
ELEC 6131: Error Detecting and Correcting Codes 
Lecture 6: Cyclic Codes 

 

Cyclic codes: 

Definition: a linear block code is cyclic if a cycle shift of any codeword is another codeword.  

The 𝑖𝑖th shift of 𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−1) is: 

𝑣𝑣(𝑖𝑖) = (𝑣𝑣𝑛𝑛−𝑖𝑖, 𝑣𝑣𝑛𝑛−𝑖𝑖+1,⋯ , 𝑣𝑣𝑛𝑛−1, 𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−𝑖𝑖−1). 

For example, 𝑣𝑣(1) = (𝑣𝑣𝑛𝑛−1, 𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−2) and 𝑣𝑣(2) = (𝑣𝑣𝑛𝑛−2,𝑣𝑣𝑛𝑛−1, 𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛−3). 

Example: 

 

Let 𝑣𝑣(𝑋𝑋) = 𝑣𝑣0 + 𝑣𝑣1𝑋𝑋 + 𝑣𝑣2𝑋𝑋2 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑋𝑋𝑛𝑛−1 be the polynomial representation of 𝑣𝑣. Then, 

𝑣𝑣(𝑖𝑖)(𝑋𝑋) = 𝑣𝑣𝑛𝑛−𝑖𝑖 + 𝑣𝑣𝑛𝑛−𝑖𝑖+1𝑋𝑋 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑋𝑋𝑖𝑖−1 + 𝑣𝑣0𝑋𝑋𝑖𝑖 + 𝑣𝑣1𝑋𝑋𝑖𝑖+1 + ⋯+ 𝑣𝑣𝑛𝑛−𝑖𝑖−1𝑋𝑋𝑛𝑛−1. 

Multiply 𝑋𝑋𝑖𝑖 by 𝑣𝑣(𝑋𝑋), i.e., shift 𝑣𝑣 𝑖𝑖 times (linearly, not cyclically). Then, 

𝑋𝑋𝑖𝑖𝑣𝑣(𝑋𝑋) = 𝑣𝑣0𝑋𝑋𝑖𝑖 + 𝑣𝑣1𝑋𝑋𝑖𝑖+1 + ⋯+ 𝑣𝑣𝑛𝑛−𝑖𝑖+1𝑋𝑋𝑛𝑛−1 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑋𝑋𝑛𝑛+𝑖𝑖−1. 

Add 𝑋𝑋𝑖𝑖𝑣𝑣(𝑋𝑋) and 𝑣𝑣(𝑖𝑖)(𝑋𝑋): 



𝑋𝑋𝑖𝑖𝑣𝑣(𝑋𝑋) + 𝑣𝑣(𝑖𝑖)(𝑋𝑋)
= 𝑣𝑣𝑛𝑛−𝑖𝑖 + 𝑣𝑣𝑛𝑛−𝑖𝑖+1𝑋𝑋 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑋𝑋𝑖𝑖−1 + 𝑣𝑣𝑛𝑛−𝑖𝑖𝑋𝑋𝑛𝑛 + 𝑣𝑣𝑛𝑛−𝑖𝑖+1𝑋𝑋𝑛𝑛+1 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑋𝑋𝑛𝑛+𝑖𝑖−1 

or: 

𝑋𝑋𝑖𝑖𝑣𝑣(𝑋𝑋) + 𝑣𝑣(𝑖𝑖)(𝑋𝑋) = [𝑣𝑣𝑛𝑛−𝑖𝑖 + 𝑣𝑣𝑛𝑛−𝑖𝑖+1𝑋𝑋 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑋𝑋𝑖𝑖−1](𝑋𝑋𝑛𝑛 + 1). 

So: 

𝑋𝑋𝑖𝑖𝑣𝑣(𝑋𝑋) = 𝑞𝑞(𝑋𝑋)[𝑋𝑋𝑛𝑛 + 1] + 𝑣𝑣(𝑖𝑖)(𝑋𝑋). 

That is, the 𝑖𝑖th cyclic shift of 𝑣𝑣(𝑋𝑋) is generated by dividing 𝑋𝑋𝑖𝑖𝑣𝑣(𝑋𝑋) by 𝑋𝑋𝑛𝑛 + 1. 

Theorem 1: the non-zero code polynomial with minimum degree in a cyclic code 𝐶𝐶 is unique. 

Proof: let 𝑔𝑔(𝑋𝑋) = 𝑔𝑔0 + 𝑔𝑔1𝑋𝑋 + ⋯+ 𝑔𝑔𝑟𝑟−1𝑋𝑋𝑟𝑟−1 + 𝑋𝑋𝑟𝑟 be the minimal degree code polynomial of 𝐶𝐶. 
Suppose there is another 𝑔𝑔′(𝑋𝑋) = 𝑔𝑔0′ + 𝑔𝑔1′𝑋𝑋 + ⋯+ 𝑔𝑔𝑟𝑟−1′ 𝑋𝑋𝑟𝑟−1 + 𝑋𝑋𝑟𝑟. Then, 𝑔𝑔(𝑋𝑋) + 𝑔𝑔′(𝑋𝑋) is 
another codeword in 𝐶𝐶 with degree less than 𝑟𝑟.  ⇒  contradiction. 

Theorem 2: let 𝑔𝑔(𝑋𝑋) = 𝑔𝑔0 + 𝑔𝑔1𝑋𝑋 + ⋯+ 𝑔𝑔𝑟𝑟−1𝑋𝑋𝑟𝑟−1 + 𝑋𝑋𝑟𝑟 be the minimum degree polynomial of 
a cyclic code 𝐶𝐶. Then, 𝑔𝑔0 ≠ 0. 

Proof: if 𝑔𝑔0 = 0 then shifting 𝑔𝑔(𝑋𝑋) once to the left (or 𝑛𝑛 − 1 times to right) results in 𝑔𝑔1 + 𝑔𝑔2𝑋𝑋 +
⋯+ 𝑔𝑔𝑟𝑟−1𝑋𝑋𝑟𝑟−2 + 𝑋𝑋𝑟𝑟−1 which has a degree < 𝑟𝑟  ⇒  contradiction. So, 𝑔𝑔(𝑋𝑋) = 1 + 𝑔𝑔1𝑋𝑋 + ⋯+
𝑔𝑔𝑟𝑟−1𝑋𝑋𝑟𝑟−1 + 𝑋𝑋𝑟𝑟. 

Let 𝑔𝑔(𝑋𝑋) be the polynomial of minimum degree of a code 𝐶𝐶. Take 
𝑔𝑔(𝑋𝑋),𝑋𝑋𝑔𝑔(𝑋𝑋),𝑋𝑋2𝑔𝑔(𝑋𝑋),⋯ ,𝑋𝑋𝑛𝑛−𝑟𝑟−1𝑔𝑔(𝑋𝑋). These are shifts of 𝑔𝑔(𝑋𝑋) by 0, 1,⋯ ,𝑛𝑛 − 𝑟𝑟 − 1. So, they 
are codewords. Any linear combination of them is also a codeword. Therefore,  

𝑣𝑣(𝑋𝑋) = 𝑢𝑢0𝑔𝑔(𝑋𝑋) + 𝑢𝑢1𝑋𝑋𝑔𝑔(𝑋𝑋) + ⋯+ 𝑢𝑢𝑛𝑛−𝑟𝑟−1𝑋𝑋𝑛𝑛−𝑟𝑟−1𝑔𝑔(𝑋𝑋) 

= [𝑢𝑢0 + 𝑢𝑢1𝑋𝑋 + ⋯+ 𝑢𝑢𝑛𝑛−𝑟𝑟−1𝑋𝑋𝑛𝑛−𝑟𝑟−1]𝑔𝑔(𝑋𝑋) 

is also a code. 

Theorem 3: let 𝑔𝑔(𝑋𝑋) = 1 + 𝑔𝑔1𝑋𝑋 + ⋯+ 𝑔𝑔𝑟𝑟−1𝑋𝑋𝑟𝑟−1 + 𝑋𝑋𝑟𝑟 be the non-zero code polynomial of 
minimum degree of an (𝑛𝑛,𝑘𝑘) cyclic code 𝐶𝐶. A binary polynomial of degree 𝑛𝑛 − 1 or less is a code 
polynomial if and only if it is a multiple of 𝑔𝑔(𝑋𝑋).  

Proof: let 𝑣𝑣(𝑋𝑋) be a polynomial of degree 𝑛𝑛 − 1 or less such that: 

𝑣𝑣(𝑋𝑋) = (𝑎𝑎0 + 𝑎𝑎1𝑋𝑋 + ⋯+ 𝑎𝑎𝑛𝑛−𝑟𝑟−1𝑋𝑋𝑛𝑛−𝑟𝑟−1)𝑔𝑔(𝑋𝑋). 

Then, 

𝑣𝑣(𝑋𝑋) = 𝑎𝑎0𝑔𝑔(𝑋𝑋) + 𝑎𝑎1𝑋𝑋𝑔𝑔(𝑋𝑋) + ⋯+ 𝑎𝑎𝑛𝑛−𝑟𝑟−1𝑋𝑋𝑛𝑛−𝑟𝑟−1𝑔𝑔(𝑋𝑋). 

Since 𝑔𝑔(𝑋𝑋),𝑋𝑋𝑔𝑔(𝑋𝑋),⋯ are each codeword of 𝐶𝐶 so is their sum 𝑣𝑣(𝑋𝑋). 

Now assume 𝑣𝑣(𝑋𝑋) be a code polynomial in 𝐶𝐶. Then write: 



𝑣𝑣(𝑋𝑋) = 𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋) + 𝑏𝑏(𝑋𝑋) 

i.e., divide 𝑣𝑣(𝑋𝑋) by 𝑔𝑔(𝑋𝑋) and get remainder 𝑏𝑏(𝑋𝑋) and quotient 𝑎𝑎(𝑋𝑋). 

𝑏𝑏(𝑋𝑋) = 𝑣𝑣(𝑋𝑋) + 𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋). 

𝑣𝑣(𝑋𝑋) is a codeword and so is 𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋). Therefore, 𝑏𝑏(𝑋𝑋) is also a codeword. But degree of 𝑏𝑏(𝑋𝑋) 
is less than 𝑟𝑟 ⇒ contradiction unless if 𝑏𝑏(𝑋𝑋) = 0. 

The number of polynomials of degree 𝑛𝑛 − 1 or less that are multiple of 𝑔𝑔(𝑋𝑋) is 2𝑛𝑛−𝑟𝑟. Due to 1-to-
1 correspondence between these polynomials and the codewords (Theorem 3), we have 2𝑛𝑛−𝑟𝑟 =
2𝑘𝑘 ⇒ 𝑟𝑟 = 𝑛𝑛 − 𝑘𝑘. 

Theorem 4: in an (𝑛𝑛,𝑘𝑘) cyclic code, there is one and only one code polynomial of degree 𝑛𝑛 − 𝑘𝑘, 

𝑔𝑔(𝑋𝑋) = 1 + 𝑔𝑔1𝑋𝑋 + 𝑔𝑔2𝑋𝑋2 + ⋯+ 𝑔𝑔𝑛𝑛−𝑘𝑘−1𝑋𝑋𝑛𝑛−𝑘𝑘−1 + 𝑋𝑋𝑛𝑛−𝑘𝑘. 

Every code polynomial is a multiple of 𝑔𝑔(𝑋𝑋). Every binary polynomial of degree 𝑛𝑛 − 1 or less 
that is a multiple of 𝑔𝑔(𝑋𝑋) is a code polynomial. So, 

𝑣𝑣(𝑋𝑋) = 𝑢𝑢(𝑋𝑋)𝑔𝑔(𝑋𝑋) 

is a code polynomial, however, not in a systematic form. 

To make code systematic, multiply the information polynomial 𝑢𝑢(𝑋𝑋) by 𝑋𝑋𝑛𝑛−𝑘𝑘. This means placing 
the 𝑘𝑘 information bits at the head of the shift register (in 𝑘𝑘 right-most Flip-Flops). Then, 

𝑢𝑢(𝑋𝑋) = 𝑢𝑢0 + 𝑢𝑢1𝑋𝑋 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑋𝑋𝑘𝑘−1 

will result in: 

𝑋𝑋𝑛𝑛−𝑘𝑘𝑢𝑢(𝑋𝑋) = 𝑢𝑢0𝑋𝑋𝑛𝑛−𝑘𝑘 + 𝑢𝑢1𝑋𝑋𝑛𝑛−𝑘𝑘+1 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑋𝑋𝑛𝑛−1. 

Now divide 𝑋𝑋𝑛𝑛−𝑘𝑘𝑢𝑢(𝑋𝑋) by 𝑔𝑔(𝑋𝑋) to get: 

𝑋𝑋𝑛𝑛−𝑘𝑘𝑢𝑢(𝑋𝑋) = 𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋) + 𝑏𝑏(𝑋𝑋), 

where 𝑏𝑏(𝑋𝑋) is a polynomial of degree 𝑛𝑛 − 𝑘𝑘 − 1 or less: 

𝑏𝑏(𝑋𝑋) = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋 + ⋯+ 𝑏𝑏𝑛𝑛−𝑘𝑘−1𝑋𝑋𝑛𝑛−𝑘𝑘−1 

𝑏𝑏(𝑋𝑋) + 𝑋𝑋𝑛𝑛−𝑘𝑘𝑢𝑢(𝑋𝑋) = 𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋). 

This means that 𝑏𝑏(𝑋𝑋) + 𝑋𝑋𝑛𝑛−𝑘𝑘𝑢𝑢(𝑋𝑋) is the representation of a codeword in systematic form, i.e.,  

𝑏𝑏(𝑋𝑋) + 𝑋𝑋𝑛𝑛−𝑘𝑘𝑢𝑢(𝑋𝑋) = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋 + ⋯+ 𝑏𝑏𝑛𝑛−𝑘𝑘−1𝑋𝑋𝑛𝑛−𝑘𝑘−1 

                                                                  + 𝑢𝑢0𝑋𝑋𝑛𝑛−𝑘𝑘 + 𝑢𝑢1𝑋𝑋𝑛𝑛−𝑘𝑘+1 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑋𝑋𝑛𝑛−1 

that represents 

𝑣𝑣 = (𝑏𝑏0, 𝑏𝑏1,⋯ , 𝑏𝑏𝑛𝑛−𝑘𝑘−1,𝑢𝑢0,𝑢𝑢1,⋯ ,𝑢𝑢𝑘𝑘−1). 



Example: consider the (7, 4) cyclic code generated by 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋3. Let 𝑢𝑢(𝑋𝑋) = 1 + 𝑋𝑋3. 
Then, 

1- 𝑋𝑋3𝑢𝑢(𝑋𝑋) = 𝑋𝑋3 + 𝑋𝑋6 
2-  

 

3- 𝑣𝑣(𝑋𝑋) = 𝑏𝑏(𝑋𝑋) + 𝑋𝑋3𝑢𝑢(𝑋𝑋) = 𝑋𝑋 + 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋6 or 𝑣𝑣 = (0, 1, 1, 1, 0, 0, 1) 

 

Theorem 5: the generator polynomial of an (𝑛𝑛,𝑘𝑘) code is a factor of 𝑋𝑋𝑛𝑛 + 1. 

Proof: divide 𝑋𝑋𝑘𝑘𝑔𝑔(𝑋𝑋) by 𝑋𝑋𝑛𝑛 + 1. 

𝑋𝑋𝑘𝑘𝑔𝑔(𝑋𝑋) = (𝑋𝑋𝑛𝑛 + 1) + 𝑔𝑔(𝑘𝑘)(𝑋𝑋)  or  𝑋𝑋𝑛𝑛 + 1 = 𝑋𝑋𝑘𝑘𝑔𝑔(𝑋𝑋) + 𝑔𝑔(𝑘𝑘)(𝑋𝑋) 

𝑔𝑔(𝑘𝑘)(𝑋𝑋) is a code polynomial. So, 𝑔𝑔(𝑘𝑘)(𝑋𝑋) = 𝑎𝑎(𝑋𝑋)𝑏𝑏(𝑋𝑋) for some 𝑎𝑎(𝑋𝑋). So,  

𝑋𝑋𝑛𝑛 + 1 = [𝑋𝑋𝑘𝑘 + 𝑎𝑎(𝑋𝑋)]𝑔𝑔(𝑋𝑋).               𝑄𝑄𝑄𝑄𝑄𝑄 



Theorem 6: if 𝑔𝑔(𝑋𝑋) is a polynomial of degree 𝑛𝑛 − 𝑘𝑘 and is a factor of 𝑋𝑋𝑛𝑛 + 1. Then 𝑔𝑔(𝑋𝑋) 
generates an (𝑛𝑛,𝑘𝑘) cyclic code. 

Proof: let 𝑔𝑔(𝑋𝑋),𝑋𝑋𝑔𝑔(𝑋𝑋),⋯ ,𝑋𝑋𝑘𝑘−1𝑔𝑔(𝑋𝑋). They are all polynomials of degree 𝑛𝑛 − 1 or less. A linear 
combination of them: 

𝑣𝑣(𝑋𝑋) = 𝑢𝑢0𝑔𝑔(𝑋𝑋) + 𝑢𝑢1𝑋𝑋𝑔𝑔(𝑋𝑋) + ⋯+ 𝑢𝑢𝑘𝑘−1𝑋𝑋𝑘𝑘−1𝑔𝑔(𝑋𝑋) 

= [𝑢𝑢0 + 𝑢𝑢1𝑋𝑋 + ⋯+ 𝑢𝑢𝑘𝑘−1𝑋𝑋𝑘𝑘−1]𝑔𝑔(𝑋𝑋) 

is a code polynomial since 𝑢𝑢𝑖𝑖 ∈ {0, 1}. Then 𝑣𝑣(𝑋𝑋) will have 2𝑘𝑘 possibilities. These 2𝑘𝑘 polynomials 
form the 2𝑘𝑘 codewords of the (𝑛𝑛,𝑘𝑘) code. 

Generator polynomial of a cyclic code: 

 

For example, for (7, 4) code with 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋3, 𝑔𝑔0 = 𝑔𝑔1 = 𝑔𝑔3 = 1 and 𝑔𝑔𝑖𝑖 = 0 otherwise. 

𝐺𝐺 = �

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0
0

0
0

1 1 0 1 0
0 1 1 0 1

� 

This is not always in systematic form. We can make it into systematic form by row and column 
operations. For example, for the (7, 4) code: 

𝐺𝐺′ =

⎣
⎢
⎢
⎢
⎡

𝑔𝑔0
𝑔𝑔1

𝑔𝑔0 + 𝑔𝑔2
𝑔𝑔0 + 𝑔𝑔1 + 𝑔𝑔2⎦

⎥
⎥
⎥
⎤

= �

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1
1

1
0

1 0 0 1 0
1 0 0 0 1

�. 

Parity check matrix of cyclic codes: 

We saw that 𝑔𝑔(𝑋𝑋) divides 𝑋𝑋𝑛𝑛 + 1. Write 

𝑋𝑋𝑛𝑛 + 1 = 𝑔𝑔(𝑋𝑋)ℎ(𝑋𝑋), 

where ℎ(𝑋𝑋) is a polynomial of degree 𝑘𝑘 

ℎ(𝑋𝑋) = ℎ0 + ℎ1𝑋𝑋 + ⋯+ ℎ𝑘𝑘𝑋𝑋𝑘𝑘 . 

Consider a code polynomial 𝑣𝑣(𝑋𝑋) 



𝑣𝑣(𝑋𝑋)ℎ(𝑋𝑋) = 𝑢𝑢(𝑋𝑋)𝑔𝑔(𝑋𝑋)ℎ(𝑋𝑋) 

= 𝑢𝑢(𝑋𝑋)(𝑋𝑋𝑛𝑛 + 1) 

= 𝑢𝑢(𝑋𝑋)𝑋𝑋𝑛𝑛 + 𝑢𝑢(𝑋𝑋). 

Since 𝑢𝑢(𝑋𝑋) has degree less than or equal 𝑘𝑘 − 1, so 𝑢𝑢(𝑋𝑋)𝑋𝑋𝑛𝑛 + 𝑢𝑢(𝑋𝑋) does not have 
𝑋𝑋𝑘𝑘,𝑋𝑋𝑘𝑘+1,⋯ ,𝑋𝑋𝑛𝑛−1. That is coefficients of these powers of 𝑋𝑋 are zero. So, we get 𝑛𝑛 − 𝑘𝑘 equalities: 

�ℎ𝑖𝑖𝑣𝑣𝑛𝑛−𝑖𝑖−𝑗𝑗

𝑘𝑘

𝑖𝑖=0

= 0   for   1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 𝑘𝑘. 

So, we have 𝐻𝐻 as: 

 

Theorem 7: let 𝑔𝑔(𝑋𝑋) be the generator polynomial of the (𝑛𝑛,𝑘𝑘) cyclic code 𝐶𝐶. The dual code of 𝐶𝐶 
is generated by 𝑋𝑋𝑘𝑘ℎ(𝑋𝑋−1) where ℎ(𝑋𝑋) = 𝑋𝑋𝑛𝑛+1

𝑔𝑔(𝑋𝑋)
.  

Example: consider (7, 4) code 𝐶𝐶 with 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋3. The generator polynomial of 𝐶𝐶𝑡𝑡 is 
𝑋𝑋4ℎ(𝑋𝑋−1) where  

ℎ(𝑋𝑋) =
𝑋𝑋7 + 1

1 + 𝑋𝑋 + 𝑋𝑋3
= 1 + 𝑋𝑋 + 𝑋𝑋2 + 𝑋𝑋4. 

That is, the generator of 𝐶𝐶𝑡𝑡 is: 

𝑋𝑋4ℎ(𝑋𝑋−1) = 𝑋𝑋4(1 + 𝑋𝑋−1 + 𝑋𝑋−2 + 𝑋𝑋−4) 

                                                               = 1 + 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4. 

So, 𝐶𝐶𝑡𝑡 is a (7, 3) code with 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 4. Therefore, it can correct any single error and detect any 
combination of double errors. 

Encoding of cyclic codes: 

We saw that if we multiply the information polynomial by 𝑋𝑋𝑛𝑛−𝑘𝑘 and divide by 𝑔𝑔(𝑋𝑋), we get: 

𝑋𝑋𝑛𝑛−1𝑢𝑢(𝑋𝑋) = 𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋) + 𝑏𝑏(𝑋𝑋) 

and 

𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋) = 𝑏𝑏(𝑋𝑋) + 𝑋𝑋𝑛𝑛−1𝑢𝑢(𝑋𝑋) 



is a codeword in systematic form. The following circuit encodes 𝑢𝑢(𝑋𝑋) based on the above 
discussion. 

 

1) Close the gate and enter information bits in and also send them over channel. This does 
multiplication by 𝑋𝑋𝑛𝑛−𝑘𝑘 as well as parity bit generation. 

2) Open the gate (break the feedback). 
3) Output the 𝑛𝑛 − 𝑘𝑘 parity bits. 

Example: (7, 4) code with 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋3. 

 

Syndrome: 

Assume 𝑟𝑟(𝑋𝑋) = 𝑟𝑟0 + 𝑟𝑟1𝑋𝑋 + 𝑟𝑟2𝑋𝑋2 + ⋯+ 𝑟𝑟𝑛𝑛−1𝑋𝑋𝑛𝑛−1 is the polynomial representing received bits. 
Divide 𝑟𝑟(𝑋𝑋) by 𝑔𝑔(𝑋𝑋) to get: 

𝑟𝑟(𝑋𝑋) = 𝑎𝑎(𝑋𝑋)𝑔𝑔(𝑋𝑋) + 𝑠𝑠(𝑋𝑋). 

𝑠𝑠(𝑋𝑋) is a polynomial of degree 𝑛𝑛 − 𝑘𝑘 − 1 or less. The 𝑛𝑛 − 𝑘𝑘 coefficients of 𝑠𝑠(𝑋𝑋) are the 
syndromes. 



Theorem 8: let 𝑠𝑠(𝑋𝑋) be the syndrome of 𝑟𝑟(𝑋𝑋) = 𝑟𝑟0 + 𝑟𝑟1𝑋𝑋 + ⋯+ 𝑟𝑟𝑛𝑛−1𝑋𝑋𝑛𝑛−1. Then, 𝑠𝑠(𝑖𝑖)(𝑋𝑋) 
resulting from dividing 𝑋𝑋𝑖𝑖𝑠𝑠(𝑋𝑋) by 𝑔𝑔(𝑋𝑋) is the syndrome of 𝑟𝑟(𝑖𝑖)(𝑋𝑋). 

 

Example of (7, 4) code: 

 

Decoding: 



 

Example of (7, 4) code: 

 



 
Another implementation of syndrome calculator 



Syndrome decoding of (7, 4) code using syndrome decoder fed from right: 

 

 

Cyclic Hamming codes: 

A Hamming code of length 𝑛𝑛 = 2𝑚𝑚 − 1 with 𝑚𝑚 ≥ 3 is generated by a primitive polynomial of 
degree 𝑚𝑚. let’s see how we can put the Hamming code with defined in last lecture in cyclic form: 

Divide 𝑋𝑋𝑚𝑚+𝑖𝑖 by 𝑝𝑝(𝑋𝑋) to get 𝑋𝑋𝑚𝑚+𝑖𝑖 = 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑝𝑝(𝑋𝑋) + 𝑏𝑏𝑖𝑖(𝑋𝑋). 

1) Since 𝑝𝑝(𝑋𝑋) is primitive, 𝑋𝑋 is not a factor of 𝑝𝑝(𝑋𝑋) so 𝑝𝑝(𝑋𝑋) does not divide 𝑋𝑋𝑚𝑚+𝑖𝑖 ⇒ 𝑏𝑏𝑖𝑖(𝑋𝑋) ≠
0. 



2) 𝑏𝑏𝑖𝑖(𝑋𝑋) has at least two terms. If it had one term: 
𝑋𝑋𝑚𝑚+𝑖𝑖 = 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑝𝑝(𝑋𝑋) + 𝑋𝑋𝑗𝑗 

⇒ 𝑋𝑋𝑗𝑗�𝑋𝑋𝑚𝑚+𝑖𝑖−𝑗𝑗 + 1� = 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑝𝑝(𝑋𝑋) 
⇒ 𝑝𝑝(𝑋𝑋) divides 𝑋𝑋𝑚𝑚+𝑖𝑖−𝑗𝑗 + 1 but 𝑚𝑚 + 𝑖𝑖 − 𝑗𝑗 < 2𝑚𝑚 − 1 

⇒ contradiction. 
3) If 𝑖𝑖 ≠ 𝑗𝑗, then 𝑏𝑏𝑖𝑖(𝑋𝑋) ≠ 𝑏𝑏𝑗𝑗(𝑋𝑋). Let  

𝑋𝑋𝑚𝑚+𝑖𝑖 = 𝑏𝑏𝑖𝑖(𝑋𝑋) + 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑝𝑝(𝑋𝑋) 
𝑋𝑋𝑚𝑚+𝑗𝑗 = 𝑏𝑏𝑗𝑗(𝑋𝑋) + 𝑎𝑎𝑗𝑗(𝑋𝑋)𝑝𝑝(𝑋𝑋). 

If 𝑏𝑏𝑖𝑖(𝑋𝑋) = 𝑏𝑏𝑗𝑗(𝑋𝑋), then 
𝑋𝑋𝑚𝑚+𝑖𝑖�𝑋𝑋𝑗𝑗−𝑖𝑖 + 1� = �𝑎𝑎𝑖𝑖(𝑋𝑋) + 𝑎𝑎𝑗𝑗(𝑋𝑋)�𝑝𝑝(𝑋𝑋), 

i.e., 𝑝𝑝(𝑋𝑋) divides 𝑋𝑋𝑗𝑗−𝑖𝑖 + 1 ⇒ contradiction. 

Let 𝐻𝐻 = [𝐼𝐼𝑚𝑚:𝑄𝑄] be the parity check matrix of this code. 𝐼𝐼𝑚𝑚 is an 𝑚𝑚 × 𝑚𝑚 identity matrix with 𝑄𝑄 an 
𝑚𝑚 × (2𝑚𝑚 −𝑚𝑚 − 1) matrix with 𝑏𝑏𝑖𝑖 = (𝑏𝑏𝑖𝑖0,𝑏𝑏𝑖𝑖1,⋯ , 𝑏𝑏𝑖𝑖,𝑚𝑚−1) as its columns. Since no two columns 
of 𝑄𝑄 are the same and each have at least two 1’s, then 𝐻𝐻 is indeed a parity-check matrix of a 
Hamming code. 

Syndrome decoding of Hamming codes: 

Assume that error is in location with highest order, i.e., 

𝑒𝑒(𝑋𝑋) = 𝑋𝑋2𝑚𝑚−2. 

Then, feeding 𝑟𝑟(𝑋𝑋) from right to syndrome calculator is equivalent to dividing 𝑋𝑋𝑚𝑚 ∙ 𝑋𝑋2𝑚𝑚−2 by the 
generator polynomial 𝑝𝑝(𝑋𝑋). Since 𝑝𝑝(𝑋𝑋) divides 𝑋𝑋2𝑚𝑚−1 + 1 then 

𝑠𝑠(𝑋𝑋) = 𝑋𝑋𝑚𝑚−1  or  𝑠𝑠 = (0, 0,⋯ , 0, 1). 

 


