ELEC 6131: Error Detecting and Correcting Codes Lecture 8: Reed-Solomon (RS) Codes

RS Codes are a sub-class of non-binary BCH Codes. In a non-binary code, codewords consist of symbols which are each $m \geq 2$ bits long.
In general, non-binary codes can be defined over any Galois Field GF(q) where q is either a prime or a power of a prime. However, for obvious reasons, people are most interested in codes defined over $G F\left(2^{m}\right)$.
For Reed-Solomon Codes take some integer m . Then each symbol is m bits long. This means that symbols belong to $\left\{0,1, \ldots, 2^{m}\right\}$.
An (N, K) RS code consists of N symbols each of which is m bits long and has K information symbols and N-K parity symbols.
For an RS code over $G F\left(2^{m}\right)$ we have $N=2^{m}-1$.
K can be any value less than N .
An (N, K) RS code has the minimum distance $d_{\min }=N-K+1$.
It can correct $t=\left[\frac{d_{\text {min }}-1}{2}\right]=\left[\frac{N-K}{2}\right]$
The reason I used N and K instead of n and k was to differentiate between an (n, k) binary code that has codewords that are n bits long and have k information bits and non-binary codes with N and K symbols.
I hope we have so far have got used to the idea of symbols other than a single bit. So, from this point on, I will use n and k .
(n, k) RS code over $G F\left(2^{m}\right)$ has codeword of length n symbols, i.e., $n * m$ bits out of which $k * m$ are information (or systematic) bits.
For example a $(255,239)$ RS Code over $G F\left(2^{8}\right)$ has codewords each 255 bytes and each codeword has 239 bytes of information on $(\mathrm{n}-\mathrm{k})=16$ bytes of parity. Such a code can correct up to $\frac{16}{2}=8$ bytes of errors.
Note that here when we correct one symbol, we may have corrected $1,2, \ldots, m$ bits. If we have a burst of errors, that is a lot of errors near. One another, RS Codes can be very useful. An RS Code which can correct t error symbols can correct $(t-1) m$ bits long bursts.
The generating polynomial of t error correcting RS Code is:

$$
\begin{gathered}
g(x)=(x+\alpha)\left(x+\alpha^{2}\right) \ldots\left(x+\alpha^{2 t}\right) \\
=g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{2 t-1} x^{2 t-1}+x^{2 t}
\end{gathered}
$$

With $g_{i} \in G F\left(2^{m}\right)$ for $0 \leq i \leq 2 t$.
$\alpha, \alpha^{2}, \ldots \alpha^{2 t}$ are roots of $\mathrm{X}^{\mathrm{n}}+1 . \mathrm{G}(\mathrm{x})$ divides $\mathrm{X}^{\mathrm{n}}+1$. So, $\mathrm{g}(\mathrm{x})$ generates a $2^{m}-r y$ cyclic code of length n with $2 t$ parity symbols.

Encoding of RS Codes:

We can simply multiply the information polynomial $u(x)$ by $g(x)$. However, this may not result in a systematic code to make the code systematic, we multiply $\mathrm{u}(\mathrm{x})$ by X^{n-k} to get $X^{n-k} \mathrm{u}(\mathrm{x})$ which we divide by $g(x)$ to get:

$$
X^{n-k} u(x)=q(x) g(x)+b(x)
$$

$q(x) g(x)$ is a code polynomial. Also we have:
$\mathrm{V}(\mathrm{x})=q(x) g(x)=x^{n-k} u(x)+b(x)$
This means that we have $u(x)$ as part of $v(x)$, i.e., the code is systematic and $b(x)$ is the parities polynomial.
The following circuit shows the encoding procedure:

Encoding circuit for a q-ary RS code with generator polynomial $g(X)=$ $g_{0}+g_{1} X+g_{2} X^{2}+\cdots+g_{2 t-1} X^{2 t-1}+X^{2 t}$.

1) First we close the gate and feed the information symbols into the division circuit. At the same time these information symbols are put on the line (to be transmitted): switch in lower position.
2) After feeding all k symbols, we open the gate (disconnect the feedback) and put switch in the up position, transmitting $2 t$ parity symbols.

Example:

Find the generating polynomial of triple error correcting code over $G F\left(2^{6}\right)$.

$$
\begin{gathered}
g(x)=(x+\alpha)\left(x+\alpha^{2}\right)\left(x+\alpha^{3}\right)\left(x+\alpha^{4}\right)\left(x+\alpha^{5}\right)\left(x+\alpha^{6}\right) \\
=\alpha^{21}+\alpha^{10} x+\alpha^{55} x^{2}+\alpha^{43} x^{3}+\alpha^{48} x^{4}+\alpha^{59} x^{5}+x^{6}
\end{gathered}
$$

The Parity-Check matrix of an RS code is given as:

$$
H=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-1} \\
1 & \alpha^{2} & \left(\alpha^{2}\right)^{2} & \cdots & \left(\alpha^{2}\right)^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \alpha^{2 t} & \left(\alpha^{2 t}\right)^{2} & \cdots & \left(\alpha^{2 t}\right)^{n-1}
\end{array}\right]
$$

Decoding of RS Codes:

1) Find syndrome.
2) Find error-location polynomial.
3) Find error-value evaluator.
4) Find the error locations and error values and correct.

Assume that the codeword $\underline{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ is transmitted or equivalently

$$
v(x)=v_{0}+v_{1} x+v_{2} x^{2}+\cdots+v_{n-1} x^{n-1}
$$

Assume that $\mathrm{r}(\mathrm{x})$ is received:

$$
r(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}
$$

$r(x)=v(x)+e(x)$ where $e(x)$ is the error polynomial

$$
e(x)=r(x)+v(x)=e_{0}+e_{1} x+\cdots+e_{n-1} x^{n}
$$

Assume we have errors at locations

$$
j_{1}, j_{2}, \cdots, j_{\gamma}
$$

Denote the values of error by $e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{\gamma}}$
Then:

$$
e_{i}=\left\{\begin{array}{cc}
0 \quad i \neq j_{1}, \ldots, j_{\gamma} \\
e_{j_{e}} & \text { if } i=j_{e} \epsilon\left\{j_{1}, \ldots, j_{e}\right\}
\end{array}\right.
$$

So, we can write:

$$
e(x)=e_{j_{1}} x^{j_{1}}+e_{j_{2}} x^{j_{2}}+\cdots+e_{j_{\gamma}} x^{j_{\gamma}}
$$

So what we need to do is to find $j_{1}, \ldots, j_{\gamma}$ as well as $e_{j_{1}}, \ldots, e_{j_{\gamma}}$.
That is why we have 2γ unknowns.
Remember that

$$
\begin{aligned}
& V\left(\alpha^{i}\right)=0 \quad i=1,2, \ldots, 2 t \\
& r\left(\alpha^{i}\right)=v\left(\alpha^{i}\right)+e\left(\alpha^{i}\right)=s_{i}
\end{aligned}
$$

So,

$$
S_{i}=r\left(\alpha^{i}\right)=e\left(\alpha^{i}\right)
$$

That is we substitute $\alpha^{i}, \quad i=1,2, \ldots, 2 t$ in $\mathrm{r}(\mathrm{x})$ to get 2 t syndromes. These provide 2 t equations with $j_{i}^{\prime} \mathrm{s}$ and $e_{j_{i}}$'s as their components. In order to be able to solve for the 2γ unknowns, we need to have 2γ equations, i.e., $2 t=2 \gamma \rightarrow t=\gamma$. That is a proof that RS Code can correct t errors.

Now let's expand $S_{i}=e\left(\alpha^{i}\right)^{\prime} s$:
$s_{1}=e_{j_{1}} \alpha^{j_{1}}+e_{j_{2}} \alpha^{j_{2}}+\cdots+e_{j_{\gamma}} \alpha^{j_{\gamma}}$
$s_{2}=e_{j_{1}} \alpha^{2 j_{1}}+e_{j_{2}} \alpha^{2 j_{2}}+\cdots+e_{j_{\gamma}} \alpha^{2 j_{\gamma}}$
\vdots
$s_{2 t}=e_{j_{1}} \alpha^{2 t j_{1}}+e_{j_{2}} \alpha^{2 t j_{2}}+\cdots+e_{j_{\gamma}} \alpha^{2 t j_{\gamma}}$
Let $B_{i} \triangleq \alpha^{j_{i}}$ and $S_{i} \triangleq e_{j_{i}} \quad$ For $1 \leq i \leq \gamma$
Then:
$s_{1}=s_{1} \beta_{1}+s_{2} \beta_{2}+\cdots+s_{\gamma} \beta_{\gamma}$
$S_{2}=s_{1} \beta_{1}{ }^{2}+s_{2} \beta_{2}{ }^{2}+\cdots+s_{\gamma} \beta_{\gamma}^{2}$
\vdots
$s_{2 t}=s_{1} \beta_{1}^{2 t}+s_{2} \beta_{2}^{2 t}+\cdots+s_{\gamma} \beta_{\gamma}^{2 t}$
Define the error location polynomial:

$$
\begin{aligned}
\sigma(x) & =\left(1+\beta_{1} x\right)\left(1+\beta_{2} x\right) \cdots\left(1+\beta_{\gamma} x\right) \\
& =\sigma_{0}+\sigma_{1} x+\sigma_{2} x^{2}+\cdots+\sigma_{\gamma} x^{\gamma}
\end{aligned}
$$

We can see that
$\sigma_{0}=1$
$\sigma_{1}=\beta_{1}+\beta_{2}+\cdots+\beta_{\gamma}=s_{1}$

$$
\sigma_{2}=\beta_{1} \beta_{2}+\cdots+\beta_{\gamma-1} \beta_{\gamma}=\sigma_{1} s_{1}+s_{2}
$$

\vdots
Overall, we get the following equations named Newton equalities:

$$
\begin{aligned}
& s_{\gamma+1}+\sigma_{1} s_{\gamma}+\sigma_{2} s_{\gamma-1}+\cdots+\sigma_{\gamma} s_{1}=0 \\
& s_{\gamma+2}+\sigma_{1} s_{\gamma+1}+\sigma_{2} s_{\gamma}+\cdots+\sigma_{\gamma} s_{2}=0 \\
& \vdots \\
& s_{2 t}+\sigma_{1} s_{2 t-1}+\sigma_{2} s_{2 t-2}+\cdots+\sigma_{\gamma} s_{2 t-\gamma}=0
\end{aligned}
$$

The same as BCH Codes, we start from $\sigma(\mathrm{x})=1$ in stage 0 , say we call it $\sigma^{(0)}(x)$ and try to increase the number of terms so that all equations are satisfied.

Assume that at stage μ we have

$$
\sigma^{(\mu)}(x)=\sigma_{0}^{(\mu)}+\sigma_{1}^{(\mu)} x+\cdots+\sigma_{L_{\mu}}^{(\mu)} x^{l_{\mu}}
$$

This means that we have coefficients $\sigma_{0}^{(\mu)}, \sigma_{1}^{(\mu)}, \ldots, \sigma_{L_{\mu}}^{(\mu)}$ of a polynomial that satisfy the first μ Newton equalities. We try to apply coefficients to $\mu+1$-st equality, i.e., form

$$
S_{\mu+1}+\sigma_{1}^{(\mu)} S_{\mu}+\cdots+\sigma_{L_{\mu}}^{(\mu)} S_{\mu+1-l \mu}
$$

If this gives us a zero it means that $\sigma_{0}^{(\mu)}, \sigma_{1}^{(\mu)}, \ldots+\sigma_{L_{\mu}}^{(\mu)}$ satisfy $\mu+1$-st equality.
Otherwise we have to modify the polynomial so form:

$$
d_{\mu}=S_{\mu+1}+\sigma_{1}^{(\mu)} S_{\mu}+\sigma_{2}^{(\mu)} S_{\mu-1}+\cdots+\sigma_{L \mu}^{(\mu)} S_{\mu+1-L \mu}
$$

If the discrepancy $d_{\mu}=0$ then

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)
$$

And continue.
Otherwise:

$$
\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)+d_{\mu} d_{\rho}^{-1} x^{\mu-\rho} \sigma^{(\rho)}(x)
$$

Where ρ is the stage closest to μ such that $d_{\rho} \neq 0$
Continue this iteration until we get to stage $2 t$ then

$$
\sigma(x)=\sigma^{(2 t)}(x)
$$

Start by filling out the first two rows:

Berlekamp's iterative procedure for finding the error-location polynomial of a q-ary BCH code.

$\boldsymbol{\mu}$	$\boldsymbol{\sigma}^{(\mu)}(\boldsymbol{X})$	$\boldsymbol{d}_{\boldsymbol{\mu}}$	$\boldsymbol{l}_{\boldsymbol{\mu}}$	$\boldsymbol{\mu}-\boldsymbol{l}_{\boldsymbol{\mu}}$
-1	1	1	0	-1
0	1	S_{1}	0	0
1	$1-S_{1} X$			
2				
3				
\vdots				
$\mathbf{2 t}$				

Example:

Consider triple-error correcting code over $G F\left(2^{4}\right)$. Let $r(x)=\alpha^{7} x^{3}+\alpha^{3} x^{6}+\alpha^{4} x^{12}$
Then

$$
\begin{aligned}
g(x) & =(x+\alpha)\left(x+\alpha^{2}\right)\left(x+\alpha^{3}\right)\left(x+\alpha^{4}\right)\left(x+\alpha^{5}\right)\left(x+\alpha^{6}\right) \\
& =\alpha^{6}+\alpha^{9} x+\alpha^{6} x^{2}+\alpha^{4} x^{3}+\alpha^{14} x^{4}+\alpha^{10} x^{5}+x^{6}
\end{aligned}
$$

$s_{1}=r(\alpha)=\alpha^{10}+\alpha^{9}+\alpha=\alpha^{12}$
$s_{2}=r\left(\alpha^{2}\right)=\alpha^{13}+1+\alpha^{13}=1$
$s_{3}=r\left(\alpha^{3}\right)=\alpha+\alpha^{6}+\alpha^{10}=\alpha^{14}$
$s_{4}=r\left(\alpha^{4}\right)=\alpha^{4}+\alpha^{12}+\alpha^{7}=\alpha^{10}$
$s_{5}=r\left(\alpha^{5}\right)=\alpha^{7}+\alpha^{3}+\alpha^{4}=0$
$s_{6}=r\left(\alpha^{6}\right)=\alpha^{10}+\alpha^{9}+\alpha=\alpha^{12}$
TABLE 7.2: Steps for finding the error-location polynomial of the $(15,9)$ RS code over $G F\left(2^{4}\right)$.

μ		$\boldsymbol{\sigma}^{(\mu)}(X)$	d_{μ}	\boldsymbol{I}_{μ}
-1	1	1	0	$\boldsymbol{\mu}-I_{\mu}$
0	1	α^{12}	0	0
1	$1+\alpha^{12} X$	α^{7}	1	$0($ take $\rho=-1)$
2	$1+\alpha^{3} X$	1	1	$1($ take $\rho=0)$
3	$1+\alpha^{3} X+\alpha^{3} X^{2}$	α^{7}	2	1 (take $\rho=0)$
4	$1+\alpha^{4} X+\alpha^{12} X^{2}$	α^{10}	2	2(take $\rho=2)$
5	$1+\alpha^{7} X+\alpha^{4} X^{2}+\alpha^{6} X^{3}$	0	3	2(take $\rho=3)$
6	$1+\alpha^{7} X+\alpha^{4} X^{2}+\alpha^{6} X^{3}$	-	-	-

Step 2. To find the error-location polynomial $\sigma(X)$, we fill out Table 7.1 and obtain Table 7.2. Thus, $\sigma(X)=1+\alpha^{7} X+\alpha^{4} X^{2}+\alpha^{6} X^{3}$.
Step 3. By substituting $1, \alpha, \alpha^{2}, \cdots, \alpha^{14}$ into $\sigma(X)$, we find that α^{3}, α^{9}, and α^{12} are roots of $\sigma(X)$. The reciprocals of these roots are α^{12}, α^{6}, and α^{3}, which are the error-location numbers of the error pattern $\mathbf{e}(X)$. Thus, errors occur at positions X^{3}, X^{6}, and X^{12}.

A more straightforward algorithm where the correction term is evolved as the iterations go ahead is given in Vicker's text.

The algorithm is as follows:

1) Compute syndromes $S_{1}, \ldots, S_{2 t}$.
2) Initialize the algorithm by letting $\mu=0, \sigma^{(0)}(x)=1, \quad l=0$ and $\mathrm{T}(\mathrm{x})=\mathrm{x}$.
3) Set $\mu=\mu+1$ compute discrepancy d_{μ},

$$
d_{\mu}=S_{\mu}+\sum_{i=1}^{l} \sigma_{i}^{(\mu-1)} S_{\mu-i}
$$

4) If $d_{\mu}=0$ then go to 8 .
5) Modify the polynomial as:

$$
\sigma^{(\mu)}(x)=\sigma^{(\mu-1)}(x) d_{\mu} T(x)
$$

6) If $2 l \geq \mu$ then go to step 8 .
7) Set $l=\mu-l$ and $T(x)=d_{\mu}^{-1} \sigma^{(\mu-1)}(x)$.
8) Set $T(x)=x \cdot T(x)$.
9) If $\mu<2 t$ go to step 3 .
10) Determine $\sigma(x)=\sigma^{(2 t)}(x)$. If the roots are distinct and in the right field, then determine the error values, correct the errors and STOP.
11) Declare a decoding failure and STOP.

Next slide shows the problem above done again.
Example: Consider $(7,3)$ RS Code over $\mathrm{GF}(8)$ with $r(x)=\alpha^{2} x^{6}+\alpha^{2} x^{4}+x^{3}+\alpha^{5} x^{2}$.
Although we have done the generation of $\mathrm{g}(\mathrm{x})$ and encoding, let's start from ground zero for doing some exercise in Galois field arithmetic. Let's start with $p(x)=x^{3}+x+1$. Take α to be a primitive element of this field, i.e., a root of $s_{1}=\alpha^{12}, s_{2}=1, s_{3}=\alpha^{14}, s_{5}=0, s_{6}=\alpha^{12}$

$$
d_{\mu}=S_{\mu+1}+\sigma_{1}^{(\mu)} S_{\mu}+\sigma_{2}^{(\mu)} S_{\mu-1}+\cdots \sigma_{L_{\mu}}^{(\mu)} S_{\mu+1-L \mu}
$$

μ	s_{μ}	$\sigma^{(\mu)}(x)$	$d^{(\mu)}$	L_{μ}	
$\mathrm{T}(\mathrm{x})$					
0	-	1		-	0
x					
1	α^{12}	$1+\alpha^{12} x$	α^{12}	1	$\alpha^{3} x$
$* 2$	1	$1+\alpha^{3} x$	α^{7}	1	$\alpha x^{8}+\alpha^{5} x^{2}$
$* * 3$	α^{14}	$1+\alpha^{13} x+\alpha^{5} x^{2}$	1	2	$x+\alpha^{3} x^{2}$
4	α^{10}	$1+\alpha^{4} x+\alpha^{12} x^{2}$	α^{11}	2	$\alpha^{4} x+\alpha^{2} x^{2}+\alpha^{9} x^{3}$
5	0	$1+\alpha^{9} x+\alpha^{4} x^{3}$	α^{10}	3	$\alpha^{5} x+\alpha^{9} x^{2}+\alpha^{3} x^{3}$
6	α^{12}	$1+\alpha^{7} x+\alpha^{4} x^{2}+\alpha^{6} x^{3}$	α^{10}	3	-

$$
\sigma(x)=1+\alpha^{7} x+\alpha^{4} x^{2}+\alpha^{6} x^{3}
$$

- $d_{1}=s_{2}+\sigma_{1} s_{1}=1+\alpha^{12} \cdot \alpha^{12}=\alpha^{9}+1=\alpha^{7}$
- $d_{2}=s_{3}+\sigma_{1} s_{2}=1+\alpha^{14}+\alpha^{3} .1=1$
$\rho(\mathrm{x})$. That is $\alpha^{3}+\alpha+1=0$ or $\alpha^{3}=\alpha+1$.
The field elements are:

0	0	0	0	0	
1	1	0	0	1	
α^{1}	0	1	0	α	
$\alpha^{2}=\alpha \cdot \alpha$	0	0	1		α^{2}
$\alpha^{3}=\alpha^{2} \cdot \alpha$	1	1	0	$\alpha+1$	
α^{4}	0	1	1		$\alpha^{2}+\alpha$
α^{5}	1	1	1		$\alpha^{2}+\alpha+1$
α^{6}	1	0	1		$\alpha^{2}+1$
α^{7}	1	0	0	1	

Note:

- $\alpha^{3}=\alpha^{2} \cdot \alpha=\alpha+1$
- $\alpha^{4}=\alpha \cdot \alpha^{3}=\alpha(\alpha+1)=\alpha^{2}+\alpha$
- $\alpha^{5}=\alpha^{4}$. $\alpha=\left(\alpha^{2}+\alpha\right) \alpha=\alpha^{3}+\alpha^{2}=\alpha^{2}+\alpha+1$
- $\alpha^{6}=\alpha\left(\alpha^{2}+\alpha+1\right)=\alpha^{2}+1$
- $\alpha^{7}=\alpha\left(\alpha^{2}+1\right)=\alpha^{3}+\alpha=\alpha+1+\alpha=1$

Now, $g(X)$ is:

$$
\begin{gathered}
g(x)=(x+\alpha)\left(x+\alpha^{2}\right)\left(x+\alpha^{3}\right)\left(x+\alpha^{4}\right) \\
=\left[x^{2}+\left(\alpha+\alpha^{2}\right) x+\alpha^{3}\right]\left[x^{2}+\left(\alpha^{3}+\alpha^{4}\right) x+\alpha^{7}\right] \\
=\left[x^{2}+\alpha^{4} x+\alpha^{3}\right]\left[x^{2}+\alpha^{6} x+1\right] \\
=x^{4}+\alpha^{3} x^{3}+x^{2}+\alpha x+\alpha^{3}
\end{gathered}
$$

Computing Syndromes:

$$
S_{i}=r\left(\alpha^{i}\right) . \quad i=1,2,3,4
$$

In this case, since the number of parities are less than the number of information symbols, it is reasonable to use $r\left(\alpha^{i}\right)=S_{i}$. However, for high rate codes where $n-k \ll k$, it is better to divide $r(x)$ by $g(x)$ to get

$$
r(x)=g(x) q(x)+b(x)
$$

Where $b(x)$ is a polynomial of degree less than or equal $n-k$.
$S_{i}=r\left(\alpha^{i}\right)=g\left(\alpha^{i}\right) q\left(\alpha^{i}\right)+b\left(\alpha^{i}\right) \quad i=1,2, \ldots, 2 t$.
Since $g\left(\alpha^{i}\right)=0 \quad i=1, \ldots, 2 t$
$S_{i}=b\left(\alpha^{i}\right)$
Dividing $r(x)=\alpha^{2} x^{6}+\alpha^{2} x^{4}+x^{3}+\alpha^{5} x^{2}$ by $\mathrm{g}(\mathrm{x})$
$r(x)=\left(\alpha^{2} x^{2}+\alpha^{5} x\right) g(x)+\alpha x^{4}+\alpha^{6} x^{3}+\alpha^{6} x^{2}+\alpha x$.
So:
$s_{1}=b(\alpha)=\alpha^{5}+\alpha^{9}+\alpha^{8}+\alpha^{2}=\alpha^{6}$
$s_{2}=b\left(\alpha^{2}\right)=\alpha^{9}+\alpha^{12}+\alpha^{10}+\alpha^{3}=\alpha^{3}$
$s_{3}=b\left(\alpha^{3}\right)=\alpha^{13}+\alpha^{15}+\alpha^{12}+\alpha^{4}=\alpha^{4}$
$s_{4}=b\left(\alpha^{4}\right)=\alpha^{17}+\alpha^{18}+\alpha^{14}+\alpha^{5}=\alpha^{3}$
Now we use the algorithm:

μ	S_{μ}	$\sigma^{(\mu)}(x)$	d_{μ}	L	$T(x)$
0	-	1	-	0	x
1	α^{6}	$1+\alpha^{6} x$	α^{6}	1	αx^{*}
2	α^{3}	$1+\alpha^{4} x$	α^{2}	1	$\alpha x^{2^{* *}}$
3	α^{4}	$1+\alpha^{4} x+\alpha^{6} x^{2}$	α^{5}	2	$\alpha^{2} x+\alpha^{6} x^{2}$
4	α^{3}	$1+\alpha^{2} x+\alpha x^{2}$	α^{6}	-	-

- Note:

For $\mu=1 \quad \mathrm{~L}=0 \rightarrow 2 L<\mu \rightarrow L=\mu-L=1$
And $T(x)=\frac{\sigma^{(0)}(x)}{d_{1}}=\frac{x}{\alpha^{6}}=\alpha x$.

- Note:

For $\mu=2$

$$
d_{\mu}=s_{\mu} \sum_{i=1}^{L} \sigma_{i}^{(\mu-1)} s_{\mu-i} \rightarrow \mu_{2}=s_{2}+\sigma_{1}^{(1)} S_{1}
$$

Or

$$
\mu_{2}=\alpha^{3}+\alpha^{6} \cdot \alpha^{6}=\alpha^{3}+\alpha^{5}=\alpha^{2}
$$

$$
2 L=2 \geq \mu=2 \rightarrow T(x)=x T(x) \rightarrow T(x)=\alpha x^{2}
$$

So:

$$
\sigma(x)=\alpha x^{2}+\alpha^{2} x+1
$$

The above algorithm is based on message's Linear Feedback Shift Register (LESR) synthesis technique.

Note that for γ errors, we have the following Newton equalities.

$$
s_{j}=\sigma_{1} s_{j-1}+\sigma_{2} s_{j-2}+\cdots+\sigma_{\gamma} s_{j-\gamma}
$$

This relationship can be represented as LFSR circuit looking like:

The problem of finding error-locator polynomial is then to find an LFSR of minimal length such that the first $2 t$ elements in the output sequence are $s_{1}, s_{2}, \ldots, s_{2 t}$.

The coefficients of the filter are then the coefficient of $\sigma(x)$.
For the above $(7,3)$ RS code, we start with

This works for the $s_{1}=\alpha^{6}$ as it outputs the content of the register, i.e., α^{6}. But after the application of the seconds clock, the output will be $\alpha^{6} . \alpha^{6}=\alpha^{12}=\alpha^{5}$ which is not $s_{2=} \alpha^{3}$.

To correct the situation, we change the filter tap to α^{4} which is $\frac{\alpha^{6}}{\alpha^{2}}$ and therefore, the output after the clocking will be $\frac{\alpha^{5}}{\alpha^{2}}=\alpha^{3}=s_{2}$.

After the next clock the output will be $\alpha^{3} . \alpha^{4}=1$ which is not equal to $s_{3}=\alpha^{4}$.
To correct this we need to add α^{5} so that, we get $1+\alpha^{5}=\alpha^{4}=s_{3}$. We keep the above and add a stage with α^{6} in the register and α^{6} as the tap.

This circuit outputs α^{6} first and then calculates $\alpha^{6} \cdot \alpha^{6}+\alpha^{3} \cdot \alpha^{4}=\alpha^{5}+1=\alpha^{4}$
Content of the rightmost SR is moved to left and α^{4} is loaded into it.

So, the next output is $\alpha^{3}=s_{2}$.
Next $\alpha^{3} \cdot \alpha^{6}+\alpha^{4} . \alpha^{4}=\alpha^{2}+\alpha=\alpha^{4}$ is placed in right register and α^{4} is moved left

Now α^{4} is output which is s_{3}. But the next output is $\alpha^{4} \neq s_{4}=\alpha^{3}$
To avoid this, we modify the taps of the LFSR to:

It is easy to see that this circuit outputs $\alpha^{6}, \alpha^{3}, \alpha^{4}, \alpha^{3}$, i.e $s_{1}, s_{2}, s_{3}, s_{4}$

Finding the Error Values:

Now, we have found error-locator polynomial $\sigma(\mathrm{X})$. We can solve it to find the error locations $\beta_{i}=\alpha^{j_{i}} \mathrm{i}=1,2, \ldots, \gamma$.

Now we need to find $S_{i}=e_{j_{i}}$, i.e., error values at the error locations and correct them, That is the equations are:
$S_{1}=e_{j_{1}} \alpha^{j_{1}}+e_{j_{2}} \alpha^{j_{2}}+\cdots+e_{j_{\gamma}} \alpha^{j_{\gamma}}$
\vdots
$S_{2 t}=e_{j_{1}} \alpha^{2 t j_{1}}+e_{j_{2}} \alpha^{2 t j_{2}}+\cdots+e_{j_{\gamma}} \alpha^{2 t j_{\gamma}}$
With $\alpha^{j_{i}}$ s and S_{i} 's known. Or equivalently:
$S_{1}=s_{1} \beta_{1}+s_{2} \beta_{2}+s_{\gamma} \beta_{\gamma}$
$S_{2}=s_{1} \beta_{1}^{2}+s_{2} \beta_{2}^{2}+\cdots+s_{\gamma} \beta_{\gamma}^{2}$
!
$S_{2 t}=s_{1} \beta_{1}^{2 t}+s_{2} \beta_{2}^{2 t}+\cdots+s_{\gamma} \beta_{\gamma}^{2 t}$
Let's define the syndrome polynomial:

$$
\begin{aligned}
S(x)=S_{1}+S_{2} X & +\cdots+S_{2 t} X^{2 t}+S_{2 t+1} X^{2 t}+\cdots \\
& =\sum_{j=1}^{\infty} S_{j} X^{j-1}
\end{aligned}
$$

Note that this has an infinite number of terms whose first 2 t terms are known:

$$
S_{j}=\sum_{l=1}^{\gamma} S_{l} \beta_{l}^{j} \quad j=1,2, \ldots, 2 t
$$

Substituting this (but now for all terms), we get:

$$
\begin{gathered}
S(x)=\sum_{j=1}^{\infty} x^{j-1} \sum_{l=1}^{\gamma} S_{l} \beta_{l}^{j} \\
=\sum_{l=1}^{\gamma} S_{l} \beta_{l} \sum_{j=1}^{\infty}\left(\beta_{l} x\right)^{j-1}
\end{gathered}
$$

But

$$
\sum_{j=1}^{\infty}\left(\beta_{l} x\right)^{j-1}=\frac{1}{1+\beta_{l} x}
$$

So:

$$
S(x)=\sum_{l=1}^{\gamma} \frac{S_{l} \beta_{l}}{1+\beta_{l} x}
$$

$$
\begin{aligned}
& \sigma(x)=\prod_{i=1}^{\gamma}\left(1+\beta_{i} x\right) \text { So: } \\
& \qquad S(x) \sigma(x)=\sum_{l=1}^{\gamma} S_{L} \beta_{L} \prod_{i=1 .}^{\gamma}\left(1+\beta_{i} x\right) \triangleq Z_{0}(x)
\end{aligned}
$$

Also,

$$
\begin{gathered}
\sigma(x) S(x)=\left[1+\sigma_{1} x+\cdots+\sigma_{\gamma} x^{\gamma}\right]\left[S_{1}+S_{2} x+S_{3} x^{2}+\cdots\right] \\
=S_{1}\left(S_{2}+\sigma_{1} S_{1}\right) x+\left(S_{3}+\sigma_{1} S_{2}+\sigma_{2} S_{1}\right) x^{2}+\cdots \\
\cdots+\left(\sigma_{2 t}+\sigma_{1} S_{2 t-1}+\cdots+\sigma_{\gamma} S_{2 t-\gamma}\right) x^{2 t-1}+\cdots
\end{gathered}
$$

So:

$$
Z_{0}(x)=S_{1}+\left(S_{2}+\sigma_{1} S_{1}\right) x+\left(S_{3}+\sigma_{1} S_{2}+\sigma_{2} S_{1}\right) x^{2}+\cdots+\left(S_{\gamma}+\sigma_{1} S_{\gamma-1}+\cdots+\sigma_{\gamma-1} S_{1}\right) x^{\gamma-1}
$$

Let's substitute β_{k}^{-1} in $Z_{0}(x)$:

$$
\begin{gathered}
Z_{0}\left(\beta_{k}^{-1}\right)=\sum_{l=1}^{\gamma} S_{l} \beta_{l} \prod_{i=1, i \neq l}^{\gamma}\left(1+\beta_{i} \beta_{k}^{-1}\right) \\
=S_{k} \beta_{k} \prod_{i=1, i \neq k}^{\gamma}\left(1+\beta_{i} \beta_{k}^{-1}\right)
\end{gathered}
$$

Taking derivative of $\sigma(x)$

$$
\sigma^{\prime}(x)=\frac{d}{d x} \prod_{i=1}^{\gamma}\left(1+\beta_{i} x\right)=\sum \beta_{l} \prod_{i=1, i \neq l}^{\gamma}\left(1+\beta_{i} x\right)
$$

Then

$$
\sigma^{1}\left(\beta_{k}^{-1}\right)=\beta_{k} \prod_{i=1, i \neq k}^{\gamma}\left(1+\beta_{i} \beta_{k}^{-1}\right)
$$

So,

$$
S_{k}=\frac{Z_{0}\left(\beta_{k}^{-1}\right)}{\sigma^{1}\left(\beta_{k}^{-1}\right)}
$$

Let's $[\sigma(x) S(x)]_{2 t}$ represent the first $2 t$ terms of $\sigma(x) S(x)$. Then

$$
\sigma(x) S(x)-[\sigma(x) S(x)]_{2 t}
$$

Is divisible by $X^{2 t}$.
That is:

$$
\sigma(x) S(x) \equiv[\sigma(x) S(x)]_{2 t} \bmod X^{2 t}
$$

But,

$$
[\sigma(x) S(x)]_{2 t}=Z_{0}(x)
$$

And we have:

$$
\sigma(x) S(x) \equiv Z_{0}(x) \bmod x^{2 t}
$$

This is called the key equation that has to be solved in decoding of RS codes.
Example: Consider the $(7,4)$ code in the previous example:
We had $S_{1}=\alpha^{6}, S_{2}=\alpha^{3}, S_{3}=\alpha^{4} \operatorname{snd} S_{4}=\alpha^{3}$,
So:
$S(x)=\alpha^{6}+\alpha^{3} x+\alpha^{4} x^{2}+\alpha^{3} x^{3}$
Also, we found:

$$
\sigma(x)=1+\alpha^{2} x+\alpha x^{2} \rightarrow \sigma^{\prime}(x)=\alpha^{2}+2 \alpha x=\alpha^{2}
$$

So:

$$
\begin{gathered}
Z_{0}(x)=\sigma(x) S(x) \bmod x^{4} \\
=\left(1+\alpha^{2} x+\alpha x^{2}\right)\left(\alpha^{6}+\alpha^{3} x+\alpha^{4} x^{2}+\alpha^{3} x^{3}\right) \\
=\alpha^{6}+x
\end{gathered}
$$

We can find the error locations by solving $\sigma(\mathrm{x})=0$ to get $\beta_{1}=\alpha^{3}$ and $\beta_{2}=\alpha^{5}$
So,

$$
e_{3}=S_{1}=\frac{Z_{0}\left(\alpha^{-3}\right)}{\sigma^{\prime}\left(\alpha^{-3}\right)}=\frac{\alpha^{6}+\left(\alpha^{-3}\right)}{\alpha^{2}}=\alpha^{4}+\alpha^{2}=\alpha
$$

And

$$
e_{5}=S_{2}=\frac{z_{0}\left(\alpha^{-5}\right)}{\sigma^{\prime}\left(\alpha^{-5}\right)}=\frac{\alpha^{6}+\alpha^{-5}}{\alpha^{2}}=\alpha^{4}+1=\alpha^{5}
$$

So,

$$
e(X)=\alpha X^{3}+\alpha^{5} X^{5}
$$

