ELEC 6131: Error Detecting and Correcting Codes
Lecture 5: Important Linear Block Codes

Important linear block codes:
Hamming codes:

Code length: n = 2™ — 1

# of information bits: k = 2™ —1 —m
# of parity bits: n — k = m

dpin=3 = t=1

The parity check matrix of this code H contains all m-tuples except 00 --- 0 as its columns. They
are arranged to look like:

H = [I,: Q]
Take m = 3,
|
1 0 0:1 0 1 1
H=|0 1 011 1 1 0]
00 1,0 1 1 1
S——
I3
Then,

G =[Q":Izm_jm—q]-

Since H consists all the m-tuples as its columns, adding any two columns, we get another column,
ie.,

hi+h;+h =0,

So, the minimum distance of the code is not greater than 3. Also, since we do not have any two
columns that add up to 0, the minimum distance of the code is not less than 3. Therefore, d;,,;;, =
3.

Hamming codes are perfect codes: if we form standard array, it will contain 2 = 22"~ elements.
2M-1

= 2™ cosets. Therefore, in

Each row has 2% = 22"-™~1 ¢lements. So, there will be ﬁ
addition to 0 we need 2™ — 1 coset leaders. If we take all single error patterns, we have exactly
what we need. So, a Hamming code only corrects error patterns with one erroneous bit and corrects
all of these. So, Hamming codes are perfect codes. The only other binary perfect code is (23,12)

Golay code.



Weight distribution: let A; be the number of codewords of weight i. Then, A(z) = A,,z™ +
Ap_1z" 1+ -+ A;z + A, can be formed. It is called weight enumerator. For a Hamming code:

A(z) = n;-l—l 1+2)"+n(1-2)(1- zz)nT_1 :

Example: consider m = 3.

n=2M—-1=23-1=7 = (7,4)code

| -

AD)==[1+2)7"+7(1-2)(1 - z?)3]

=1+723+7z*+2".
Reed-Muller codes (RM codes):
Length: n = 2™

Dimension: k(r,m) =1+ (T) + (7;) + .+ (T:), where (T:l) = i!(;nii)!

Minimum distance: d,;, = 2™

Letm =5andr = 2,thenk(2,5) =1+ (i) + (g) = 16. Therefore, we geta (32,16) RM code

with d,,;, = 8. To form the generator matrix an RM code we form:
v; = (010101 ---01) of length 2™ =n
and v, = (00110011 ---0011) of length 2™ =n
and v3; = (00001111 ---00001111) of length 2™ =n

and so on, i.e.,

v = (UlJOOu)

gi-1  9i-1 2i-1
Then, the generator matrix is spanned by:
(Vo V1, U 01"V Ut U 01 0 0, ),
i.e., product of products of v;’s up to r of them.
Gry(r,m) = {20,21, o, U, V1Vg, V1 V3, , U1V, -+ UP to products of degree r}.

vo = (11---11) all 1 vector of length 2™. There are,

1+ (1)+ () -+ ()



. . . m
vectors in Ggp(r,m). So, the code has dimension k(r,m) = ?:o( i ) We can arrange the

vectors in Ggy (1, m) as rows of a generator matrix.
Note that according to above construction:
RM(0,m) c RM(1,m) € RM(2,m) c --- € RM(r,m).

Example: let m = 4 and r = 2. Then, n = 2™ = 2* = 16.

k(2,4)=1+(‘1L)+(‘2L)=1+4+6=11.

Let:
vy =1111111111111111

v, = 0000000011111111 « 271 =23 =8
v; = 0000111100001111 « 2-°1 =22 =4
v, = 0011001100110011
v, = 0101010101010101

v3v, = 0000000000001111

v,v, = 0000000000110011

v,v, = 0000000001010101

v,v3 = 0000001100000011

v,v3 = 0000010100000101

v,v, = 0001000100010001.

The above vectors if put together do not generate a systematic code. We can turn this matrix to a
systematic one with elementary row and column operations.

Decoding of RM code can be done using majority logic decoding algorithm.

Another way to construct RM codes:

Definition: Kronecker product: let matrix 4 be:

a11 alz ot aln

arq az, o arn
A= T2 T

Ap1 QApz -+ Qpn

and B another m X m matrix. The Kronecker product of A @ B is defined as:



a;1B a;B - auB
AQB = azle aZ:ZB aleB
an-lB an.zB AnnB
Note: matrices A and B do not have to be square matrices in order to have Kronecker product. But
we are only interested in this case.

Example: Hadamard matrices:

I —HH] is a Hadamard matrix of order 2n. Let H; =

_ H, k-
2k-1 2 ] = H, @ H,k-1. That is, H, = H, ® H, =

Let H be an n X n Hadamard matrix. Then, [H

H
[1] and H, = [1 _11] and H,k = [H

ok-1  —Hjk-1
1 1 1 1
% _i _1 :1 . Hg, H,¢, and so on could be found the same way.
1 -1 -1 +1
1 1
Let 6(2‘2) = [0 1]
11 1 1
1 1 1 17_10 1 0 1
G2y 1®g 1/=]0 0 1 1
0 0 0 1
Then,
o1 1 1 1 1
G@2) =g 1]®[0 1]®[0 1]
1 1 1 1
M1 0 1 0 1
B [O 1]® 0 01 1
0 0 0 1
1 1 1 1 1 1 1 1
01 0101 0 1
001 10011
10 0 01 0 0 0 1
o 0o 001 111
0 00 00 1 0 1
0 00 00O 0 11
0 0 0 00O O 0 1
If we take the rows of G (8, 8) with weights 22 and 23 we get
11111111
G _|01.0 1 01 0 1
RMA)H =10 0 1 1 0 0 1 1f
0 000 1 1 11



4.

Gz,2) ® G22) @ G(z,2) @ G2.2)

G(16,16)

4.

which is the generator matrix of an (8, 4) Reed-Muller code with d,;;;;,

Example: let m

or
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If we take the rows of G(1616) With weights 22,23, 2%, we get:

Grm(2, 4) =

yUn—1 + Vn_1).

, Un—1) both over GF(2). For the 2n-tuple:

,un_l,uo + vo,ul + 171, R

(uOI ul) voe

A

,Un—1) and v = (Vg, Uy, -

which is the generator polynomial of RM(2, 4) code.
lulu + vl

Code combination:

Let u = (ug, uq,
Now assume that we have two codes:



C; is an (n, k,) code with d,,;, = dy
C, is an (n, k,) code with d,,;;,, = d,.
Suppose that d, > d;. Form the following code:
C=1C|C +Cl = {|E|E+Z|:E €Ciandyv € Cz}'

C is a binary (2n, k; + k;) linear code with generator matrix G = [%1 gl
2

]. It can be shown (see
the text) that d,,,;, (C) = min {2d4, d,}.

Example: assume that C; is the (8,4) code we had in the previous example:
1111111

61:

S OO

101 0 1 0 1
0110 0 1 1
0 001 1 1 1

and C, is (8, 1) repetition code:

G,=[1 111111 1]

_[G1 Gq]
Then, G = 0 G,

_ = O
oo R

o)

Il
coocor
cCoOOoR R
coRroR
cCOoORR R
oOR OO R
OrRr OR R
OR R R R
RO OR R
RO RO R
RO R R R
N R =
R RO R R
(SR NN = R ¢
O S Y

0 1
which is the generator matrix of a (16, 5) code with d,,;;, = 8.

Construction of RM(r,m) from RM(r,m — 1) and RM(r —1,m — 1): Reed-Muller codes of
length 2™ can be constructed using RM codes of 2™, For m > 2 we have:

RM(r,m) = {|g|g+y|:g ERM(rrm—1)andv € RM(r —1,m — 1)},

With generator polynomial:

GRM(r,m—l) GRM(r,m—l)

GRM(r,m) = [ 0 GRM(r—l,m—l) .

Golay code:
(32, 12) Golay code is another (and only) other perfect binary code.
n—k=23-12=11

211 — 2048 = 1 + (213) + (223) + (233) — 1423+ 253 + 1771



That is, Golay code can correct 23-bit patterns with 3 or less errors.

7—-1
Anin =7 = t=lTJ=3

An extra parity bit can be added to create a (24, 12) extended Golay code with d,,;, = 8. This
code is no more a perfect code. It can correct 3 or fewer errors and detect up to 4 errors.

The generator matrix of Golay(24, 12) code can be written as:
G = [P:132],
where I;, is a 12 X 12 identity matrix and P is a 12 X 12 parity matrix:

(100011101101 ]

000111011011
001110110101
011101101001
111011010001
110110100011
101101000111
011010001111
110100011101
101000111011
010001110111
| 111111111110

Parity matrix P of Golay(24, 12) code

Note that P has the following properties:

1) Itis symmetrical with respect to its diagonal.
2) The ith column is the transpose of the ith row.
3) P-PT=] > PT =p,
4) The submatrix obtained by deleting last row and last column can be formed by cyclically
shifting the first row to the left 11 times or, shifting the first column upward 11 times.
The parity check matrix is

H = [I;5: PT] = [I5: P].

So, the Golay code is self-dual.

Decoding of (24,12) Golay code: let u® be a 12-bit pattern with 0 everywhere except a 1 in i-th

place. For example:

u® = (10---0)

u® = (01--0)



u(% = (000000000010)
uD = (0---01)
Multiplying u® by P we get the i-th row of P, denote it by p;.

pi = u(l) . P

Let e be an error pattern. We can write it as e = (X, y) where x and y are 12-bit error patterns for

first 12 or second 12 bits. Let’s form the syndrome:

The code can correct any error pattern with weight less than or equal 3, w(e) < 3. We have 4

situations:
Dw(y)=0, wx <s.
2) W(X) =1, w(x) < 2.
3) W(X) =2, w) <1
4) W(X) =3, W(&) = 0.

For each of the four possibilities we denote e(® as the error pattern. That is if w (y) =0=e0,

W(X) =1=e® .. -

1) Supposew(z)=0:>e(°)
y=(+x)-P= 0=s+x = x=5 = ¢ =(s50).
2) e=eW andlgty=u(i).Then,
s=x+u® P=x+p = x=s+p; > w(s+p) <2
3) e=e@ore® and w(x) = 0. Then_, -
y=sP
andw(g-P)=W(X)=20r3.80,g=(g,§-P).

1%}



4) e =e® andw(x) = 1. Then,
x = u®
y=(+u®)-P=s-P+u®-P=5s-P+p;
W(E'P-}-Ei):W(}/):Z

So,e = (W, s P+p)).
Following algorithm decodes (24, 12) code based on the above discussion:

. Compute the syndrome s of the received sequence r.

. If w(s) < 3, then set e = (s, 0) and go to step 8.

. Ifw(s+p;) <2forsomerowp, in P, thenscte = (s+ p;, u) and go
to step 8.

. Computes - P.

. Ifw(s-P)=2or3, thensete = (0,s-P) and go to step 8.

. If w(s- P +p;) = 2 for some row p; in P, thensete = (u®, s P+ p;)
and go to step 8.

. If the syndrome does not correspond to a correctable error pat-
tern, stop the decoding process, or request a retransmission. (This
represents a decoding failure.)

. Set the decoded codeword v* = r + e and stop.



