ELEC 6131: Error Detecting and Correcting Codes

Lecture 7: BCH Codes

- Block Length $\mathrm{n}=2^{\mathrm{m}}-1$
- For some $m \geq 3$
- Number of Parity-check bits $n-k \leq m t$
- Minimum Distance $d_{\text {min }} \geq 2 t+1$

The generator polynomial is defined in terms of its roots over GF $\left(2^{\mathrm{m}}\right)$.
For a t-error correcting BCH Code, $\mathrm{g}(\mathrm{x})$ is the lowest-degree polynomial with roots $\alpha, \alpha^{2} \ldots, \alpha^{2 t}$.
Let $\varphi_{i}(x)$ be the minimal polynomial of α^{i} for $i=1,2, \ldots, 2 t$.Then:

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{2 t}(x)\right\}
$$

Where LCM stands for least Common Multiple.
If i is even then we can write $i=i^{\prime} .2^{l}$,
Where i^{\prime} is odd and $\mathrm{L} \geq 1$. Then:

$$
\alpha^{i}=\left(\alpha^{i^{\prime}}\right)^{2 l}
$$

So α^{i} and $\alpha^{i^{\prime}}$ are conjugate of each other and have the same minimal polynomial.
So,

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{3}(x), \ldots, \varphi_{2 t-1}(x)\right\}
$$

Since the degree of each of $\Phi_{i}(x), i=1,3, \ldots$ is less than or equal to m , the degree $\mathrm{of} \mathrm{g}(\mathrm{x})$ is less than or equal to $m t \mathrm{So}$,

$$
n-k \leq m t
$$

As the degree of $\mathrm{g}(\mathrm{x})$ is $\mathrm{n}-\mathrm{k}$. Table 6.1 lists BCH Codes for lengths $2^{\mathrm{m}}-1, m=3, . .10$ that is length 7 to 1023.

These are narrow sense or primitive BCH Codes. In general, α does not need to be primitive and root can be non- Consecutive.

TABLE 6.1: BCH codes generated by primitive elements of order less than 2^{10}

n								
n	k	t	n	k	t	n	k	t
7	4	1	127	50	13	255	71	29
15	11	1		43	14		63	30
	7	2		36	14		55	31
	5	3		29	21		47	42
31	26	1		22	23		45	43
	21	2		15	27		37	45
	16	3		8	31		29	47
	11	5	255	247	1		21	55
	6	7		239	2		13	59
63	57	1		231	3		9	63
	51	2		223	4	511	502	1
	45	3		215	5		493	2
	39	4		207	6		484	3
	36	5		199	7		475	4
	30	6		191	8		466	5
	24	7		187	9		457	6

TABLE E. 1: (contimued)

TABLE 6.1: (contínued)

\boldsymbol{n}	\boldsymbol{k}	\boldsymbol{t}	\boldsymbol{n}	\boldsymbol{k}	\boldsymbol{t}	\boldsymbol{n}	\boldsymbol{k}
728	30		433	74		153	125
718	31		423	75		143	126
708	34		413	77		133	127
698	35		403	78		123	170
688	36	393	79	121	171		
678	37	383	82	111	173		
668	38	378	83		101	175	
658	39		368	85		91	181
648	41		358	86		86	183
638	42	348	87		76	187	
628	43		338	89		66	189
618	44	328	90		56	191	
608	45		318	91		46	219
598	46		308	93		36	223
588	47	298	94		26	239	
578	49	288	95		16	147	
573	50		278	102		11	255
563	51						

Refer to Appendix C for the list of BCH Codes and their generating polynomial. Relationship to Hamming Codes.

Consider a single error correcting BCH Code of length $\mathrm{n}=2^{\mathrm{m}}-1$. Then:

$$
g(x)=\varphi_{1}(x)
$$

$\varphi_{1}(x)$ is polynomial of degree m. So,

$$
\mathrm{n}-\mathrm{k}=\mathrm{m} \rightarrow \mathrm{k}=2^{\mathrm{m}}-1-\mathrm{m}
$$

So, a Hamming Code is just a single error correcting BCH code.

Example:

Design a triple error correcting BCH Code of length 15.

$$
\mathrm{n}=15=2^{\mathrm{m}}-1 \rightarrow \mathrm{~m}=4
$$

So, we need to find primitive element α over $G F\left(2^{4}\right)$ and form:

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{3}(x), \varphi_{5}(x)\right\}
$$

```
TABLE 2.9: Minimal polynomials of the
elements in \(G F\left(2^{4}\right)\) generated by \(p(X)=\)
\(x^{4}+x+1\).
\begin{tabular}{cc}
\hline Conjugate roots & Minimal polynomials \\
\hline 0 & \(X\) \\
1 & \(X+1\) \\
\(\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}\) & \(X^{4}+X+1\) \\
\(\alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12}\) & \(X^{4}+X^{3}+X^{2}+X+1\) \\
\(\alpha^{5}, \alpha^{10}\) & \(X^{2}+X+1\) \\
\(\alpha^{7}, \alpha^{11}, \alpha^{13}, \alpha^{14}\) & \(X^{4}+X^{3}+1\)
\end{tabular}
```

From table 2.9, we have:

$$
\begin{aligned}
& \varphi_{1}(x)=1+x+x^{4} \\
& \varphi_{3}(x)=1+x+x^{2}+x^{3}+x^{4} \\
& \varphi_{5}(x)=1+x+x^{2}
\end{aligned}
$$

So,

$$
\begin{gathered}
g(x)=\left(1+x+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)\left(1+x+x^{2}\right) \\
=1+x+x^{2}+x^{4}+x^{5}+x^{8}+x^{10}
\end{gathered}
$$

So $\mathrm{n}-\mathrm{k}=10 \rightarrow(15,5) \mathrm{BCH}$ Code with $d_{\text {min }}=7 \rightarrow \mathrm{t}=3$.

- See Appendix B for minimal polynomial for $m=2, \ldots, 10$.

BCH Codes Over GF($\mathbf{2}^{\mathbf{6}}$):

Do this derivation of $g(x)$ for all BCH Codes of length $2^{6}-1=63$ in order to become familiar with concepts involved.

First, using the primitive polynomial $\mathrm{p}(\mathrm{x})=1+\mathrm{x}+\mathrm{x}^{6}$, generate all elements of $G F\left(2^{6}\right)$. They are listed below, but I strongly encourage you to create the table yourself manually (don't use a computer program).

0	0										(0)
1	1										(100000)
$\boldsymbol{\alpha}$			$\boldsymbol{\alpha}$								(010000)
α^{2}					α^{2}						(001000)
α^{3}							α^{3}				(000100)
α^{4}								α^{4}			(000010)
$\alpha^{\boldsymbol{\alpha}}$										α^{5}	(000001)
α^{7}	1	$+$	α								(110000)
α^{8}			α		α_{2}^{2}						(011000)
α^{9}						+	$\begin{gathered} \alpha^{3} \\ \alpha^{3} \end{gathered}$				(001100)
α^{10}							α^{3}	$+\alpha^{4}$			(000110)
α^{11}	1	$+$	$\boldsymbol{\alpha}$					α^{4}	$+$		(000011)
α^{12}	1			$+$	α^{2}				$+$		(110001)
α^{13}			α				α^{3}				(101000)
α^{14}					α^{2}			$+\alpha^{4}$			(0110100) (00101010)
α^{15}							a^{3}		$+$	a^{5}	(000101)
α^{16}	1	$+$	α					$+\alpha^{4}$			(110010)
α^{17}			α	$+$	α^{2}				$+$	α^{5}	(011001)
α^{18}	1	$+$	$\boldsymbol{\alpha}$	$+$	α^{2}	$+$	α^{3}				(1111100)
α^{19}			$\boldsymbol{\alpha}$	$+$	α^{2}	$+$	α^{3}	$+\alpha^{4}$			(0111110)
α^{20}					α^{2}	$+$	α^{3}	$+\alpha^{4}$		α^{5}	$\left(\begin{array}{llllllll}0 & 1 & 1 & 1 & 1\end{array}\right)$

TABLE 6.2: (continued)

- From the above table you can find minimal polynomial for all elements of $G F\left(2^{6}\right)$:

TABLE 6.3: Minimal polynomials of the elements in $G F\left(2^{6}\right)$.

Elements	Minimal polynomials
$\alpha_{,}, \alpha^{2}, \alpha^{4} \cdot \alpha^{16}, \alpha^{32}$	$1+x+x^{6}$
$\alpha^{3}, \alpha^{6}, \alpha^{12} \alpha^{24}, \alpha^{48} \alpha^{33}$	$1+X+x^{2}+X^{4}+X^{6}$
$\alpha^{5}, \alpha^{10}-\alpha^{20}, \alpha^{40}, \alpha^{17}, \alpha^{34}$	$1+x+X^{2}+x^{5}+X^{6}$
$\alpha^{7}, \alpha^{14}, \alpha^{28}, \alpha^{56}, \alpha^{49}, \alpha^{35}$	$1+x^{3}+x^{5}$
$\alpha^{9}, \alpha^{18}, \alpha^{36}$	$1+x^{2}+x^{3}$
$\alpha^{11}, \alpha^{22}, \alpha^{44}, \alpha^{25}, \alpha^{50}, \alpha^{37}$	$1+x^{2}+X^{3}+x^{5}+X^{6}$
$\alpha^{13}, \alpha^{26}, \alpha^{52}, \alpha^{41}, \alpha^{19}, \alpha^{38}$	$1+x+x^{3}+x^{4}+x^{6}$
$\alpha^{15}, \alpha^{30}, \alpha^{60}, \alpha^{57}, \alpha^{51}, \alpha^{39}$	$1+x^{2}+x^{4}+x^{5}+x^{6}$
α^{21}, α^{42}	$1+x+x^{2}+x^{5}+x^{6}$
$\alpha^{23}, \alpha^{46}, \alpha^{29}, \alpha^{58}, \alpha^{53}, \alpha^{43}$	$1+x+X^{4}+x^{5}+X^{6}$
$\alpha^{27}=\alpha^{54}, \alpha^{45}$	$1+x+x^{3}$
$\alpha^{31}, \alpha^{62}, \alpha^{61}, \alpha^{59}, \alpha^{55}, \alpha^{47}$	$1+X^{5}+x^{6}$

Finally for any value of t generate

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{3}(x), \ldots, \varphi_{2 t-1}(x)\right\}
$$

TABLE 6.4: Generator polynomials of all the BCH codes of length 63.

n	k	t	$g(X)$
63	57	1	$\mathrm{g}_{1}(X)=1+X+X^{6}$
	51	2	$\mathrm{g}_{2}(X)=\left(1+X+X^{6}\right)\left(1+X+X^{2}+X^{4}+X^{6}\right)$
	45	3	$g_{3}(X)=\left(1+X+X^{2}+X^{5}+X^{5}\right)_{2}(X)$
	39	4	$\mathrm{g}_{4}(X)=\left(1+X^{3}+X^{6}\right)_{g_{3}}(X)$
	36	5	$\mathrm{gos}_{s}(X)=\left(1+X^{2}+X^{3}\right)_{\mathrm{ga}}(X)$
	30	6	$\mathrm{g}_{6}(X)=\left(1+X^{2}+X^{3}+X^{5}+X^{6}\right) \mathrm{gs}(X)$
	24	7	$\mathrm{g}_{7}(X)=\left(1+X+X^{3}+X^{4}+X^{6}\right)_{5}(X)$
	18	10	$\left.\mathrm{g}_{10}(X)=\left(1+X^{2}+X^{4}+X^{5}+X^{6}\right) \mathrm{g}\right\rangle(X)$
	16	11	$\mathrm{gli}_{11}(X)=\left(1+X+X^{2}\right) \mathrm{glog}^{(X)}$
	10	13	$\mathrm{g}_{13}(X)=\left(1+X+X^{4}+X^{5}+X^{6}\right)_{11}(X)$
	7	15	$\mathrm{g}_{15}(X)=\left(1+X+X^{3}\right)_{13}(X)$

Parity-Check matrix of BCH Codes:

We know that each code polynomial $\mathrm{v}(\mathrm{x})$ is divisible by $\mathrm{g}(\mathrm{x})$ and that $\mathrm{g}(\mathrm{x})$ is:

$$
g(x)=\operatorname{LCM}\left\{g_{1}(x), g_{2}(x), \ldots, g_{2 t}(x)\right\}
$$

So, $\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{2 t}$ are the root of $\mathrm{v}(\mathrm{x})$, i.e.,

$$
V\left(\alpha^{i}\right)=v_{0}+v_{1} \alpha^{i}+v_{2} \alpha^{2 i}+\ldots+v_{n-1} \alpha^{(n-1) i}=0
$$

For $i=1,2, \ldots, 2 t$
If we form

$$
\mathrm{H}=\left[\begin{array}{llccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-1} \\
1 & \alpha^{2} & \left(\alpha^{2}\right)^{2} & \cdots & \left(\alpha^{2}\right)^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \alpha^{2 t} & \left(\alpha^{2 t}\right)^{2} \cdots & \left(\alpha^{2 t}\right)^{n-1}
\end{array}\right]
$$

We have

$$
\underline{v} \cdot H^{T}=\underline{0}
$$

For any code vector $\underline{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$
Since if α^{i} is conjugate of α^{i} then $v\left(\alpha^{i}\right)=0$ implies $v\left(\alpha^{j}\right)=0$ and vice versa.
So, we can drop even rows and write:

$$
\mathrm{H}=\left[\begin{array}{cccccc}
1 & \alpha & \alpha^{2} & \alpha^{3} & \cdots & \alpha^{n-1} \\
1 & \alpha^{3} & \left(\alpha^{3}\right)^{2} & \left(\alpha^{3}\right)^{3} & \cdots & \left(\alpha^{3}\right)^{n-1} \\
1 & \alpha^{5} & \left(\alpha^{5}\right)^{2} & \left(\alpha^{5}\right)^{3} & \cdots & \left(\alpha^{5}\right)^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 \alpha^{2 t-1} & \left(\alpha^{2 t-1}\right)^{2} & \left(\alpha^{2 t-1}\right)^{3 \cdots} & \left(\alpha^{2 t-1}\right)^{n-1}
\end{array}\right]
$$

Example:

Consider double- error correcting BCH Code of length 15.
$15=2^{4}-1 \rightarrow m=4$ and from table 2.9:
$\varphi_{1}(\mathrm{x})=1+\mathrm{x}+\mathrm{x}^{4}$
$\varphi_{3}(x)=1+x+x^{2}+x^{3}+x^{4}$
So, $g(x)=\varphi_{1}(x) \varphi_{3}(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$
So $n-k=8 \rightarrow k=15-8=7$
So, this is the BCH Code $(15,7)$ with $d_{\text {min }}=5$, i.e., $\mathrm{t}=2$.

Substituting α^{i},s, so we get:

$$
\mathrm{H}=\left[\begin{array}{l}
100010011010111 \\
010011010111100 \\
001001101011110 \\
000100110101111 \\
100011000110001 \\
000110001100011 \\
001010010100101 \\
011110111101111
\end{array}\right]
$$

Example of a non-primitive BCH Code:

Consider $G F\left(2^{6}\right)$
Take $\beta=\alpha^{3}$.
β has order $\mathrm{n}=21$.
$\beta^{21}=\left(\alpha^{3}\right)^{21}=\alpha^{63}=1$
Let $g(x)$ be the minimal degree polynomial with roots: $\beta, \beta^{2}, \beta^{3}, \beta^{4}$
β, β^{2} and β^{4} have the same minimal polynomial:

$$
\varphi_{1}(x)=1+x+x^{2}+x^{4}+x^{6}
$$

and β^{3} has:

$$
\varphi_{3}(x)=1+x^{2}+x^{3}
$$

So

$$
g(x)=\varphi_{1}(x) \varphi_{3}(x)=1+x+x^{4}+x^{5}+x^{7}+x^{8}+x^{9}
$$

It can be easily verified that $g(x)$ divides $x^{21}+1$. The code generated by $g(x)$ is a $(21,12)$ nonprimitive $B C H$ Code that corrects two errors.

Decoding of BCH Codes:

Let codeword \underline{v} represented by code polynomial

$$
v(x)=v_{0}+v_{1} x+v_{2} x^{2}+\cdots+v_{n-1} x^{n-1}
$$

Be the transmitted codeword.
The received polynomial is:

$$
r(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}
$$

Denoting the error polynomial by $e(x)$, we have:

$$
r(x)=v(x)+e(x)
$$

The syndrome is calculated multiplying \underline{r} by H^{T} :

$$
\underline{s}=\left(s_{1}, s_{2}, \ldots, s_{2 t}\right)=\underline{r} . H^{T}
$$

That is, the $i-t h$ component of \underline{s} is:

$$
s_{i}=r\left(\alpha^{i}\right)=r_{0}+r_{1} \alpha^{i}+r_{2} \alpha^{2 i}+\cdots+r_{n-1} \alpha^{(n-1) i}
$$

for $i=1,2, \ldots, 2 t$.
Let's divide $\mathrm{r}(\mathrm{x})$ by $\varphi_{i}(x)$ i.e., the minimal polynomial of α^{i} :

$$
r(x)=\alpha_{i}(x) \varphi_{i}(x)+b_{i}(x)
$$

$\varphi_{i}\left(\alpha^{i}\right)=0$, therefore,

$$
S_{i}=r\left(\alpha^{i}\right)=b_{i}\left(\alpha^{i}\right)
$$

Example: Consider (15,7) BCH Code. Let the received vector be (100000001000000)
So,

$$
r(x)=1+x^{8}
$$

Let's find, $\underline{S}=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$
The minimal polynomial for $\alpha, \alpha^{2}, \alpha^{4}$ is the same,

$$
\varphi_{1}(x)=\varphi_{2}(x)=\varphi_{4}(x)=1+x+x^{4}
$$

And for α^{3} we have,

$$
\varphi_{3}(x)=1+x+x^{2}+x^{3}+x^{4}
$$

Dividing $r(x)=1+x^{8}$ by $\varphi_{1}(x)$ we get

$$
b_{1}(x)=x^{2}
$$

Dividing $\mathrm{r}(\mathrm{x})$ by $\varphi_{3}(x)$, we get

$$
b_{3}(x)=1+x^{3}
$$

So,

$$
s_{1}=b_{1}(\alpha)=\alpha^{2}, \quad s_{2}=\alpha^{4}, \quad s_{4}=\alpha^{8}
$$

and

$$
s_{3}=b_{3}\left(\alpha^{3}\right)=1+\alpha^{9}=1+\alpha+\alpha^{3}=\alpha^{7}
$$

So,

$$
\underline{S}=\left(\alpha^{2}, \alpha^{4}, \alpha^{7}, \alpha^{8}\right)
$$

Since

$$
V\left(\alpha^{i}\right)=0, \text { for } i=1,2, \ldots, 2 t
$$

we have

$$
S_{i}=r\left(\alpha^{i}\right)=v\left(\alpha^{i}\right)+e\left(\alpha^{i}\right)=e\left(\alpha^{i}\right)
$$

Now, assume that we have γ errors at locations $j_{1}, j_{2}, \ldots, j_{\gamma}$. That is,

$$
e(x)=x^{j_{1}}+x^{j_{2}}+\cdots+x^{j_{\gamma}}
$$

Then we have

$$
\begin{gathered}
S_{1}=\alpha^{j_{1}}+\alpha^{j_{2}}+\ldots+\alpha^{j_{\gamma}} \\
S_{2}=\left(\alpha^{j_{1}}\right)^{2}+\left(\alpha^{j_{2}}\right)^{2}+\cdots+\left(\alpha^{j_{\gamma}}\right)^{2} \\
\vdots \\
S_{2 t}=\left(\alpha^{j_{1}}\right)^{2 t}+\left(\alpha^{j_{2}}\right)^{2 t}+\cdots+\left(\alpha^{j_{\gamma}}\right)^{2 t}
\end{gathered}
$$

Denote $\beta_{1}=e^{j_{1}}, \beta_{2}=e^{j_{2}}, \ldots, \beta_{\gamma}=e^{j_{\gamma}}$
$\beta_{1}, \beta_{2}, \ldots, \beta_{\gamma}$ are called error location numbers.
We write:

$$
\begin{gathered}
\mathrm{S}_{1}=\beta_{1}+\beta_{2}+\ldots+\beta_{\gamma} \\
\mathrm{S}_{2}=\beta_{1}{ }^{2}+\beta_{2}^{2}+\ldots+\beta_{\gamma}^{2} \\
\vdots \\
\mathrm{~S}_{2 \mathrm{t}}=\beta_{1}{ }^{2 \mathrm{t}}+\beta_{2}^{2 \mathrm{t}}+\ldots+\beta_{\gamma}{ }^{2 \mathrm{t}}
\end{gathered}
$$

These 2 t equations are symmetric function of $\beta_{1,}, \beta_{2}, \ldots, \beta_{\gamma}$
Define the following polynomial

$$
\sigma(x)=\left(1+\beta_{1} x\right)\left(1+\beta_{2} x\right)\left(1+\beta_{3} x\right) \ldots\left(1+\beta_{\gamma} x\right)
$$

This is called the error locator polynomial and has $\beta_{1}^{-1}, \beta_{2}^{-1}, \ldots \beta_{\gamma}^{-1}$ as its roots. $\sigma(\mathrm{X})$ can be also represented as:

$$
\sigma(x)=\sigma_{0}+\sigma_{1} x+\sigma_{2} x^{2}+\cdots+\sigma_{\gamma} x^{\gamma}
$$

It is clear that:

$$
\begin{aligned}
& \sigma_{0}=1 \\
& \sigma_{1}=\beta_{1}+\beta_{2}+\ldots+\beta_{\gamma} \\
& \sigma_{2}=\beta_{1} \beta_{2}+\beta_{2} \beta_{3}+\ldots+\beta_{\gamma-1} \beta_{\gamma} \\
& \vdots \\
& \sigma_{\gamma}=\beta_{1} \beta_{2} \ldots \beta_{\gamma}
\end{aligned}
$$

$$
\sigma_{i}^{\prime} \mathrm{s} \text { can be shown to be related to syndromes as follows: }
$$

$$
s_{1}+\sigma_{1}=0
$$

$$
s_{2}+\sigma_{1} s_{1}+2 \sigma_{2}=0
$$

$$
s_{3}+\sigma_{1} s_{2}+\sigma_{2} s_{1}+3 s_{3}=0
$$

$$
s_{\gamma}+\sigma_{1} s_{\gamma-1}+\cdots+\sigma_{\gamma-1} s_{1}+\gamma \sigma_{\gamma}=0
$$

$$
s_{\gamma+1}+\sigma_{1} s_{\gamma}+\cdots+\gamma_{n-1} s_{2}+\sigma_{\gamma} s_{1}=0
$$

These are called Newton identities.
For the binary case

$$
\mathrm{i} \sigma_{i}=\left\{\begin{array}{lc}
\sigma_{i} & \text { for odd } i \\
0 & \text { for even } i
\end{array}\right.
$$

Iterative Algorithm for finding Error-Location Polynomial:

This algorithm (Berlekamp Algorithm) tries to generate polynomials of degree 1,2,.. that has $\beta_{1,}, \beta_{2} \ldots$ as it roots.

First we define $\sigma^{(1)}(x)$ that satisfies the first Newton equality: $\sigma^{(1)}(x)=1+S_{1 x}$
Since $S_{1}+\sigma_{1}=0 \rightarrow \sigma_{1}=S_{1}$
Then we check whether $\sigma^{(1)}(x)$ satisfies the second Newton equality or not. If it satisfies we let $\sigma^{(2)}(x)=\sigma^{(1)}(x)$ otherwise we add another term $\sigma^{(1)}(x)$ to form $\sigma^{(2)}(x)$ that satisfies the first and second equalities.

Note that for the case of $\sigma^{(2)}(x)$ always $\sigma^{(1)}(x)$ satisfies the second equality as:

$$
S_{2}+\sigma_{1} S_{1}+2 \sigma_{2}=S_{2}+S_{1} . S_{1}+0=S_{2}+S_{1}^{2}=0
$$

So, always $\sigma^{(2)}(x)=\sigma^{(1)}(x)$.
Similarly, it can be shown that if the first and third Newton equalities are satisfied then the second and fourth are satisfied. In general, it can be shown that if the first, third, $\ldots,(2 t-1)$ th equalities are satisfied then so are the second, fourth, $\ldots,(2 t)$ th. This is the basis of a simplified Berlekamp algorithm. You may read it in the text (Section 6.4). We do not use it here as the original one is more pedagogically beneficial.

Then for $\sigma^{(3)}(x)$: if $\sigma^{(2)}(x)$ satisfies the third equality we let $\sigma^{(3)}(x)=\sigma^{(2)}(x)$ otherwise add a correction term that makes $\sigma^{(3)}(x)$ satisfy the first three equalities.

We continue this iterative approach until we get $\sigma^{(2 t)}(x)$ and set $\sigma(x)=\sigma^{(2 t)}(x)$.
Now let's see how we can go from one stage say μ to $\mu+1$.
Assume that at stage μ, the polynomial is

$$
\sigma^{(\mu)}(x)=1+\sigma_{1}^{(\mu)} x+\sigma_{2}^{(\mu)} x^{2}+\ldots+\sigma_{L_{\mu}}^{(\mu)} x^{L_{\mu}}
$$

If $\sigma^{(\mu)}(x)$ satisfies also $\mu+1-$ st equality then, $\mathrm{S}_{\mu+1}$ should be

$$
\sigma_{1}^{(\mu)} s_{\mu}+\sigma_{2}^{(\mu)} s_{\mu-1}+\ldots+\sigma_{L_{\mu}}^{(\mu)} s_{\mu+1-L_{\mu}}
$$

We compare this with actual $s_{\mu+1}$.That is why we add this to $S_{\mu+1}$ and check whether we get zero or not. Let the sum be denoted by d_{μ} and call it discrepancy.

$$
d_{\mu}=s_{\mu+1}+\sigma_{1}^{(\mu)} s_{\mu}+\sigma_{2}^{(\mu)} s_{\mu-1}+\ldots+\sigma_{L_{\mu}}^{(\mu)} s_{\mu+1-L_{\mu}}
$$

If this is zero, then $\sigma_{1}^{(\mu)}(x)$ also satisfies the $\mu+1$-st equality and therefore,

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)
$$

But if $d_{\mu} \neq 0$, then $\sigma^{(\mu)}(x)$ does not satisfy the $\mu+1$-st equality.

Note that:

$$
d_{\mu}=\sum_{i=0}^{L \mu} \sigma_{i}^{(\mu)} s_{\mu+1-i}
$$

Now, let's go to a previous stage say, ρ, where $d_{\rho} \neq 0$.

$$
d_{\rho}=\sum_{i=0}^{L \rho} \sigma_{i}^{(\rho)} s_{\rho+1-i}
$$

and,

$$
\sigma^{(\rho)}(\mathrm{x})=1+\sigma_{1}^{(\rho)} \mathrm{x}+\sigma_{2}^{(\rho)} \mathrm{x}^{2}+\ldots+\sigma_{L \rho}^{(\rho)} x^{L \rho}
$$

Let's form $\sigma^{(\mu+1)}(x)$ as:

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)+A X^{\mu-\rho} \sigma^{(\rho)}(x)
$$

Then

$$
d_{\mu}^{\prime}=\sum_{i=0}^{L \mu} \sigma_{i}^{(\mu)} \mathrm{S}_{\mu+1-i}+\sum_{i=0}^{L \rho} \sigma_{i}^{(\rho)} \mathrm{S}_{\mu-\rho+1-\mathrm{i}}
$$

Or

$$
d_{\mu}^{\prime}=d_{\mu}+A d_{\rho}
$$

In order for $d_{\mu}^{\prime}=0$ we need

$$
A=d_{\mu} / d_{\rho}
$$

So, the procedure is as follows:
Initialization: start with first two rows according to the following table:

	Berlekamp's iterative procedure for finding the error-location polynomial of a BCH code.			
$\boldsymbol{\mu}$	$\boldsymbol{\sigma}^{(\boldsymbol{\mu})}(\boldsymbol{X})$	$\boldsymbol{d}_{\boldsymbol{\mu}}$	$\boldsymbol{l}_{\boldsymbol{\mu}}$	$\boldsymbol{\mu}-\boldsymbol{l}_{\boldsymbol{\mu}}$
-1	1	1	0	-1
0	1	S_{1}	0	0
1				
2				
\vdots				
$2 \boldsymbol{t}$				

Iteration:

For each μ form $d_{\mu}=s_{\mu+1}+\sigma_{1}^{(\mu)} s_{\mu}+\cdots+\sigma_{L \mu}^{(\mu)} x$
Where L_{μ} is the degree of $\sigma_{(X)}^{(\mu)}$.

1) If $d_{\mu}=0$ then $\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)$
2) If $d_{\mu} \neq 0$ then:

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)+d_{\mu} d_{\rho}^{-1} x^{\mu-\rho} \sigma^{(\rho)}(x)
$$

Where ρ is the row (the stage) where $d_{\rho} \neq 0$ and is closest to μ, i.e., $\mu-\rho$ is the smallest Termination:

Continue until you find $\sigma^{(2 t)}(x)$ and let:

$$
\sigma(x)=\sigma^{(2 t)}(x)
$$

Example:

Consider the $(15,5)$ code we saw previously assume that, $\mathrm{v}=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$ is transmitted and $\mathrm{r}=(000101000000100)$ is received. Then $r(x)=x^{3}+x^{5}+x^{12}$.

The minimal polynomial for α, α^{2} and α^{4} is

$$
\varphi_{1}(x)=\varphi_{2}(x)=\varphi_{4}(x)=1+x+x^{4}
$$

For α^{3} and α^{6}

$$
\varphi_{3}(x)=\varphi_{6}(x)=1+x+x^{2}+x^{3}+x^{4}
$$

For α^{5},

$$
\varphi_{5}(x)=1+x+x^{2}
$$

Dividing $\mathrm{r}(\mathrm{x})$ by $\varphi_{1}(x)$, we get

$$
b_{1}(x)=1
$$

Dividing $r(x)$ by $\varphi_{3}(x)$, we get

$$
b_{3}(x)=1+x^{2}+x^{3}
$$

And dividing by $\varphi_{5}(x)$,

$$
b_{5}(x)=x^{2}
$$

So:

$$
s_{1}=s_{2}=s_{4}=1
$$

And

$$
\begin{aligned}
& s_{3}=1+\alpha^{6}+\alpha^{9}=\alpha^{10} \\
& s_{6}=1+\alpha^{12}+\alpha^{18}=\alpha^{5}
\end{aligned}
$$

And

$$
s_{5}=\alpha^{10}
$$

Using Berlekamp method, we get $\sigma(x)=\alpha^{(6)}(x)=1+x+\alpha^{5} x$

$\boldsymbol{\mu}$	$\boldsymbol{\sigma}^{(\mu)}(\boldsymbol{X})$	$\boldsymbol{d}_{\boldsymbol{\mu}}$	$\boldsymbol{l}_{\boldsymbol{\mu}}$	$\boldsymbol{\mu}-\boldsymbol{l}_{\boldsymbol{\mu}}$
-1	1	1	0	-1
0	1	1	0	0
1	$1+X$	0	1	0 (take $\rho=-1)$
2	$1+X$	α^{5}	1	1
3	$1+X+\alpha^{5} X^{2}$	0	2	1 (take $\rho=0)$
4	$1+X+\alpha^{5} X^{2}$	α^{10}	2	2
5	$1+X+\alpha^{5} X^{3}$	0	3	2 (take $\rho=2)$
6	$1+X+\alpha^{5} X^{3}$	-	-	-

We can verify that α^{3}, α^{10} and α^{12} are the roots of $\sigma(\mathrm{x})$.

$$
\begin{aligned}
& \left(\alpha^{3}\right)^{-1}=\alpha^{12} \\
& \left(\alpha^{10}\right)^{-1}=\alpha^{5}
\end{aligned}
$$

And

$$
\left(\alpha^{12}\right)^{-1}=\alpha^{3}
$$

So:

$$
e(x)=x^{3}+x^{5}+x^{12}
$$

Error Correction Procedure:

1) Calculate syndrome.
2) Form error- location polynomial $\sigma(x)$
3) Solve $\sigma(x)$ to get error locations (Chien Search)

Cyclic error location search unit.

Chien Search:

1) Load $\sigma_{1}, \sigma_{2, \ldots,}, \sigma_{2 t}$ in 2 t registers.
(If $\sigma(\mathrm{x})$ has degree less than 2 t , i.e., $\mu<2 t$ then $\sigma_{\mu+1}=\sigma_{\mu+2}=\cdots=\sigma_{2 t}=0$)
2) The multipliers multiply σ_{i} by α^{i} and the circuit generates

$$
\sigma_{1} \alpha+\sigma_{2} \alpha^{2}+\cdots+\sigma_{\mu} \alpha^{\mu}
$$

If α is a root of $\sigma(x)$ then

$$
1+\sigma_{1} \alpha+\sigma_{2} \alpha^{2}+\cdots+\sigma_{\mu} \alpha^{\mu}=0
$$

Or the output of A is 1 .
So if output of A is 1 then α is a root and $\alpha^{-1}=\alpha^{n-1}$ is error location and r_{n-1} should be corrected.
3) Multipliers are clocked so we get

$$
\alpha^{2},\left(\alpha^{2}\right)^{2}, \ldots,\left(\alpha^{2}\right)^{\mu}
$$

Or the output of A is

$$
\sigma_{1} \alpha^{2}+\sigma_{2}\left(\alpha^{2}\right)^{2}+\cdots \sigma_{\mu}\left(\alpha^{2}\right)^{\mu}
$$

If this is $1, r_{n-2}$ should be corrected and so on for $3, \ldots, \gamma$.

