ELEC 6131: Error Detecting and Correcting Codes Lecture 8: Reed-Solomon (RS) Codes

RS Codes are a sub-class of non-binary BCH Codes. In a non-binary code, codewords consist of symbols which are each $m \ge 2$ bits long.

In general, non-binary codes can be defined over any Galois Field GF(q) where q is either a prime or a power of a prime. However, for obvious reasons, people are most interested in codes defined over $GF(2^m)$.

For Reed-Solomon Codes take some integer m. Then each symbol is m bits long. This means that symbols belong to $\{0, 1, ..., 2^m\}$.

An (N, K) RS code consists of N symbols each of which is m bits long and has K information symbols and N-K parity symbols.

For an RS code over $GF(2^m)$ we have $N = 2^m - 1$.

K can be any value less than N.

An (N, K) RS code has the minimum distance $d_{min} = N - K + 1$.

It can correct $t = \left[\frac{d_{min}-1}{2}\right] = \left[\frac{N-K}{2}\right]$

The reason I used N and K instead of n and k was to differentiate between an (n, k) binary code that has codewords that are n bits long and have k information bits and non-binary codes with N and K symbols.

I hope we have so far have got used to the idea of symbols other than a single bit. So, from this point on, I will use n and k.

(n, k) RS code over $GF(2^m)$ has codeword of length n symbols, i.e., n * m bits out of which k * m are information (or systematic) bits.

For example a (255,239) RS Code over $GF(2^8)$ has codewords each 255 bytes and each codeword has 239 bytes of information on (n-k) = 16 bytes of parity. Such a code can correct up to $\frac{16}{2} = 8$ bytes of errors.

Note that here when we correct one symbol, we may have corrected 1, 2, ..., m bits. If we have a burst of errors, that is a lot of errors near. One another, RS Codes can be very useful. An RS Code which can correct t error symbols can correct (t - 1)m bits long bursts.

The generating polynomial of t error correcting RS Code is:

$$g(x) = (x + \alpha)(x + \alpha^{2}) \dots (x + \alpha^{2t})$$

= $g_{0} + g_{1}x + g_{2}x^{2} + \dots + g_{2t-1}x^{2t-1} + x^{2t}$

With $g_i \in GF(2^m)$ for $0 \le i \le 2t$.

 α , α^2 , ... α^{2t} are roots of Xⁿ+1. G(x) divides Xⁿ+1. So, g(x) generates a 2^m - ry cyclic code of length n with 2t parity symbols.

Encoding of RS Codes:

We can simply multiply the information polynomial u(x) by g(x). However, this may not result in a systematic code to make the code systematic, we multiply u(x) by X^{n-k} to get $X^{n-k}u(x)$ which we divide by g(x) to get:

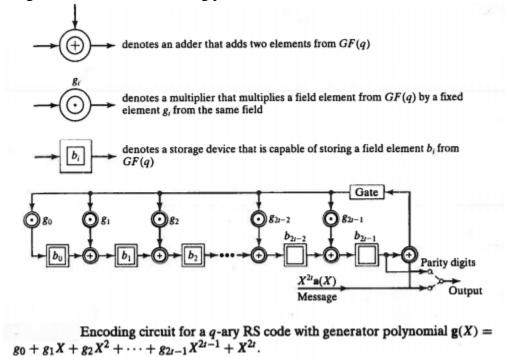
$$X^{n-k}u(x) = q(x)g(x) + b(x)$$

q(x)g(x) is a code polynomial. Also we have:

$$V(x) = q(x)g(x) = x^{n-k}u(x) + b(x)$$

This means that we have u(x) as part of v(x), i.e., the code is systematic and b(x) is the parities polynomial.

The following circuit shows the encoding procedure:



- 1) First we close the gate and feed the information symbols into the division circuit. At the same time these information symbols are put on the line (to be transmitted): switch in lower position.
- 2) After feeding all k symbols, we open the gate (disconnect the feedback) and put switch in the up position, transmitting 2t parity symbols.

Example:

Find the generating polynomial of triple error correcting code over $GF(2^6)$.

$$g(x) = (x + \alpha)(x + \alpha^2)(x + \alpha^3)(x + \alpha^4)(x + \alpha^5)(x + \alpha^6)$$
$$= \alpha^{21} + \alpha^{10}x + \alpha^{55}x^2 + \alpha^{43}x^3 + \alpha^{48}x^4 + \alpha^{59}x^5 + x^6$$

2t x u(x)

The Parity-Check matrix of an RS code is given as:

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & (\alpha^2)^2 & \cdots & (\alpha^2)^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{2t} & (\alpha^{2t})^2 & \cdots & (\alpha^{2t})^{n-1} \end{bmatrix}$$

Decoding of RS Codes:

- 1) Find syndrome.
- 2) Find error-location polynomial.
- 3) Find error-value evaluator.
- 4) Find the error locations and error values and correct.

Assume that the codeword $\underline{v} = (v_0, v_1, \dots, v_{n-1})$ is transmitted or equivalently

$$v(x) = v_0 + v_1 x + v_2 x^2 + \dots + v_{n-1} x^{n-1}$$

Assume that r(x) is received:

$$r(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}$$

r(x)=v(x)+e(x) where e(x) is the error polynomial

$$e(x) = r(x) + v(x) = e_0 + e_1 x + \dots + e_{n-1} x^n$$

Assume we have errors at locations

 $j_1, j_2, \cdots, j_\gamma$

Denote the values of error by $e_{j_1}, e_{j_2}, \dots, e_{j_{\gamma}}$

Then:

$$e_i = \begin{cases} 0 & i \neq j_1, \dots, j_{\gamma} \\ e_{j_e} & if \ i = j_e \epsilon \{j_1, \dots, j_e\} \end{cases}$$

So, we can write:

$$e(x) = e_{j_1} x^{j_1} + e_{j_2} x^{j_2} + \dots + e_{j_\gamma} x^{j_\gamma}$$

So what we need to do is to find $j_1, ..., j_{\gamma}$ as well as $e_{j_1}, ..., e_{j_{\gamma}}$.

That is why we have 2γ unknowns.

Now let's expand $S_i = e(\alpha^i)$'s:

Remember that

$$V(\alpha^{i}) = 0 \qquad i = 1, 2, ..., 2t$$
$$r(\alpha^{i}) = v(\alpha^{i}) + e(\alpha^{i}) = s_{i}$$

So,

$$S_i = r(\alpha^i) = e(\alpha^i)$$

That is we substitute α^i , i = 1, 2, ..., 2t in r(x) to get 2t syndromes. These provide 2t equations with j'_i 's and e_{j_i} 's as their components. In order to be able to solve for the 2γ unknowns, we need to have 2γ equations, i.e., $2t = 2\gamma \rightarrow t = \gamma$. That is a proof that RS Code can correct t errors.

$$s_{1} = e_{j_{1}}\alpha^{j_{1}} + e_{j_{2}}\alpha^{j_{2}} + \dots + e_{j_{\gamma}}\alpha^{j_{\gamma}}$$

$$s_{2} = e_{j_{1}}\alpha^{2j_{1}} + e_{j_{2}}\alpha^{2j_{2}} + \dots + e_{j_{\gamma}}\alpha^{2j_{\gamma}}$$

$$\vdots$$

$$s_{2t} = e_{j_{1}}\alpha^{2tj_{1}} + e_{j_{2}}\alpha^{2tj_{2}} + \dots + e_{j_{\gamma}}\alpha^{2tj_{\gamma}}$$
Let $B_{i} \triangleq \alpha^{j_{i}}$ and $S_{i} \triangleq e_{j_{i}}$ For $1 \le i \le \gamma$

Then:

$$s_1 = s_1\beta_1 + s_2\beta_2 + \dots + s_{\gamma}\beta_{\gamma}$$

$$S_2 = s_1\beta_1^2 + s_2\beta_2^2 + \dots + s_{\gamma}\beta_{\gamma}^2$$

$$\vdots$$

$$s_{2t} = s_1\beta_1^{2t} + s_2\beta_2^{2t} + \dots + s_{\gamma}\beta_{\gamma}^{2t}$$

Define the error location polynomial:

$$\sigma(x) = (1 + \beta_1 x)(1 + \beta_2 x) \dots (1 + \beta_\gamma x)$$
$$= \sigma_0 + \sigma_1 x + \sigma_2 x^2 + \dots + \sigma_\gamma x^\gamma$$

We can see that

$$\sigma_0 = 1$$

$$\sigma_1 = \beta_1 + \beta_2 + \dots + \beta_{\gamma} = s_1$$

$$\sigma_2 = \beta_1 \beta_2 + \dots + \beta_{\gamma-1} \beta_\gamma = \sigma_1 s_1 + s_2$$

:

Overall, we get the following equations named Newton equalities:

$$s_{\gamma+1} + \sigma_1 s_{\gamma} + \sigma_2 s_{\gamma-1} + \dots + \sigma_{\gamma} s_1 = 0$$

$$s_{\gamma+2} + \sigma_1 s_{\gamma+1} + \sigma_2 s_{\gamma} + \dots + \sigma_{\gamma} s_2 = 0$$

$$\vdots$$

$$s_{2t} + \sigma_1 s_{2t-1} + \sigma_2 s_{2t-2} + \dots + \sigma_{\gamma} s_{2t-\gamma} = 0$$

The same as BCH Codes, we start from $\sigma(x)=1$ in stage 0, say we call it $\sigma^{(0)}(x)$ and try to increase the number of terms so that all equations are satisfied.

Assume that at stage μ we have

$$\sigma^{(\mu)}(x) = \sigma_0^{(\mu)} + \sigma_1^{(\mu)}x + \dots + \sigma_{L_{\mu}}^{(\mu)}x^{l_{\mu}}$$

This means that we have coefficients $\sigma_0^{(\mu)}, \sigma_1^{(\mu)}, \dots, \sigma_{L_{\mu}}^{(\mu)}$ of a polynomial that satisfy the first μ Newton equalities. We try to apply coefficients to μ +1-st equality, i.e., form

$$S_{\mu+1} + \sigma_1^{(\mu)} S_{\mu} + \dots + \sigma_{L_{\mu}}^{(\mu)} S_{\mu+1-l\mu}$$

If this gives us a zero it means that $\sigma_0^{(\mu)}$, $\sigma_1^{(\mu)}$, ... + $\sigma_{L_{\mu}}^{(\mu)}$ satisfy μ +1-st equality.

Otherwise we have to modify the polynomial so form:

$$d_{\mu} = S_{\mu+1} + \sigma_1^{(\mu)} S_{\mu} + \sigma_2^{(\mu)} S_{\mu-1} + \dots + \sigma_{L\mu}^{(\mu)} S_{\mu+1-L\mu}$$

If the discrepancy $d_{\mu} = 0$ then

$$\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x)$$

And continue.

Otherwise:

$$\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + d_{\mu}d_{\rho}^{-1}x^{\mu-\rho}\sigma^{(\rho)}(x)$$

Where ρ is the stage closest to μ such that $d_{\rho} \neq 0$

Continue this iteration until we get to stage 2t then

$$\sigma(x) = \sigma^{(2t)}(x)$$

Start by filling out the first two rows:

μ	$\sigma^{(\mu)}(X)$	d _µ	l_{μ}	$\mu - l_{\mu}$
-1	1	1	0	-1
0	1	S_1	0	0
1	$1 - S_1 X$			
2	-			
3				
:				
2t				

Example:

Consider triple-error correcting code over $GF(2^4)$. Let $r(x) = \alpha^7 x^3 + \alpha^3 x^6 + \alpha^4 x^{12}$

Then

$$g(x) = (x + \alpha)(x + \alpha^2)(x + \alpha^3)(x + \alpha^4)(x + \alpha^5)(x + \alpha^6)$$

= $\alpha^6 + \alpha^9 x + \alpha^6 x^2 + \alpha^4 x^3 + \alpha^{14} x^4 + \alpha^{10} x^5 + x^6$

$$s_{1} = r(\alpha) = \alpha^{10} + \alpha^{9} + \alpha = \alpha^{12}$$

$$s_{2} = r(\alpha^{2}) = \alpha^{13} + 1 + \alpha^{13} = 1$$

$$s_{3} = r(\alpha^{3}) = \alpha + \alpha^{6} + \alpha^{10} = \alpha^{14}$$

$$s_{4} = r(\alpha^{4}) = \alpha^{4} + \alpha^{12} + \alpha^{7} = \alpha^{10}$$

$$s_{5} = r(\alpha^{5}) = \alpha^{7} + \alpha^{3} + \alpha^{4} = 0$$

$$s_{6} = r(\alpha^{6}) = \alpha^{10} + \alpha^{9} + \alpha = \alpha^{12}$$

TABLE 7.2: Steps for finding the error-location polynomial of the (15.9) RS code over $GF(2^4)$.

μ	$\sigma^{(\mu)}(X)$	d _µ	l _µ	$\mu - l_{\mu}$
-1	1	1	0	-1
0	1	α^{12}	0	0
1	$1 + \alpha^{12} X$	α7	1	$0(take \rho = -1)$
2	$1 + \alpha^3 X$	1	1	$1(\text{take } \rho = 0)$
3	$1 + \alpha^3 X + \alpha^3 X^2$	α7	2	1(take $\rho = 0$)
4	$1 + \alpha^4 X + \alpha^{12} X^2$	α^{10}	2	$2(\text{take } \rho = 2)$
5	$1 + \alpha^7 X + \alpha^4 X^2 + \alpha^6 X^3$	0	3	$2(\text{take } \rho = 3)$
	$1 + \alpha^7 X + \alpha^4 X^2 + \alpha^6 X^3$	-		

Step 2. To find the error-location polynomial σ(X), we fill out Table 7.1 and obtain Table 7.2. Thus, σ(X) = 1 + α⁷X + α⁴X² + α⁶X³.
Step 3. By substituting 1, α, α², ..., α¹⁴ into σ(X), we find that α³, α⁹, and α¹² are roots of σ(X). The reciprocals of these roots are α¹², α⁶, and α³, which are the error-location numbers of the error pattern e(X). Thus, errors occur at positions X³, X⁶, and X¹².

A more straightforward algorithm where the correction term is evolved as the iterations go ahead is given in Vicker's text.

The algorithm is as follows:

- 1) Compute syndromes S_1, \ldots, S_{2t} .
- 2) Initialize the algorithm by letting $\mu=0$, $\sigma^{(0)}(x) = 1$, l = 0 and T(x)=x.
- 3) Set $\mu = \mu + 1$ compute discrepancy d_{μ} ,

$$d_{\mu} = S_{\mu} + \sum_{i=1}^{l} \sigma_i^{(\mu-1)} S_{\mu-i}$$

- 4) If $d_{\mu} = 0$ then go to 8.
- 5) Modify the polynomial as:

$$\sigma^{(\mu)}(x) = \sigma^{(\mu-1)}(x)d_{\mu}T(x)$$

- 6) If $2l \ge \mu$ then go to step 8.
- 7) Set $l = \mu l$ and $T(x) = d_{\mu}^{-1} \sigma^{(\mu-1)}(x)$.
- 8) Set $T(x) = x \cdot T(x)$.
- 9) If $\mu < 2t$ go to step 3.
- 10) Determine $\sigma(x) = \sigma^{(2t)}(x)$. If the roots are distinct and in the right field, then determine the error values, correct the errors and STOP.
- 11) Declare a decoding failure and STOP.

Next slide shows the problem above done again.

Example: Consider (7,3) RS Code over GF(8) with $r(x) = \alpha^2 x^6 + \alpha^2 x^4 + x^3 + \alpha^5 x^2$.

Although we have done the generation of g(x) and encoding, let's start from ground zero for doing some exercise in Galois field arithmetic. Let's start with $p(x)=x^3+x+1$. Take α to be a primitive element of this field, i.e., a root of $s_1 = \alpha^{12}$, $s_2 = 1$, $s_3 = \alpha^{14}$, $s_5 = 0$, $s_6 = \alpha^{12}$

$$d_{\mu} = S_{\mu+1} + \sigma_1^{(\mu)} S_{\mu} + \sigma_2^{(\mu)} S_{\mu-1} + \cdots \sigma_{L_{\mu}}^{(\mu)} S_{\mu+1-L_{\mu}}$$

μ	Sμ	$\sigma^{(\mu)}(x)$	$d^{(\mu)}$	L_{μ}	T(x)
0	-	1	-	0	X
1	α^{12}	$1 + \alpha^{12} x$	α^{12}	1	$\alpha^3 x$
*2	1	$1 + \alpha^3 x$	α^7	1	$\alpha x^8 + \alpha^5 x^2$
**3	α^{14}	$1 + \alpha^{13}x + \alpha^5x^2$	1	2	$x + \alpha^3 x^2$
4	α^{10}	$1 + \alpha^4 x + \alpha^{12} x^2$	α^{11}	2	$\alpha^4 x + \alpha^2 x^2 + \alpha^9 x^3$
5	0	$1 + \alpha^9 x + \alpha^4 x^3$	α^{10}	3	$\alpha^5 x + \alpha^9 x^2 + \alpha^3 x^3$
6	α^{12}	$1 + \alpha^7 x + \alpha^4 x^2 + \alpha^6 x^3$	α^{10}	3	-

$$\sigma(x) = 1 + \alpha^7 x + \alpha^4 x^2 + \alpha^6 x^3$$

•
$$d_1 = s_2 + \sigma_1 s_1 = 1 + \alpha^{12} \cdot \alpha^{12} = \alpha^9 + 1 = \alpha^7$$

• $d_2 = s_3 + \sigma_1 s_2 = 1 + \alpha^{14} + \alpha^3 \cdot 1 = 1$

 $\rho(\mathbf{x})$. That is $\alpha^3 + \alpha + 1 = 0$ or $\alpha^3 = \alpha + 1$.

The field elements are:

Note:

- $\alpha^3 = \alpha^2 \cdot \alpha = \alpha + 1$
- $\alpha^4 = \alpha. \alpha^3 = \alpha(\alpha + 1) = \alpha^2 + \alpha$
- $\alpha^5 = \alpha^4 \cdot \alpha = (\alpha^2 + \alpha)\alpha = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1$
- $\alpha^6 = \alpha (\alpha^2 + \alpha + 1) = \alpha^2 + 1$
- $\alpha^7 = \alpha (\alpha^2 + 1) = \alpha^3 + \alpha = \alpha + 1 + \alpha = 1$

Now, g(X) is:

$$g(x) = (x + \alpha)(x + \alpha^{2})(x + \alpha^{3})(x + \alpha^{4})$$

= $[x^{2} + (\alpha + \alpha^{2})x + \alpha^{3}][x^{2} + (\alpha^{3} + \alpha^{4})x + \alpha^{7}]$
= $[x^{2} + \alpha^{4}x + \alpha^{3}][x^{2} + \alpha^{6}x + 1]$
= $x^{4} + \alpha^{3}x^{3} + x^{2} + \alpha x + \alpha^{3}$

Computing Syndromes:

$$S_i = r(\alpha^i).$$
 $i = 1,2,3,4$

In this case, since the number of parities are less than the number of information symbols, it is reasonable to use $r(\alpha^i) = S_i$. However, for high rate codes where $n - k \ll k$, it is better to divide r(x) by g(x) to get

$$r(x) = g(x) q(x) + b(x)$$

Where b(x) is a polynomial of degree less than or equal n-k.

$$S_{i} = r(\alpha^{i}) = g(\alpha^{i})q(\alpha^{i}) + b(\alpha^{i}) \qquad i = 1, 2, ..., 2t.$$

Since $g(\alpha^{i}) = 0 \qquad i = 1, ..., 2t$
$$S_{i} = b(\alpha^{i})$$

Dividing $r(x) = \alpha^{2}x^{6} + \alpha^{2}x^{4} + x^{3} + \alpha^{5}x^{2}$ by $g(x)$
 $r(x) = (\alpha^{2}x^{2} + \alpha^{5}x)g(x) + \alpha x^{4} + \alpha^{6}x^{3} + \alpha^{6}x^{2} + \alpha x.$
So:

$$s_{1} = b(\alpha) = \alpha^{5} + \alpha^{9} + \alpha^{8} + \alpha^{2} = \alpha^{6}$$

$$s_{2} = b(\alpha^{2}) = \alpha^{9} + \alpha^{12} + \alpha^{10} + \alpha^{3} = \alpha^{3}$$

$$s_{3} = b(\alpha^{3}) = \alpha^{13} + \alpha^{15} + \alpha^{12} + \alpha^{4} = \alpha^{4}$$

$$s_{4} = b(\alpha^{4}) = \alpha^{17} + \alpha^{18} + \alpha^{14} + \alpha^{5} = \alpha^{3}$$

Now we use the algorithm:

μ	S_{μ}	$\sigma^{(\mu)}(x)$	d_{μ}	L	T(x)
0	-	1	-	0	х
1	α^6	$1 + \alpha^6 x$	α^6	1	αx^*
2	α^3	$1 + \alpha^4 x$	α^2	1	$\alpha x^{2^{**}}$
3	α^4	$1 + \alpha^4 x + \alpha^6 x^2$	α^5	2	$\alpha^2 x + \alpha^6 x^2$
4	α^3	$1 + \alpha^2 x + \alpha x^2$		-	-

• Note:

For $\mu=1$ L=0 $\rightarrow 2L < \mu \rightarrow L = \mu - L = 1$

And
$$T(x) = \frac{\sigma^{(0)}(x)}{d_1} = \frac{x}{\alpha^6} = \alpha x.$$

• Note:

For $\mu=2$

$$d_{\mu} = s_{\mu} \sum_{i=1}^{L} \sigma_i^{(\mu-1)} s_{\mu-i} \to \mu_2 = s_2 + \sigma_1^{(1)} S_1$$

Or

$$\mu_2 = \alpha^3 + \alpha^6 \cdot \alpha^6 = \alpha^3 + \alpha^5 = \alpha^2$$

$$2L = 2 \ge \mu = 2 \rightarrow T(x) = xT(x) \rightarrow T(x) = \alpha x^2$$

So:

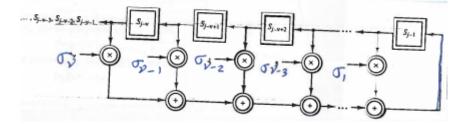
$$\sigma(x) = \alpha x^2 + \alpha^2 x + 1.$$

The above algorithm is based on message's Linear Feedback Shift Register (LESR) synthesis technique.

Note that for γ errors, we have the following Newton equalities.

$$s_j = \sigma_1 s_{j-1} + \sigma_2 s_{j-2} + \dots + \sigma_\gamma s_{j-\gamma}$$

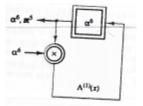
This relationship can be represented as LFSR circuit looking like:



The problem of finding error-locator polynomial is then to find an LFSR of minimal length such that the first 2t elements in the output sequence are $s_1, s_2, ..., s_{2t}$.

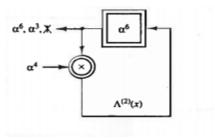
The coefficients of the filter are then the coefficient of $\sigma(x)$.

For the above (7,3) RS code, we start with



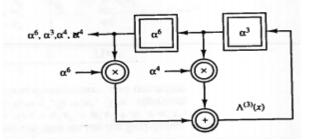
This works for the $s_1 = \alpha^6$ as it outputs the content of the register ,i.e., α^6 . But after the application of the seconds clock, the output will be α^6 . $\alpha^6 = \alpha^{12} = \alpha^5$ which is not $s_{2=}\alpha^3$.

To correct the situation, we change the filter tap to α^4 which is $\frac{\alpha^6}{\alpha^2}$ and therefore, the output after the clocking will be $\frac{\alpha^5}{\alpha^2} = \alpha^3 = s_2$.

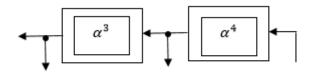


After the next clock the output will be α^3 . $\alpha^4 = 1$ which is not equal to $s_3 = \alpha^4$.

To correct this we need to add α^5 so that, we get $1 + \alpha^5 = \alpha^4 = s_3$. We keep the above and add a stage with α^6 in the register and α^6 as the tap.

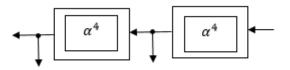


This circuit outputs α^6 first and then calculates α^6 . $\alpha^6 + \alpha^3$. $\alpha^4 = \alpha^5 + 1 = \alpha^4$ Content of the rightmost SR is moved to left and α^4 is loaded into it.

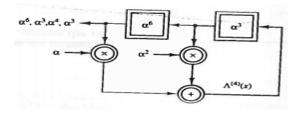


So, the next output is $\alpha^3 = s_2$.

Next α^3 . $\alpha^6 + \alpha^4$. $\alpha^4 = \alpha^2 + \alpha = \alpha^4$ is placed in right register and α^4 is moved left



Now α^4 is output which is s_3 . But the next output is $\alpha^4 \neq s_4 = \alpha^3$ To avoid this, we modify the taps of the LFSR to:



It is easy to see that this circuit outputs α^6 , α^3 , α^4 , α^3 , *i.e.* s_1 , s_2 , s_3 , s_4

Finding the <u>Error Values</u>:

Now, we have found error-locator polynomial $\sigma(X)$. We can solve it to find the error locations $\beta_i = \alpha^{j_i}$ i=1,2, ..., γ .

Now we need to find $S_i = e_{j_i}$, i.e., error values at the error locations and correct them, That is the equations are:

$$S_{1} = e_{j_{1}}\alpha^{j_{1}} + e_{j_{2}}\alpha^{j_{2}} + \dots + e_{j_{\gamma}}\alpha^{j_{\gamma}}$$

$$\vdots$$

$$S_{2t} = e_{j_{1}}\alpha^{2tj_{1}} + e_{j_{2}}\alpha^{2tj_{2}} + \dots + e_{j_{\gamma}}\alpha^{2tj_{\gamma}}$$

With $\alpha^{j_{i}'s}$ and S_{i} 's known. Or equivalently:

$$S_{1} = s_{1}\beta_{1} + s_{2}\beta_{2} + s_{\gamma}\beta_{\gamma}$$

$$S_{2} = s_{1}\beta_{1}^{2} + s_{2}\beta_{2}^{2} + \dots + s_{\gamma}\beta_{\gamma}^{2}$$

$$S_{2t} = s_1 \beta_1^{2t} + s_2 \beta_2^{2t} + \dots + s_\gamma \beta_\gamma^{2t}$$

Let's define the syndrome polynomial:

$$S(x) = S_1 + S_2 X + \dots + S_{2t} X^{2t} + S_{2t+1} X^{2t} + \dots$$
$$= \sum_{j=1}^{\infty} S_j X^{j-1}$$

Note that this has an infinite number of terms whose first 2t terms are known:

$$S_j = \sum_{l=1}^{\gamma} S_l \beta_l^j \qquad j = 1, 2, ..., 2t$$

Substituting this (but now for all terms), we get:

$$S(x) = \sum_{j=1}^{\infty} x^{j-1} \sum_{l=1}^{\gamma} S_l \beta_l^j$$
$$= \sum_{l=1}^{\gamma} S_l \beta_l \sum_{j=1}^{\infty} (\beta_l x)^{j-1}$$

But

÷

$$\sum_{j=1}^{\infty} (\beta_l x)^{j-1} = \frac{1}{1 + \beta_l x}$$

So:

$$S(x) = \sum_{l=1}^{\gamma} \frac{S_l \beta_l}{1 + \beta_l x}$$

 $\sigma(x) = \prod_{i=1}^{\gamma} (1 + \beta_i x) \text{So:}$

$$S(x)\sigma(x) = \sum_{l=1}^{\gamma} S_L \beta_L \prod_{i=1. \ i \neq \rho}^{\gamma} (1 + \beta_i x) \triangleq Z_0(x)$$

Also,

$$\sigma(x)S(x) = [1 + \sigma_1 x + \dots + \sigma_{\gamma} x^{\gamma}][S_1 + S_2 x + S_3 x^2 + \dots]$$

= $S_1(S_2 + \sigma_1 S_1)x + (S_3 + \sigma_1 S_2 + \sigma_2 S_1)x^2 + \dots$
 $\dots + (\sigma_{2t} + \sigma_1 S_{2t-1} + \dots + \sigma_{\gamma} S_{2t-\gamma})x^{2t-1} + \dots$

So:

 $Z_0(x) = S_1 + (S_2 + \sigma_1 S_1)x + (S_3 + \sigma_1 S_2 + \sigma_2 S_1)x^2 + \dots + (S_{\gamma} + \sigma_1 S_{\gamma-1} + \dots + \sigma_{\gamma-1} S_1)x^{\gamma-1}$ Let's substitute β_k^{-1} in $Z_0(x)$:

$$Z_{0}(\beta_{k}^{-1}) = \sum_{l=1}^{\gamma} S_{l}\beta_{l} \prod_{i=1,i\neq l}^{\gamma} (1+\beta_{i}\beta_{k}^{-1})$$
$$= S_{k}\beta_{k} \prod_{i=1,i\neq k}^{\gamma} (1+\beta_{i}\beta_{k}^{-1})$$

Taking derivative of $\sigma(x)$

$$\sigma'(x) = \frac{d}{dx} \prod_{i=1}^{\gamma} (1+\beta_i x) = \sum \beta_l \prod_{i=1, i\neq l}^{\gamma} (1+\beta_i x)$$

Then

$$\sigma^1(\beta_k^{-1}) = \beta_k \prod_{i=1, i \neq k}^{\gamma} (1 + \beta_i \beta_k^{-1})$$

So,

$$S_{k} = \frac{Z_{0}(\beta_{k}^{-1})}{\sigma^{1}(\beta_{k}^{-1})}$$

Let's $[\sigma(x)S(x)]_{2t}$ represent the first 2t terms of $\sigma(x)S(x)$. Then

$$\sigma(x)S(x) - [\sigma(x)S(x)]_{2t}$$

Is divisible by X^{2t} .

That is:

$$\sigma(x)S(x) \equiv [\sigma(x)S(x)]_{2t} mod X^{2t}$$

But,

$$[\sigma(x)S(x)]_{2t} = Z_0(x)$$

And we have:

$$\sigma(x)S(x) \equiv Z_0(x)modx^{2t}$$

This is called the key equation that has to be solved in decoding of RS codes.

Example: Consider the (7,4) code in the previous example:

We had
$$S_1 = \alpha^6$$
, $S_2 = \alpha^3$, $S_3 = \alpha^4$ snd $S_4 = \alpha^3$,

So:

$$S(x) = \alpha^6 + \alpha^3 x + \alpha^4 x^2 + \alpha^3 x^3$$

Also, we found:

$$\sigma(x) = 1 + \alpha^2 x + \alpha x^2 \rightarrow \sigma'(x) = \alpha^2 + 2\alpha x = \alpha^2$$

So:

$$Z_0(x) = \sigma(x)S(x)modx^4$$
$$= (1 + \alpha^2 x + \alpha x^2)(\alpha^6 + \alpha^3 x + \alpha^4 x^2 + \alpha^3 x^3)$$
$$= \alpha^6 + x$$

We can find the error locations by solving $\sigma(x)=0$ to get $\beta_1 = \alpha^3$ and $\beta_2 = \alpha^5$ So,

$$e_3 = S_1 = \frac{Z_0(\alpha^{-3})}{\sigma'(\alpha^{-3})} = \frac{\alpha^6 + (\alpha^{-3})}{\alpha^2} = \alpha^4 + \alpha^2 = \alpha$$

And

$$e_5 = S_2 = \frac{z_0(\alpha^{-5})}{\sigma'(\alpha^{-5})} = \frac{\alpha^6 + \alpha^{-5}}{\alpha^2} = \alpha^4 + 1 = \alpha^5$$

So,

$$e(X) = \alpha X^3 + \alpha^5 X^5$$