
ELEC 6131: Error Detecting and Correcting Codes 
Lecture 5: Important Linear Block Codes 

 

Important linear block codes: 

Hamming codes: 

Code length: 𝑛𝑛 = 2𝑚𝑚 − 1 

# of information bits: 𝑘𝑘 = 2𝑚𝑚 − 1 −𝑚𝑚 

# of parity bits: 𝑛𝑛 − 𝑘𝑘 = 𝑚𝑚 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 3  ⇒   𝑡𝑡 = 1 

The parity check matrix of this code 𝐻𝐻 contains all 𝑚𝑚-tuples except 00⋯ 0 as its columns. They 
are arranged to look like: 

𝐻𝐻 = [𝐼𝐼𝑚𝑚:𝑄𝑄]. 

Take 𝑚𝑚 = 3,  

𝐻𝐻 = �
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

�. 

                                                                    𝐼𝐼3 

Then, 

𝐺𝐺 = [𝑄𝑄𝑇𝑇: 𝐼𝐼2𝑚𝑚−𝑚𝑚−1]. 

Since 𝐻𝐻 consists all the 𝑚𝑚-tuples as its columns, adding any two columns, we get another column, 
i.e., 

ℎ𝑖𝑖 + ℎ𝑗𝑗 + ℎ𝑘𝑘 = 0. 

So, the minimum distance of the code is not greater than 3. Also, since we do not have any two 
columns that add up to 0, the minimum distance of the code is not less than 3. Therefore, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =
3. 

Hamming codes are perfect codes: if we form standard array, it will contain 2𝑛𝑛 = 22𝑚𝑚−1 elements. 

Each row has 2𝑘𝑘 = 22𝑚𝑚−𝑚𝑚−1 elements. So, there will be 22
𝑚𝑚−1

22𝑚𝑚−𝑚𝑚−1 = 2𝑚𝑚 cosets. Therefore, in 
addition to 0 we need 2𝑚𝑚 − 1 coset leaders. If we take all single error patterns, we have exactly 
what we need. So, a Hamming code only corrects error patterns with one erroneous bit and corrects 
all of these. So, Hamming codes are perfect codes. The only other binary perfect code is (23, 12) 
Golay code. 



Weight distribution: let 𝐴𝐴𝑖𝑖 be the number of codewords of weight 𝑖𝑖. Then, 𝐴𝐴(𝑧𝑧) = 𝐴𝐴𝑛𝑛𝑧𝑧𝑛𝑛 +
𝐴𝐴𝑛𝑛−1𝑧𝑧𝑛𝑛−1 + ⋯+ 𝐴𝐴1𝑧𝑧 + 𝐴𝐴0 can be formed. It is called weight enumerator. For a Hamming code: 

𝐴𝐴(𝑧𝑧) =
1

𝑛𝑛 + 1
�(1 + 𝑧𝑧)𝑛𝑛 + 𝑛𝑛(1 − 𝑧𝑧)(1− 𝑧𝑧2)

𝑛𝑛−1
2 �. 

Example: consider 𝑚𝑚 = 3.  

𝑛𝑛 = 2𝑚𝑚 − 1 = 23 − 1 = 7  ⇒   (7, 4) code 

𝐴𝐴(𝑧𝑧) =
1
8

[(1 + 𝑧𝑧)7 + 7(1 − 𝑧𝑧)(1 − 𝑧𝑧2)3] 

= 1 + 7𝑧𝑧3 + 7𝑧𝑧4 + 𝑧𝑧7. 

Reed-Muller codes (RM codes): 

Length: 𝑛𝑛 = 2𝑚𝑚 

Dimension: 𝑘𝑘(𝑟𝑟,𝑚𝑚) = 1 + �𝑚𝑚1 � + �𝑚𝑚2 � + ⋯+ �𝑚𝑚𝑟𝑟 �, where �𝑚𝑚𝑖𝑖 � = 𝑚𝑚!
𝑖𝑖!(𝑚𝑚−𝑖𝑖)!

 

Minimum distance: 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝑚𝑚−𝑟𝑟 

Let 𝑚𝑚 = 5 and 𝑟𝑟 = 2, then 𝑘𝑘(2, 5) = 1 + �5
1� + �5

2� = 16. Therefore, we get a (32, 16) RM code 

with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 8. To form the generator matrix an RM code we form: 

𝑣𝑣1 = (010101⋯01) of length 2𝑚𝑚 = 𝑛𝑛 

and 𝑣𝑣2 = (00110011⋯ 0011) of length 2𝑚𝑚 = 𝑛𝑛 

and 𝑣𝑣3 = (00001111⋯ 00001111) of length 2𝑚𝑚 = 𝑛𝑛 

and so on, i.e.,  

𝑣𝑣𝑖𝑖 = (0⋯0,1⋯1,0⋯0,⋯ ,1⋯1). 

                                                            2𝑖𝑖−1    2𝑖𝑖−1                  2𝑖𝑖−1 

Then, the generator matrix is spanned by: 

�𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑚𝑚, 𝑣𝑣1 ∙ 𝑣𝑣2,⋯ , 𝑣𝑣𝑚𝑚−1 ∙ 𝑣𝑣𝑚𝑚, 𝑣𝑣1 ∙ 𝑣𝑣2 ∙ 𝑣𝑣3,⋯�, 

i.e., product of products of 𝑣𝑣𝑖𝑖’s up to 𝑟𝑟 of them.  

𝐺𝐺𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚) = �𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑚𝑚, 𝑣𝑣1𝑣𝑣2, 𝑣𝑣1𝑣𝑣3,⋯ , 𝑣𝑣𝑚𝑚−1𝑣𝑣𝑚𝑚,⋯ up to products of degree 𝑟𝑟�. 

𝑣𝑣0 = (11⋯11) all 1 vector of length 2𝑚𝑚. There are, 

 1 + �𝑚𝑚1 �+ �𝑚𝑚2 � + ⋯+ �𝑚𝑚𝑟𝑟 � 



vectors in 𝐺𝐺𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚). So, the code has dimension 𝑘𝑘(𝑟𝑟,𝑚𝑚) = ∑ �𝑚𝑚𝑖𝑖 �
𝑟𝑟
𝑖𝑖=0 . We can arrange the 

vectors in 𝐺𝐺𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚) as rows of a generator matrix.  

Note that according to above construction: 

𝑅𝑅𝑅𝑅(0,𝑚𝑚) ⊂ 𝑅𝑅𝑅𝑅(1,𝑚𝑚) ⊂ 𝑅𝑅𝑅𝑅(2,𝑚𝑚) ⊂ ⋯ ⊂ 𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚). 

Example: let 𝑚𝑚 = 4 and 𝑟𝑟 = 2. Then, 𝑛𝑛 = 2𝑚𝑚 = 24 = 16. 

𝑘𝑘(2, 4) = 1 + �4
1� + �4

2� = 1 + 4 + 6 = 11. 

Let: 

𝑣𝑣0 = 1111111111111111 

                                                        𝑣𝑣4 = 0000000011111111 ← 2𝑖𝑖−1 = 23 = 8 

                                                        𝑣𝑣3 = 0000111100001111 ← 2𝑖𝑖−1 = 22 = 4 

𝑣𝑣2 = 0011001100110011 

𝑣𝑣1 = 0101010101010101 

𝑣𝑣3𝑣𝑣4 = 0000000000001111 

𝑣𝑣2𝑣𝑣4 = 0000000000110011 

𝑣𝑣1𝑣𝑣4 = 0000000001010101 

𝑣𝑣2𝑣𝑣3 = 0000001100000011 

𝑣𝑣1𝑣𝑣3 = 0000010100000101 

𝑣𝑣1𝑣𝑣2 = 0001000100010001. 

The above vectors if put together do not generate a systematic code. We can turn this matrix to a 
systematic one with elementary row and column operations. 

Decoding of RM code can be done using majority logic decoding algorithm. 

Another way to construct RM codes: 

Definition: Kronecker product: let matrix 𝐴𝐴 be: 

𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮
𝑎𝑎𝑛𝑛1

⋮
𝑎𝑎𝑛𝑛2

⋮
⋯

⋮
𝑎𝑎𝑛𝑛,𝑛𝑛

�, 

and 𝐵𝐵 another 𝑚𝑚 × 𝑚𝑚 matrix. The Kronecker product of 𝐴𝐴⊗ 𝐵𝐵 is defined as: 



𝐴𝐴⊗ 𝐵𝐵 = �

𝑎𝑎11𝐵𝐵 𝑎𝑎12𝐵𝐵 ⋯ 𝑎𝑎1𝑛𝑛𝐵𝐵
𝑎𝑎21𝐵𝐵 𝑎𝑎22𝐵𝐵 ⋯ 𝑎𝑎2𝑛𝑛𝐵𝐵
⋮

𝑎𝑎𝑛𝑛1𝐵𝐵
⋮

𝑎𝑎𝑛𝑛2𝐵𝐵
⋮
⋯

⋮
𝑎𝑎𝑛𝑛𝑛𝑛𝐵𝐵

�. 

Note: matrices 𝐴𝐴 and 𝐵𝐵 do not have to be square matrices in order to have Kronecker product. But 
we are only interested in this case. 

Example: Hadamard matrices: 

Let 𝐻𝐻 be an 𝑛𝑛 × 𝑛𝑛 Hadamard matrix. Then, �𝐻𝐻 𝐻𝐻
𝐻𝐻 −𝐻𝐻� is a Hadamard matrix of order 2𝑛𝑛. Let 𝐻𝐻1 =

[1] and 𝐻𝐻2 = �1 1
1 −1� and 𝐻𝐻2𝑘𝑘 = �

𝐻𝐻2𝑘𝑘−1 𝐻𝐻2𝑘𝑘−1

𝐻𝐻2𝑘𝑘−1 −𝐻𝐻2𝑘𝑘−1
� = 𝐻𝐻2 ⊗𝐻𝐻2𝑘𝑘−1. That is, 𝐻𝐻4 = 𝐻𝐻2 ⊗𝐻𝐻2 =

�
1    1    1    1
1 −1    1 −1
1
1

   1
−1

−1
−1

−1
+1

�. 𝐻𝐻8, 𝐻𝐻16, and so on could be found the same way. 

Let 𝐺𝐺(2,2) = �1 1
0 1�. 

𝐺𝐺(22,22) ≜ �1 1
0 1� ⊗ �1 1

0 1� = �
1 1 1 1
0 1 0 1
0
0

0
0

1
0

1
1

�. 

Then,   

𝐺𝐺�23,23� = �1 1
0 1� ⊗ �1 1

0 1� ⊗ �1 1
0 1� 

= �1 1
0 1� ⊗ �

1 1 1 1
0 1 0 1
0
0

0
0

1
0

1
1

� 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0
0
0
0
0
0

0
0
0
0
0
0

1
0
0
0
0
0

1 0 0 1 1
1
0
0
0
0

0
1
0
0
0

0
1
1
0
0

0
1
0
1
0

1
1
1
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

If we take the rows of 𝐺𝐺(8, 8) with weights 22 and 23 we get 

𝐺𝐺𝑅𝑅𝑅𝑅(1,3) = �

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0
0

0
0

1
0

1 0 0 1 1
0 1 1 1 1

�, 



which is the generator matrix of an (8, 4) Reed-Muller code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 4. 

Example: let 𝑚𝑚 = 4. 

𝐺𝐺(16,16) = 𝐺𝐺(2,2) ⊗𝐺𝐺(2,2) ⊗𝐺𝐺(2,2) ⊗𝐺𝐺(2,2) 

or  

 

If we take the rows of 𝐺𝐺(16,16) with weights 22, 23, 24, we get: 

 

which is the generator polynomial of RM(2, 4) code. 

Code combination: 

Let 𝑢𝑢 = (𝑢𝑢0, 𝑢𝑢1,⋯ , 𝑢𝑢𝑛𝑛−1) and 𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−1) both over 𝐺𝐺𝐺𝐺(2). For the 2𝑛𝑛-tuple: 

�𝑢𝑢|𝑢𝑢 + 𝑣𝑣� ≜ (𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑛𝑛−1,𝑢𝑢0 + 𝑣𝑣0, 𝑢𝑢1 + 𝑣𝑣1,⋯ ,𝑢𝑢𝑛𝑛−1 + 𝑣𝑣𝑛𝑛−1). 

Now assume that we have two codes: 



𝐶𝐶1 is an (𝑛𝑛, 𝑘𝑘1) code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑑𝑑1 

𝐶𝐶2 is an (𝑛𝑛,𝑘𝑘2) code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑑𝑑2. 

Suppose that 𝑑𝑑2 > 𝑑𝑑1. Form the following code: 

𝐶𝐶 = |𝐶𝐶1 |𝐶𝐶1  + 𝐶𝐶2| = ��𝑢𝑢|𝑢𝑢 + 𝑣𝑣�: 𝑢𝑢 ∈ 𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 ∈ 𝐶𝐶2�. 

𝐶𝐶 is a binary (2𝑛𝑛,𝑘𝑘1 + 𝑘𝑘2) linear code with generator matrix 𝐺𝐺 = �𝐺𝐺1 𝐺𝐺1
0 𝐺𝐺2

�. It can be shown (see 

the text) that 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) = min {2𝑑𝑑1,𝑑𝑑2}.  

Example: assume that 𝐶𝐶1 is the (8, 4) code we had in the previous example: 

𝐺𝐺1 = �

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0
0

0
0

1
0

1 0 0 1 1
0 1 1 1 1

� 

and 𝐶𝐶2 is (8, 1) repetition code: 

𝐺𝐺2 = [1 1 1 1 1 1 1 1]. 

Then, 𝐺𝐺 = �
𝐺𝐺1 𝐺𝐺1
0 𝐺𝐺2

� 

𝐺𝐺 =

⎣
⎢
⎢
⎢
⎡
1 1 1
0 1 0

1 1 1
1 0 1

1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1

0 0 1
0 0 0

1 0 0
0 1 1

1 1 0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1⎦
⎥
⎥
⎥
⎤
, 

which is the generator matrix of a (16, 5) code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 8. 

Construction of RM(𝑟𝑟,𝑚𝑚) from RM(𝑟𝑟,𝑚𝑚 − 1) and RM(𝑟𝑟 − 1,𝑚𝑚 − 1): Reed-Muller codes of 
length 2𝑚𝑚 can be constructed using RM codes of 2𝑚𝑚−1. For 𝑚𝑚 ≥ 2 we have: 

RM(𝑟𝑟,𝑚𝑚) = ��𝑢𝑢|𝑢𝑢 + 𝑣𝑣�: 𝑢𝑢 ∈ 𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚 − 1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 ∈ 𝑅𝑅𝑅𝑅(𝑟𝑟 − 1,𝑚𝑚 − 1)�, 

With generator polynomial: 

𝐺𝐺𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚) = �
𝐺𝐺𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚−1) 𝐺𝐺𝑅𝑅𝑅𝑅(𝑟𝑟,𝑚𝑚−1)

0 𝐺𝐺𝑅𝑅𝑅𝑅(𝑟𝑟−1,𝑚𝑚−1)
�. 

Golay code: 

(32, 12) Golay code is another (and only) other perfect binary code. 

𝑛𝑛 − 𝑘𝑘 = 23 − 12 = 11 

211 = 2048 = 1 + �23
1 � + �23

2 � + �23
3 � = 1 + 23 + 253 + 1771. 



That is, Golay code can correct 23-bit patterns with 3 or less errors. 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 7  ⇒   𝑡𝑡 = �
7 − 1

2
� = 3. 

An extra parity bit can be added to create a (24, 12) extended Golay code with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 8. This 
code is no more a perfect code. It can correct 3 or fewer errors and detect up to 4 errors. 

The generator matrix of Golay(24, 12) code can be written as: 

𝐺𝐺 = [𝑃𝑃: 𝐼𝐼12], 

where 𝐼𝐼12 is a 12 × 12 identity matrix and 𝑃𝑃 is a 12 × 12 parity matrix: 

 
Parity matrix 𝑃𝑃 of Golay(24, 12) code 

Note that 𝑃𝑃 has the following properties: 

1) It is symmetrical with respect to its diagonal. 
2) The 𝑖𝑖th column is the transpose of the 𝑖𝑖th row. 
3) 𝑃𝑃 ∙ 𝑃𝑃𝑇𝑇 = 𝐼𝐼  ⇒   𝑃𝑃𝑇𝑇 = 𝑃𝑃. 
4) The submatrix obtained by deleting last row and last column can be formed by cyclically 

shifting the first row to the left 11 times or, shifting the first column upward 11 times. 

The parity check matrix is  

𝐻𝐻 = [𝐼𝐼12:𝑃𝑃𝑇𝑇] = [𝐼𝐼12:𝑃𝑃]. 

So, the Golay code is self-dual. 

Decoding of (24, 12) Golay code: let 𝑢𝑢(𝑖𝑖) be a 12-bit pattern with 0 everywhere except a 1 in 𝑖𝑖-th 
place. For example: 

𝑢𝑢(0) = (10⋯0) 

𝑢𝑢(1) = (01⋯0) 



⋮ 

𝑢𝑢(10) = (000000000010) 

𝑢𝑢(11) = (0⋯01) 

Multiplying 𝑢𝑢(𝑖𝑖) by 𝑃𝑃 we get the 𝑖𝑖-th row of 𝑃𝑃, denote it by 𝑝𝑝𝑖𝑖. 

𝑝𝑝𝑖𝑖 = 𝑢𝑢(𝑖𝑖) ∙ 𝑃𝑃. 

Let 𝑒𝑒 be an error pattern. We can write it as 𝑒𝑒 = (𝑥𝑥,𝑦𝑦) where 𝑥𝑥 and 𝑦𝑦 are 12-bit error patterns for 
first 12 or second 12 bits. Let’s form the syndrome: 

𝑠𝑠 = 𝑟𝑟 ∙ 𝐻𝐻𝑇𝑇 = �𝑣𝑣 + 𝑒𝑒�𝐻𝐻𝑇𝑇 = 𝑒𝑒 ∙ 𝐻𝐻𝑇𝑇 

𝑠𝑠 = �𝑥𝑥,𝑦𝑦� �𝐼𝐼12𝑃𝑃 � = 𝑥𝑥 ∙ 𝐼𝐼12 + 𝑦𝑦 ∙ 𝑃𝑃 = 𝑥𝑥 + 𝑦𝑦 ∙ 𝑃𝑃 

𝑠𝑠 = 𝑥𝑥 + 𝑦𝑦 ∙ 𝑃𝑃  ⇒  𝑠𝑠 + 𝑥𝑥 = 𝑦𝑦 ∙ 𝑃𝑃  ⇒   𝑦𝑦 = (𝑠𝑠 + 𝑥𝑥) ∙ 𝑃𝑃 

The code can correct any error pattern with weight less than or equal 3, 𝑤𝑤(𝑒𝑒) ≤ 3. We have 4 
situations: 

1) 𝑤𝑤 �𝑦𝑦� = 0  , 𝑤𝑤(𝑥𝑥) ≤ 3. 

2) 𝑤𝑤 �𝑦𝑦� = 1  , 𝑤𝑤(𝑥𝑥) ≤ 2. 

3) 𝑤𝑤 �𝑦𝑦� = 2  , 𝑤𝑤(𝑥𝑥) ≤ 1. 

4) 𝑤𝑤 �𝑦𝑦� = 3  , 𝑤𝑤�𝑥𝑥� = 0. 

For each of the four possibilities we denote 𝑒𝑒(𝑖𝑖) as the error pattern. That is if 𝑤𝑤 �𝑦𝑦� = 0 ⇒ 𝑒𝑒(0), 

𝑤𝑤 �𝑦𝑦� = 1 ⇒ 𝑒𝑒(1),⋯. 

1) Suppose 𝑤𝑤 �𝑦𝑦� = 0 ⇒ 𝑒𝑒(0) 

𝑦𝑦 = �𝑠𝑠 + 𝑥𝑥� ∙ 𝑃𝑃 ⇒   0 = 𝑠𝑠 + 𝑥𝑥   ⇒   𝑥𝑥 = 𝑠𝑠   ⇒   𝑒𝑒(0) = �𝑠𝑠, 0�. 
2) 𝑒𝑒 = 𝑒𝑒(1) and let 𝑦𝑦 = 𝑢𝑢(𝑖𝑖). Then, 

𝑠𝑠 = 𝑥𝑥 + 𝑢𝑢(𝑖𝑖) ∙ 𝑃𝑃 = 𝑥𝑥 + 𝑝𝑝𝑖𝑖   ⇒   𝑥𝑥 = 𝑠𝑠 + 𝑝𝑝𝑖𝑖   ⇒   𝑤𝑤(𝑠𝑠 + 𝑝𝑝𝑖𝑖) ≤ 2. 
3) 𝑒𝑒 = 𝑒𝑒(2) or 𝑒𝑒(3) and 𝑤𝑤�𝑥𝑥� = 0. Then, 

𝑦𝑦 = 𝑠𝑠 ∙ 𝑃𝑃 

and 𝑤𝑤�𝑠𝑠 ∙ 𝑃𝑃� = 𝑤𝑤 �𝑦𝑦� = 2 𝑜𝑜𝑜𝑜 3. So, 𝑒𝑒 = (0, 𝑠𝑠 ∙ 𝑃𝑃). 



4) 𝑒𝑒 = 𝑒𝑒(2) and 𝑤𝑤�𝑥𝑥� = 1. Then,  
𝑥𝑥 = 𝑢𝑢(𝑖𝑖) 

𝑦𝑦 = �𝑠𝑠 + 𝑢𝑢(𝑖𝑖)� ∙ 𝑃𝑃 = 𝑠𝑠 ∙ 𝑃𝑃 + 𝑢𝑢(𝑖𝑖) ∙ 𝑃𝑃 = 𝑠𝑠 ∙ 𝑃𝑃 + 𝑝𝑝𝑖𝑖 

𝑤𝑤 �𝑠𝑠 ∙ 𝑃𝑃 + 𝑝𝑝𝑖𝑖� = 𝑤𝑤 �𝑦𝑦� = 2 

So, 𝑒𝑒 = (𝑢𝑢(𝑖𝑖), 𝑠𝑠 ∙ 𝑃𝑃 + 𝑝𝑝𝑖𝑖). 

Following algorithm decodes (24, 12) code based on the above discussion: 

 

 

 

 

 

 

 


