 ∙ 𝐻𝐻𝑇𝑇 = 𝑒𝑒 ∙ 𝐻𝐻𝑇𝑇 . 

So, we can write 𝑠𝑠𝑖𝑖’s as: 

𝑠𝑠𝑖𝑖 = 𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑛𝑛−𝑘𝑘𝑝𝑝0𝑖𝑖 + 𝑟𝑟𝑛𝑛−𝑘𝑘+1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑟𝑟𝑛𝑛−1𝑝𝑝𝑘𝑘−1,𝑖𝑖,        𝑖𝑖 = 0, 1,⋯ ,𝑛𝑛 − 𝑘𝑘 − 1. 

Since 𝑟𝑟 = 𝑣𝑣 + 𝑒𝑒, we have: 

𝑠𝑠𝑖𝑖 = (𝑣𝑣𝑖𝑖 + 𝑒𝑒𝑖𝑖) + (𝑣𝑣𝑛𝑛−𝑘𝑘 + 𝑒𝑒𝑛𝑛−𝑘𝑘)𝑝𝑝0𝑖𝑖 + ⋯+ (𝑣𝑣𝑛𝑛−1 + 𝑒𝑒𝑛𝑛−1)𝑝𝑝𝑘𝑘−1,𝑖𝑖. 

But 𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑛𝑛−𝑘𝑘𝑝𝑝0𝑖𝑖 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑝𝑝𝑘𝑘−1,𝑖𝑖 = 0 and  

𝑠𝑠𝑖𝑖 = 𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑛𝑛−𝑘𝑘𝑝𝑝0𝑖𝑖 + 𝑒𝑒𝑛𝑛−𝑘𝑘+1𝑝𝑝1𝑖𝑖 + ⋯+ 𝑒𝑒𝑛𝑛−1𝑝𝑝𝑘𝑘−1,𝑖𝑖,        𝑖𝑖 = 0, 1,⋯ ,𝑛𝑛 − 𝑘𝑘 − 1. 

This shows that 𝑛𝑛 − 𝑘𝑘 syndromes provide us with 𝑛𝑛 − 𝑘𝑘 equations about error pattern. There are 
2𝑛𝑛 error patterns, but we have 2𝑛𝑛−𝑘𝑘 equations. So, we cannot catch all errors. 

In fact, there are 2𝑘𝑘 error patterns for each syndrome. To put it another way, the code 𝐶𝐶 is a 
subgroup of the set of 𝑛𝑛-tuples. The set of 𝑛𝑛-tuples is partitioned into 2𝑛𝑛−𝑘𝑘 cosets of 𝐶𝐶. All the 𝑛𝑛-
tuples in one coset result in the same syndrome. So, the syndrome only points us to a coset of 𝐶𝐶 
not to a single error pattern. Out of 2𝑘𝑘 patterns (𝑛𝑛-tuples in the coset), we decide (based on the 
property of the channel) which error has occurred.   

Example: take again the (7, 4) code. Assume that we receive 𝑟𝑟 = (1001001). Then,  

𝑠𝑠 = 𝑟𝑟 ∙ 𝐻𝐻𝑇𝑇 = (1, 1, 1). 

This means that  

1 = 𝑒𝑒0 + 𝑒𝑒3 + 𝑒𝑒5 + 𝑒𝑒6 



1 = 𝑒𝑒1 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5 

1 = 𝑒𝑒2 + 𝑒𝑒4 + 𝑒𝑒5 + 𝑒𝑒6 

Any of the following 24 = 16 patterns satisfy these equations: 

 

To decide which error to choose depends on our expectation about the channel behaviours. For 
example, in a BSC channel, we know that the probability of a single error is more than multiple 
errors. So, we decide 𝑒𝑒 = (0000010) as the error and therefore, the codeword transmitted must 
have been: 

𝑣𝑣 = 𝑟𝑟 + 𝑒𝑒 = (1001001) + (0000010) = (1001011). 

Minimum distance of a code: 

Hamming distance 𝑑𝑑(𝑣𝑣,𝑤𝑤) between two vectors 𝑣𝑣 and 𝑤𝑤 is the number of places they are different. 
In binary case, the distance 𝑑𝑑(𝑣𝑣,𝑤𝑤) is the weight (the number of places a vector is non-zero) of 
𝑣𝑣 + 𝑤𝑤 or 

𝑑𝑑�𝑣𝑣,𝑤𝑤� = 𝑤𝑤(𝑣𝑣,𝑤𝑤) 

The minimum distance of a code 𝐶𝐶 is the minimum value of 𝑑𝑑�𝑣𝑣,𝑤𝑤� for all non-identical 𝑣𝑣 and 
𝑤𝑤 ∈ 𝐶𝐶  

𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑑𝑑�𝑣𝑣,𝑤𝑤�: 𝑣𝑣,𝑤𝑤 ∈ 𝐶𝐶, 𝑣𝑣 ≠ 𝑤𝑤�. 

Since for any 𝑣𝑣 and 𝑤𝑤 ∈ 𝐶𝐶, 𝑣𝑣 + 𝑤𝑤 ∈ 𝐶𝐶 then the minimum distance of a linear block code is equal 
to minimum weight of its non-zero codewords: 

𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑤𝑤�𝑣𝑣 + 𝑤𝑤�: 𝑣𝑣,𝑤𝑤 ∈ 𝐶𝐶, 𝑣𝑣 ≠ 𝑤𝑤� 

= 𝑚𝑚𝑖𝑖𝑛𝑛�𝑤𝑤�𝑥𝑥�: 𝑥𝑥 ∈ 𝐶𝐶, 𝑥𝑥 ≠ 0� 

= 𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛. 

Therefore, we have: 

Theorem 1: the minimum distance of a linear block code is equal to the minimum weight of its 
non-zero codewords. 



Theorem 2: let 𝐶𝐶 be an (𝑛𝑛, 𝑘𝑘) linear block code with parity check matrix 𝐻𝐻. 

• For any codeword 𝑣𝑣 ∈ 𝐶𝐶 of weight 𝑙𝑙, there are 𝑙𝑙 columns of 𝐻𝐻 such that their vector sum 
is 0. 

• If there are 𝑙𝑙 columns of 𝐻𝐻 whose vector sum is 0, then there is a codeword 𝑣𝑣 ∈ 𝐶𝐶 with 
weight 𝑙𝑙. 

Proof: let 𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−1) have 𝑙𝑙 non-zero elements at places 𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑙𝑙. Then, 

𝑣𝑣 ∙ 𝐻𝐻𝑇𝑇 = 0 ⇒ 𝑣𝑣0ℎ0 + 𝑣𝑣1ℎ1 + ⋯+ 𝑣𝑣𝑛𝑛−1ℎ𝑛𝑛−1 = 0 

                ⇒ 𝑣𝑣𝑖𝑖1ℎ𝑖𝑖1 + 𝑣𝑣𝑖𝑖2ℎ𝑖𝑖2 + ⋯+ 𝑣𝑣𝑖𝑖𝑙𝑙ℎ𝑖𝑖𝑙𝑙 = 0 

           ⇒ ℎ𝑖𝑖1 + ℎ𝑖𝑖2 + ℎ𝑖𝑖3 + ⋯+ ℎ𝑖𝑖𝑙𝑙 = 0 

So, part 1 is proved. 

Now assume that: 

ℎ𝑖𝑖1 + ℎ𝑖𝑖2 + ℎ𝑖𝑖3 + ⋯+ ℎ𝑖𝑖𝑙𝑙 = 0. 

Take 𝑥𝑥 = (𝑥𝑥0, 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛−1) such that: 

�
𝑥𝑥𝑗𝑗 = 1     𝑎𝑎𝑎𝑎 𝑗𝑗 = 𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑙𝑙
𝑥𝑥𝑗𝑗 = 0                 𝑜𝑜𝑎𝑎ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒. 

Then,  

𝑥𝑥 ∙ 𝐻𝐻𝑇𝑇 = 𝑥𝑥0ℎ0 + 𝑥𝑥1ℎ1 + ⋯+ 𝑥𝑥𝑛𝑛−1ℎ𝑛𝑛−1 

       = 𝑥𝑥𝑖𝑖1ℎ𝑖𝑖1 + 𝑥𝑥𝑖𝑖2ℎ𝑖𝑖2 +⋯+ 𝑥𝑥𝑖𝑖𝑙𝑙ℎ𝑖𝑖𝑙𝑙 

= ℎ𝑖𝑖1 + ℎ𝑖𝑖2 +⋯+ ℎ𝑖𝑖𝑙𝑙 = 0, 

so, 𝑥𝑥 ∈ 𝐶𝐶. 

Corollary 2.1: let 𝐶𝐶 be a linear block code with parity check matrix 𝐻𝐻. If no 𝑑𝑑 − 1 or less columns 
of 𝐻𝐻 add to 0, then minimum weight of 𝐻𝐻 is at least 𝑑𝑑. 

Corollary 2.2: the minimum distance of a linear block code 𝐶𝐶 is the smallest number of columns 
of 𝐻𝐻 adding to 0. 

Error-detection and error-correction capability of a linear block code: 

If the minimum distance of a code is 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛, it can detect any error pattern with 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 − 1 or less 
errors. 

Definition: assume that 𝐴𝐴0,𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛 are the number of codewords with weight 0, 1, 2,⋯ , 𝑛𝑛 
in a code 𝐶𝐶. 𝐴𝐴0,𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑛𝑛 are called weight distribution of the code. 

For example, for (7, 4) Hamming code, 



𝐴𝐴0 = 𝐴𝐴7 = 1,  𝐴𝐴3 = 7,  𝐴𝐴4 = 7,  and 𝐴𝐴𝑖𝑖 = 0 otherwise. 

If we send a codeword 𝑣𝑣 and we receive 𝑟𝑟 = 𝑣𝑣 + 𝑒𝑒, we can detect errors unless 𝑒𝑒 ∈ 𝐶𝐶. So, 𝑝𝑝𝑢𝑢(𝐸𝐸) =
∑ 𝐴𝐴𝑖𝑖(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑝𝑝𝑢𝑢(𝐸𝐸) is the probability of undetected error and 𝑝𝑝 is the probability 

of error of modulation-demodulation. 

For the (7, 4) code, we have: 

𝑝𝑝𝑢𝑢(𝐸𝐸) = 7𝑝𝑝3(1 − 𝑝𝑝)4 + 7𝑝𝑝4(1 − 𝑝𝑝)3 + 𝑝𝑝7. 

So, if 𝑝𝑝 = 10−2, we get 𝑝𝑝𝑢𝑢(𝐸𝐸) = 7 × 10−6. That is if one million bits are transmitted on the 
average 7 errors go through undetected. 

Error correction capability: 

A code 𝐶𝐶 with minimum distance 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 can correct 𝑎𝑎 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
2

� and less errors. (⌊𝑖𝑖⌋ denotes the 

floor, i.e., the largest integer number less than 𝑖𝑖). 𝑎𝑎 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
2

� means that 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 2𝑎𝑎 + 1 or 
𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 2𝑎𝑎 + 2 or 2𝑎𝑎 + 1 ≤ 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 2𝑎𝑎 + 2. 

Triangle inequality: 𝑑𝑑�𝑣𝑣, 𝑟𝑟� + 𝑑𝑑(𝑤𝑤, 𝑟𝑟) ≥ 𝑑𝑑(𝑣𝑣,𝑤𝑤) 

But: 𝑑𝑑�𝑣𝑣,𝑤𝑤� ≥ 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 ≥ 2𝑎𝑎 + 1. 

Let 𝑑𝑑�𝑣𝑣, 𝑟𝑟� = 𝑎𝑎′, then: 𝑑𝑑�𝑤𝑤, 𝑟𝑟� ≥ 2𝑎𝑎 + 1 − 𝑎𝑎′. If 𝑎𝑎′ ≤ 𝑎𝑎, then 𝑑𝑑�𝑤𝑤, 𝑟𝑟� ≥ 𝑎𝑎. This means if the 
distance between the received vector and the transmitted code is less than or equal to 𝑎𝑎, the received 
vector is closer to this codeword, say 𝑣𝑣, than any other codeword 𝑤𝑤. 

A code 𝐶𝐶 with minimum distance 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 can correct 𝑎𝑎 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
2

� errors. It may correct some of the 
error patterns of weight higher than 𝑎𝑎, but it cannot correct all of those with 𝑎𝑎 + 1 errors. Probability 
of error is upper bounded as 

𝑝𝑝(𝐸𝐸) ≤ � �𝑛𝑛𝑖𝑖 � 𝑝𝑝
𝑖𝑖(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑡𝑡+1

. 

Erasures: 

Sometimes instead of deciding 0 or 1 at the output of the demodulator, we decide 0 and 1 for those received 
values far away zero and 𝑒𝑒 or erasure for those close to zero. 

A linear block code with 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 can correct 𝛾𝛾 errors and 𝑒𝑒 erasures such that: 

𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 ≥ 2𝛾𝛾 + 𝑒𝑒 + 1. 

Standard arrays: 

We said that a code of length 𝑛𝑛 and dimension 𝑘𝑘, i.e., and (𝑛𝑛,𝑘𝑘) code partitions the set 𝑉𝑉𝑛𝑛 of 𝑛𝑛-
tuples into 2𝑛𝑛−𝑘𝑘 cosets of the code 𝐶𝐶. If we write elements of 𝐶𝐶 in a row and then from 2𝑛𝑛 − 2𝑘𝑘 
remaining 𝑛𝑛-tuples take a vector 𝑒𝑒2, add 𝑒𝑒2 to each element of 𝐶𝐶 and write in the second row, then 



take an unused element of the 𝑛𝑛-tuples say 𝑒𝑒3, add it to each codeword and write in the second row 
and continue this until we have used all 𝑛𝑛-tuples, we get a standard array.  

𝑣𝑣1 = 0 𝑣𝑣2       ⋯        𝑣𝑣𝑖𝑖     ⋯       𝑣𝑣2𝑘𝑘  
𝑒𝑒2 𝑒𝑒2 + 𝑣𝑣2  ⋯  𝑒𝑒2 + 𝑣𝑣𝑖𝑖  ⋯  𝑒𝑒2 + 𝑣𝑣2𝑘𝑘 
𝑒𝑒3 𝑒𝑒3 + 𝑣𝑣2  ⋯  𝑒𝑒3 + 𝑣𝑣𝑖𝑖  ⋯  𝑒𝑒3 + 𝑣𝑣2𝑘𝑘 
⋮                  ⋮                 ⋮                  ⋮  
𝑒𝑒𝑙𝑙 𝑒𝑒𝑙𝑙 + 𝑣𝑣2  ⋯  𝑒𝑒𝑙𝑙 + 𝑣𝑣𝑖𝑖  ⋯  𝑒𝑒𝑙𝑙 + 𝑣𝑣2𝑘𝑘 
⋮                  ⋮                 ⋮                  ⋮  

𝑒𝑒2𝑚𝑚−𝑘𝑘  𝑒𝑒2𝑚𝑚−𝑘𝑘 + 𝑣𝑣2  ⋯  𝑒𝑒2𝑚𝑚−𝑘𝑘 + 𝑣𝑣𝑖𝑖  ⋯  𝑒𝑒2𝑚𝑚−𝑘𝑘 + 𝑣𝑣2𝑘𝑘  

Theorem 3: no two 𝑛𝑛-tuples in the same row are identical. Every 𝑛𝑛-tuple is in one and only one 
row. 

Proof: since 𝐶𝐶 is a subgroup of 𝑉𝑉𝑛𝑛 and each row is a coset of 𝐶𝐶. 

Since a code 𝐶𝐶 with minimum distance 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 can correct up to 𝑎𝑎 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
2

� errors, we can use as 
the first coset leaders (𝑒𝑒𝑖𝑖’s) the patterns with 𝑎𝑎 and less 1’s. this covers for: 

�𝑛𝑛0� + �𝑛𝑛1� + ⋯+ �𝑛𝑛𝑎𝑎� = ��𝑛𝑛𝑖𝑖 �
𝑡𝑡

𝑖𝑖=0

 

coset leaders, but this sum may not be equal to 2𝑛𝑛−𝑘𝑘. So, we may add some error patterns with two 
or more errors. 

Definition: if ∑ �𝑛𝑛𝑖𝑖 �
𝑡𝑡
𝑖𝑖=0 = 2𝑛𝑛−𝑘𝑘, we say that the (𝑛𝑛,𝑘𝑘) code is perfect.  

(7, 4) code is perfect since it has 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 3 and therefore, 𝑎𝑎 = 1 and 

��𝑛𝑛𝑖𝑖 �
𝑡𝑡

𝑖𝑖=0

= �7
0� + �7

1� = 1 + 7 = 8 = 23 = 2𝑛𝑛−𝑘𝑘. 

Note that since the elements on each row of the standard array are the 2𝑘𝑘 codewords each added 
to a unique 𝑛𝑛-tuple (the coset leader), the syndromes of all numbers of a coset are the same. So, 
by finding the syndrome, we find out in what row of the standard array the received vector and 
hopefully the transmitted codeword is. We can the output the coset leader. For small codes, a 
lookup table is feasible. But for longer codes, we need to calculate the error based on the syndrome. 



 
General decoder for a linear block code 

 
Decoding circuit for the (7, 4) code 


