
ELEC 6131: Error Detecting and Correcting Codes 

Lecture 7: BCH Codes 

 

• Block Length n=2m-1 

• For some m≥3 

• Number of Parity-check bits  𝑛 − 𝑘 ≤ 𝑚𝑡 

• Minimum Distance dmin≥2t+1 

The generator polynomial is defined in terms of its roots over GF (2m). 

For a t-error correcting BCH Code, g(x) is the lowest-degree polynomial with roots 𝛼,  𝛼2  … , 𝛼2𝑡 . 

Let 𝜑𝑖(𝑥) be the minimal polynomial of 𝛼𝑖for 𝑖 = 1,2, … ,2𝑡.Then: 

𝑔(𝑥)  =  𝐿𝐶𝑀{𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑2𝑡(𝑥)} 

Where LCM stands for least Common Multiple.  

If  𝑖 is even then we can write 𝑖 = 𝑖’. 2𝑙, 

Where 𝑖’ is odd and L≥1. Then:  

𝛼𝑖  = (𝛼𝑖′)2𝑙 

So 𝛼𝑖  and  𝛼𝑖′are conjugate of each other and have the same minimal polynomial.  

So,  

𝑔(𝑥)  =  𝐿𝐶𝑀{𝜑1(𝑥), 𝜑3(𝑥), … , 𝜑2𝑡−1(𝑥)} 

Since the degree of each of  𝛷𝑖 (𝑥) , 𝑖 = 1,3,… is less than or equal to m, the degree of g(x) is less 

than or equal to 𝑚𝑡 So,  

𝑛 − 𝑘 ≤ 𝑚𝑡 

As the degree of g(x) is n-k. Table 6.1 lists BCH Codes for lengths 2m-1, 𝑚 = 3, . .10 that is length 

7 to 1023. 

These are narrow sense or primitive BCH Codes. In general, α does not need to be primitive and 

root can be non- Consecutive.  



 

 



 

 

Refer to Appendix C for the list of BCH Codes and their generating polynomial. Relationship to 

Hamming Codes. 

Consider a single error correcting BCH Code of length n=2m-1. Then: 

g(x)= φ1 (x) 

φ1 (x) is polynomial of degree m. So, 

n-k=m→ k= 2m-1-m 

So, a Hamming Code is just a single error correcting BCH code. 

Example:  

Design a triple error correcting BCH Code of length 15. 

n=15=2m-1 → m=4 

So, we need to find primitive element α over 𝐺𝐹(24)  and form: 

𝑔(𝑥)  =  𝐿𝐶𝑀{𝜑1(𝑥), 𝜑3(𝑥), 𝜑5(𝑥)} 

 



 

From table 2.9, we have: 

φ1 (x)= 1+x+x4 

φ3 (x)= 1+x+x2 + x3 + x4 

φ5 (x)= 1+x+x2 

So, 

g(x)= (1+x+x4)( 1+x+x2 + x3 + x4)( 1+x+x2) 

=1+x+x2 + x4 + x5 + x8 + x10 

So n-k=10 → (15,5) BCH Code with 𝑑𝑚𝑖𝑛 = 7 → t=3. 

• See Appendix B for minimal polynomial for 𝑚 = 2,… ,10. 

 

BCH Codes Over 𝑮𝑭(𝟐𝟔):   

Do this derivation of g(x) for all BCH Codes of length 26-1=63 in order to become familiar with 

concepts involved. 

First, using the primitive polynomial p(x)= 1+x+x6, generate all elements of 𝐺𝐹(26). They are 

listed below, but I strongly encourage you to create the table yourself manually (don’t use a 

computer program). 

 



 



 

• From the above table you can find minimal polynomial for all elements of 𝐺𝐹(26)  : 

 



Finally for any value of t generate 
𝑔(𝑥)  =  𝐿𝐶𝑀{𝜑1(𝑥), 𝜑3(𝑥), … , 𝜑2𝑡−1(𝑥)} 

 

Parity-Check matrix of BCH Codes: 

We know that each code polynomial v(x) is divisible by g(x) and that g(x) is: 

𝑔(𝑥)  =  𝐿𝐶𝑀{𝑔1(𝑥), 𝑔2(𝑥), … , 𝑔2𝑡(𝑥)} 

 

So, 𝛼, 𝛼2 ,  𝛼 3, … , 𝛼2𝑡  are the root of v(x), i.e., 

𝑉(𝛼𝑖) = 𝑣0  +  𝑣1 𝛼
𝑖  +  𝑣2 𝛼

2𝑖   +  …+ 𝑣𝑛−1 𝛼
(𝑛−1)𝑖  = 0 

For 𝑖 = 1,2, … ,2𝑡 

If we form 

H= [

1
1
⋮
1

  𝛼
    𝛼2

⋮
       𝛼2𝑡

𝛼2

(𝛼2)2

⋮
      (𝛼2𝑡)2

…
⋯
⋮
…

𝛼𝑛−1

(𝛼2)𝑛−1

⋮
      (𝛼2𝑡)𝑛−1

] 

We have  

𝑣.𝐻𝑇 = 0 

For any code vector 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑛−1) 

Since if 𝛼𝑖   is conjugate of 𝛼𝑖   then v (  𝛼𝑖    )=0 implies v (  αj  )=0 and vice versa. 

So, we can drop even rows and write: 



H=  

[
 
 
 
 

  

1
1
1
⋮
1

𝛼
𝛼3 
𝛼5

⋮
𝛼2𝑡−1

𝛼2

(𝛼3)2

(𝛼5)2

⋮
(𝛼2𝑡−1)2

𝛼3

(𝛼3)3

(𝛼5)3

⋮
(𝛼2𝑡−1)3

⋯
⋯
⋯
⋮
⋯

𝛼𝑛−1

(𝛼3)𝑛−1

(𝛼5)𝑛−1

⋮
(𝛼2𝑡−1)𝑛−1]

 
 
 
 

 

 

Example:  

Consider double- error correcting BCH Code of length 15. 

15= 24 -1→ m=4 and from table 2.9: 

φ1 (x)= 1+x+x4 

φ3 (x)= 1+x+x2+ x3+ x4  

So, g(x)= φ1 (x) φ3 (x)= 1+x4+ x6+ x7 +x8 

So  n-k=8 → k=15-8=7 

So, this is the BCH Code (15,7) with 𝑑𝑚𝑖𝑛 = 5 , i.e., t=2. 

H=[
1
1

𝛼
 𝛼3 

𝛼2 
𝛼6

𝛼3

𝛼9 
𝛼4

𝛼12 
𝛼5

𝛼15 
𝛼6

𝛼18 
𝛼7

𝛼21 
𝛼8

𝛼24 
𝛼9

𝛼27 
𝛼10

𝛼30
𝛼11

 𝛼33 
𝛼12

𝛼36 
𝛼13

𝛼39 
𝛼14

𝛼42] 

Substituting  𝛼𝑖’s, so we get: 

H=

[
 
 
 
 
 
 
 
1
0
0
0
1
0
0
0

0
1
0
0
0
0
0
1

0
0
1
0
0
0
1
1

0
0
0
1
0
1
0
1

1
1
0
0
1
1
1
1

0
1
1
0
1
0
0
0

0
0
1
1
0
0
0
1

1
1
0
1
0
0
1
1

1
0
1
0
0
1
0
1

0
1
0
1
1
1
1
1

1
1
1
0
1
0
0
0

0
1
1
1
0
0
0
1

1
1
1
1
0
0
1
1

1
0
1
1
0
1
0
1

1
0
0
1
1
1
1
1]
 
 
 
 
 
 
 

 

Example of a non-primitive BCH Code: 

Consider 𝐺𝐹(26)   

Take β=α3. 

β has order n=21. 

β21= (α3)21 =α63 =1 

Let g(x) be the minimal degree polynomial with roots: β, β2, β3, β4 

β, β2and β4 have the same minimal polynomial: 

φ1(x)=1+x+x2+x4 +x6 



and β3 has: 

φ3(x)=1+x2+x3 

So 

g(x)= φ1(x) φ3(x)= 1+x+x4+x5 +x7+x8+x9 

It can be easily verified that g(x) divides x21+1. The code generated by g(x) is a (21,12) non-

primitive BCH Code that corrects two errors. 

Decoding of BCH Codes: 

Let codeword 𝑣 represented by code polynomial  

𝑣(𝑥) =  𝑣0 + 𝑣1𝑥 + 𝑣2𝑥
2 + ⋯+ 𝑣𝑛−1𝑥

𝑛−1 

Be the transmitted codeword. 

The received polynomial is: 

𝑟(𝑥) =  𝑟0 + 𝑟1𝑥 + 𝑟2𝑥
2 + ⋯+ 𝑟𝑛−1𝑥

𝑛−1 

Denoting the error polynomial by e(x), we have:  

r(x)=v(x)+e(x) 

The syndrome is calculated multiplying  𝑟 by HT: 

𝑠 =  (𝑠1,  𝑠2, … , 𝑠2𝑡) =  𝑟. 𝐻𝑇  

That is, the 𝑖 − 𝑡ℎ component of s is:  

𝑠𝑖 =  𝑟(𝛼𝑖) =  𝑟0 + 𝑟1𝛼
𝑖 + 𝑟2𝛼

2𝑖  + ⋯+ 𝑟𝑛−1𝛼
(𝑛−1)𝑖  

for 𝑖 =  1,2, … ,2𝑡. 

Let’s divide r(x) by 𝜑𝑖(𝑥)i.e., the minimal polynomial of 𝛼𝑖: 

𝑟(𝑥) = 𝛼𝑖(𝑥)𝜑𝑖(𝑥) + 𝑏𝑖(𝑥) 

𝜑𝑖(𝛼
𝑖) = 0, therefore, 

𝑆𝑖 =  𝑟(𝛼𝑖) = 𝑏𝑖(𝛼
𝑖) 

Example: Consider (15,7) BCH Code. Let the received vector be (100000001000000) 

So, 

r(x)=1+x8 

Let’s find, S= (𝑠1, 𝑠2, 𝑠3, 𝑠4) 

The minimal polynomial for  𝛼, 𝛼2, 𝛼4is the same, 



𝜑1(𝑥) =  𝜑2(𝑥) =  𝜑4(𝑥) =  1 + 𝑥 + 𝑥4 

And for 𝛼3 we have, 

𝜑3(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 

Dividing r(x)=1+x8 by 𝜑1(𝑥) we get 

𝑏1(𝑥) = 𝑥2 

 

Dividing r(x) by 𝜑3(𝑥), we get  

𝑏3(𝑥) = 1 + 𝑥3 

So,     

𝑠1 = 𝑏1(𝛼) = 𝛼2,    𝑠2 = 𝛼4,   𝑠4 = 𝛼8 

and  

𝑠3 = 𝑏3(𝛼
3)  =  1 + 𝛼 9 =  1 + 𝛼 + 𝛼 3  =  𝛼7 

So, 

𝑆 = (𝛼2, 𝛼4, 𝛼7, 𝛼8) 

Since  

𝑉(𝛼𝑖) = 0, 𝑓𝑜𝑟 𝑖 = 1,2, … ,2𝑡 

we have  

𝑆𝑖 =  𝑟(𝛼𝑖) =  𝑣(𝛼𝑖) +  𝑒(𝛼𝑖) = 𝑒(𝛼𝑖) 

Now, assume that we have γ errors at locations 𝑗1,  𝑗2, … , 𝑗𝛾 . That is,  

𝑒(𝑥) = 𝑥 𝑗1 + 𝑥 𝑗2   + ⋯+ 𝑥 𝑗𝛾  

Then we have  

𝑆1 = 𝛼𝑗1  +  𝛼𝑗2 + … + 𝛼𝑗𝛾 

𝑆2 = (𝛼𝑗1)2  + (𝛼𝑗2)2 + ⋯+ (𝛼𝑗𝛾)2  

⁝ 

𝑆2𝑡 = (𝛼𝑗1)2𝑡  + (𝛼𝑗2)2𝑡 + ⋯+ (𝛼𝑗𝛾)2𝑡  

Denote  𝛽1 =  𝑒 𝑗1  , 𝛽2 =  𝑒 𝑗2   , … , 𝛽𝛾 =  𝑒 𝑗𝛾  

β1, β2, …, βγ are called error location numbers. 

We write: 



S1=β1 + β2+ … + βγ 

S2= β1
2 + β2

2 + … + βγ
 2 

⁝ 

S2t= β1
2t + β2

2t + … + βγ
 2t 

These 2t equations are symmetric function of β1, β2, …, βγ 

Define the following polynomial 

𝜎(𝑥) = (1 + 𝛽1𝑥) (1 + 𝛽2𝑥) (1 + 𝛽3𝑥)… (1 + 𝛽𝛾𝑥) 

This is called the error locator polynomial and has 𝛽1
−1 , 𝛽2

−1, … 𝛽𝛾
−1

 as its roots. σ(X) can be also 

represented as: 

𝜎(𝑥) =  𝜎0  +  𝜎1𝑥 + 𝜎2𝑥
2 + ⋯ +  𝜎𝛾𝑥

𝛾  

It is clear that: 

σ0 =1 

σ1= β1 + β2+ … + βγ 

σ2= β1 β2 + β2 β3+ … + βγ-1 βγ 

⁝ 

𝜎𝛾= β1 β2 … βγ 

𝜎𝑖’ s can be shown to be related to syndromes as follows: 

𝑠1 + 𝜎1 = 0 

𝑠2  + 𝜎1 𝑠1  +  2𝜎2 = 0 

𝑠3  + 𝜎1 𝑠2 + 𝜎2 𝑠1  +  3𝑠3 = 0 

⁝ 

𝑠𝛾 + 𝜎1𝑠𝛾−1 + ⋯+ 𝜎𝛾−1𝑠1 + 𝛾𝜎𝛾 = 0 

𝑠𝛾+1 + 𝜎1𝑠𝛾 + ⋯+ 𝛾𝑛−1𝑠2 + 𝜎𝛾𝑠1 = 0 

These are called Newton identities. 

For the binary case 

i𝜎𝑖 = {
𝜎𝑖          𝑓𝑜𝑟 𝑜𝑑𝑑 𝑖 
0          𝑓𝑜𝑟   𝑒𝑣𝑒𝑛 𝑖

 

 

 



Iterative Algorithm for finding Error-Location Polynomial: 

This algorithm (Berlekamp Algorithm) tries to generate polynomials of degree 1,2, .. that has 

β1,β2 … as it roots. 

First we define 𝜎 (1)(𝑥) that satisfies the first Newton equality: σ(1)(x)=1+S1x 

Since S1+σ1=0→σ1=S1 

Then we check whether 𝜎 (1)(𝑥) satisfies the second Newton equality or not. If it satisfies we let 

𝜎 (2)(𝑥) = 𝜎 (1)(𝑥)  otherwise we add another term 𝜎 (1)(𝑥) to form 𝜎 (2)(𝑥) that satisfies the first 

and second equalities. 

Note that for the case of 𝜎 (2)(𝑥)  always 𝜎 (1)(𝑥) satisfies the second equality as: 

S2+ σ1S1 +2 σ2 = S2 + S1. S1+ 0= S2 + S1
2 =0 

So, always 𝜎 (2)(𝑥) = 𝜎 (1)(𝑥).   

Similarly, it can be shown that if the first and third Newton equalities are satisfied then the 

second and fourth are satisfied. In general, it can be shown that if the first, third, …, (2𝑡 − 1)th 

equalities are satisfied then so are the second, fourth, …, (2𝑡)th. This is the basis of a simplified 

Berlekamp algorithm. You may read it in the text (Section 6.4). We do not use it here as the 

original one is more pedagogically beneficial.   

Then for 𝜎 (3)(𝑥): if 𝜎 (2)(𝑥)satisfies the third equality we let 𝜎 (3)(𝑥) = 𝜎 (2)(𝑥)otherwise add a 

correction term that makes 𝜎 (3)(𝑥)satisfy the first three equalities. 

We continue this iterative approach until we get 𝜎 (2𝑡)(𝑥)and set 𝜎(𝑥) = 𝜎 (2𝑡)(𝑥). 

Now let’s see how we can go from one stage say μ to μ+1. 

Assume that at stage μ, the polynomial is  

𝜎(𝜇)(𝑥)  =  1 + 𝜎1
(𝜇)

𝑥 + 𝜎2
(𝜇)

𝑥2  +  … + 𝜎𝐿𝜇

(𝜇)
𝑥𝐿𝜇  

If 𝜎(𝜇)(𝑥) satisfies also 𝜇 + 1 − 𝑠𝑡 equality then, Sμ+1 should be 

 𝜎1
(𝜇)

𝑠𝜇 + 𝜎2
(𝜇)

𝑠𝜇−1 +  … + 𝜎𝐿𝜇

(𝜇)
𝑠𝜇+1−𝐿𝜇

 

We compare this with actual 𝑠𝜇+1 .That is why we add this to Sμ+1 and check whether we get zero 

or not. Let the sum be denoted by 𝑑𝜇  and call it discrepancy.  

𝑑𝜇 =  𝑠𝜇+1  + 𝜎1
(𝜇)

 𝑠𝜇  + 𝜎2
(𝜇)

 𝑠𝜇−1   +  … + 𝜎𝐿𝜇

(𝜇)
𝑠𝜇+1−𝐿𝜇

  

If this is zero, then 𝜎1
(𝜇)

(𝑥) also satisfies the μ+1-st equality and therefore, 

𝜎(𝜇+1)(𝑥)  =  𝜎(𝜇)(𝑥) 

But if 𝑑𝜇≠ 0, then 𝜎(𝜇)(𝑥) does not satisfy the μ+1-st equality. 



Note that: 

𝑑𝜇=  ∑ 𝜎𝑖
(𝜇)𝐿𝜇

𝑖=0 𝑠𝜇+1−𝑖  

Now, let’s go to a previous stage say, ρ, where 𝑑𝜌≠ 0. 

 𝑑𝜌 = ∑ 𝜎𝑖
(𝜌)𝐿𝜌

𝑖=0 𝑠𝜌+1−𝑖  

and, 

σ(ρ)(x) = 1 + 𝜎1
(𝜌)

x+𝜎2
(𝜌)

x2 + …+𝜎𝐿𝜌
(𝜌)

𝑥𝐿𝜌  

Let’s form 𝜎(𝜇+1)(𝑥) as: 

𝜎(𝜇+1)(𝑥) =  𝜎(𝜇)(𝑥) + 𝐴𝑋𝜇−𝜌 𝜎(𝜌)(𝑥) 

Then 

𝑑𝜇
′ = ∑ 𝜎𝑖

(𝜇)𝐿𝜇
𝑖=0 Sμ+1-i +∑ 𝜎𝑖

(𝜌)𝐿𝜌
𝑖=0  Sμ-ρ+1-i 

Or 

𝑑𝜇
′ = 𝑑𝜇 + 𝐴𝑑𝜌 

In order for 𝑑𝜇
′ =0 we need  

𝐴 = 𝑑𝜇/𝑑𝜌 

So, the procedure is as follows: 

Initialization: start with first two rows according to the following table: 

 

Iteration: 

For each μ form 𝑑𝜇 = 𝑠𝜇+1 + 𝜎1
(𝜇)

𝑠𝜇 + ⋯+𝜎𝐿𝜇
(𝜇)

𝑥 

Where 𝐿𝜇is the degree of  𝜎(𝑋)
(𝜇)

. 

1) If 𝑑𝜇 = 0 then 𝜎(𝜇+1)(𝑥) = 𝜎(𝜇)(𝑥) 

2) If 𝑑𝜇 ≠ 0 then: 



𝜎(𝜇+1)(𝑥) = 𝜎(𝜇)(𝑥) + 𝑑𝜇𝑑𝜌
−1𝑥𝜇−𝜌𝜎(𝜌)(𝑥) 

Where ρ is the row (the stage) where 𝑑𝜌 ≠ 0  and is closest to μ, i.e. , μ-ρ is the smallest 

Termination: 

Continue until you find 𝜎(2𝑡)(𝑥) and let: 

𝜎(𝑥) = 𝜎(2𝑡)(𝑥) 

Example: 

Consider the (15,5) code we saw previously assume that, v= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) is 

transmitted and r= (000101000000100) is received. Then  𝑟(𝑥) =  𝑥3 + 𝑥5 + 𝑥12. 

The minimal polynomial for 𝛼,𝛼 2and 𝛼 4 is  

𝜑1(𝑥) = 𝜑2(𝑥) = 𝜑4(𝑥) = 1 + 𝑥 + 𝑥4 

For 𝛼 3and 𝛼 6 

𝜑3(𝑥) = 𝜑6(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 

 

For 𝛼 5, 

𝜑5(𝑥) = 1 + 𝑥 + 𝑥2 

Dividing r(x) by 𝜑1(𝑥), we get  

𝑏1(𝑥) = 1 

Dividing r(x) by 𝜑3(𝑥), we get  

𝑏3(𝑥) = 1 + 𝑥2 + 𝑥3 

And dividing by 𝜑5(𝑥), 

𝑏5(𝑥) = 𝑥2 

So: 

𝑠1 = 𝑠2 = 𝑠4 = 1 

And  

𝑠3 = 1 + 𝛼6 + 𝛼9 = 𝛼10 

𝑠6 = 1 + 𝛼12 + 𝛼18 = 𝛼5 

And  

𝑠5 = 𝛼10 



Using Berlekamp method, we get 𝜎(𝑥) = 𝛼(6)(𝑥) = 1 + 𝑥 + 𝛼5𝑥  

 

We can verify that 𝛼3, 𝛼10 and 𝛼12 are the roots of σ(x). 

(𝛼3)−1 = 𝛼12 

(𝛼10)−1 = 𝛼5 

And  

(𝛼12)−1 = 𝛼3 

So: 

𝑒(𝑥) = 𝑥3 + 𝑥5 + 𝑥12 

Error Correction Procedure: 

1) Calculate syndrome. 

2) Form error- location polynomial σ(x) 

3) Solve σ(x) to get error locations (Chien Search) 

 

Chien Search: 

1) Load 𝜎1,𝜎2,…,𝜎2𝑡 in 2t registers. 

(If σ(x) has degree less than 2t, i.e., 𝜇 < 2𝑡 then 𝜎𝜇+1 = 𝜎𝜇+2 = ⋯ = 𝜎2𝑡 = 0) 



2) The multipliers multiply 𝜎𝑖 by 𝛼𝑖 and the circuit generates 

𝜎1𝛼 + 𝜎2𝛼
2 + ⋯+ 𝜎𝜇𝛼𝜇 

If α is a root of σ(x) then 

1 + 𝜎1𝛼 + 𝜎2𝛼
2 + ⋯+ 𝜎𝜇𝛼𝜇 = 0 

Or the output of A is 1. 

So if output of A is 1 then α is a root and 𝛼−1 = 𝛼𝑛−1 is error location and 𝑟𝑛−1 should be 

corrected. 

3) Multipliers are clocked so we get 

𝛼2, (𝛼2)2, … , (𝛼2)𝜇 

Or the output of A is  

𝜎1𝛼
2 + 𝜎2(𝛼

2)2 + ⋯𝜎𝜇(𝛼2)𝜇 

If this is 1, 𝑟𝑛−2 should be corrected and so on for 3,..,γ. 

 

 


