ELEC 6131: Error Detecting and Correcting Codes

Lecture 9: Convolutional Codes

In Block Code's data is encoded using a Combinational circuit. That is, a circuit with only logic gates and no memory.

Convolutional Codes on the other hand, have encoders that are Sequential Circuits. A Convolutional encoder receives k bits as the input and generates $n \geq k$ output symbols based on the input at a given time and past inputs (or outputs) still in the memory. A convolutional code usually has memory units resulting in 2^{m} states. M is called the constraint length, sometimes $\mathrm{m}+1$ is called the constraint length taking into account the present input and m bits in the memory as the bits affecting the output. K and n are usually small integers of particular interest are the codes with $\mathrm{k}=1$ resulting in code rate $\frac{1}{n}$.

For example, if $\mathrm{k}=1$ and $\mathrm{n}=2$, we have a code of rate $\frac{k}{n}=\frac{1}{2}$.
It is important to note the fact that while $\mathrm{k}=1$ or 2 or some other small number, the input and output are streams of bits. Assume that L symbols enter the encode. This means $k L$ input bits and $n L$ output bits we need also to flush the encoder to make it ready for next block of data, e.g., by feeding $k m$ bits. So, the output will actually be $n(L+m)$ bits long and the rate is

$$
\frac{k L}{n(L+m)}=\frac{k}{n} \cdot \frac{L}{L+m} \rightarrow \frac{k}{n}
$$

when $m \ll L$.
Since the codewords of a Convolutional code are generated using a Finite State Machine (FSM), i.e. a sequential circuit, the decoder can be a scheme that finds the best match for the received sequence (based on minimum distance), by going through all possible outputs the FSM (the encoder could have generated. The scheme used is the travelling salesman algorithm. It is called the Viterbi Algorithm (VA) in coding literature as it was first used for decoding of convolutional codes by Andrew Viterbi (the relationship between VA and travelling salesman problem was later discovered. So, in fact, Viterbi re-invented the algorithm).

VA finds a solution that is optimal over the whole received sequence and not necessarily having lower probability of error for each symbol.

Another Scheme called BCJR (Bahl, Cocke,Jelinek and Raviv) algorithm is another decoding technique that works based on the maximum a posterior (MAP) probability taking into account a priori probability of bits. It is very useful in iterative decoding of Turbo codes.

Example: let's start with a non-systematic feed forward rate $\frac{1}{2}$ code.
The code is non-systematic as there is no direct connection between the input and any of the outputs. Also, we call the code feed forward as the outputs are not fed back to the input side.

Let the input sequence to be $\underline{u}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$
the output sequence will be $\underline{\mathrm{v}}^{(0)}=\left(v_{0}^{(0)}, v_{1}^{(0)}, v_{2}^{(0)}, \ldots\right)$
and $\underline{v}^{(1)}=\left(v_{0}^{(0)}, v_{1}^{(0)}, v_{2}^{(0)}, \ldots\right)$
these outputs can be obtained by convolving \underline{u} with the impulse response of two branches.
To find the impulse response let $\underline{u}=(100 \ldots)$ and observe the outputs. Since the memory order is m , the impulse response can last at most $\mathrm{m}+1$ time units so,

$$
\mathrm{g}^{(0)}=\left(g_{0}^{(0)}, g_{1}^{(0)}, \ldots, g_{m}^{(0)}\right)
$$

And

$$
\mathrm{g}^{(1)}=\left(g_{1}^{(0)}, g_{1}^{(0)}, \ldots, g_{m}^{(0)}\right)
$$

For this example:

$$
\mathrm{g}^{(0)}=\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right)
$$

And

$$
\mathrm{g}^{(1)}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)
$$

These are also called generator sequences.
Now,

$$
\underline{\mathrm{v}}^{(0)}=\underline{\mathrm{u}} \circledast \mathrm{~g}^{(0)}
$$

And

$$
\underline{\mathrm{v}}^{(1)}=\underline{\mathrm{u}} \circledast \mathrm{~g}^{(1)}
$$

Where \oplus denotes convolution:

$$
v_{l}^{(i)}=\sum_{i=0}^{m} u_{l-i} g_{i}^{(j)}=u_{l} g_{0}^{(j)}+u_{l-1} g_{0}^{(j)}+\cdots+u_{l-m} g_{m}^{(j)} \quad \text { For } \mathrm{j}=0 \text { and } 1
$$

For this example,

$$
\begin{gathered}
v_{l}^{(0)}=u_{l}+u_{l-2}+u_{l-3} \\
v_{l}^{(1)}=u_{l}+u_{l-1}+u_{l-2}+u_{l-3}
\end{gathered}
$$

And

$$
\underline{\mathrm{v}}=\left(v_{0}^{(0)}, v_{0}^{(1)}, v_{1}^{(0)}, v_{1}^{(1)}, v_{2}^{(0)}, v_{2}^{(1)}, \ldots\right)
$$

Assume $\underline{u}=\left(\begin{array}{lllll}1 & 0 & 1 & 1 & 1\end{array}\right)$
Then

$$
\begin{aligned}
& \underline{\mathrm{v}}^{(0)}=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 1
\end{array}\right) \odot\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \underline{\mathrm{v}}^{(0)}=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 1
\end{array}\right) \circledast\left(\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and

$$
\underline{v}=(11,01,00,01,01,01,00,11)
$$

When the number of bits encoded is large, we can view the operation of the convolutional encoder as a block encoder by defining the generate matrix:

Then $\underline{v}=\underline{u} G$. For input $\underline{u}=(101111)$ we have:

$$
\begin{aligned}
& =\left(\begin{array}{llll}
\\
& (0111)
\end{array}\right]\left[\begin{array}{llllllllll}
11 & 0 & 1 & 11 & 11 & 1 & & & & \\
& 11 & 01 & 11 & 11 & & & \\
& & 11 & 01 & 11 & 11 & & \\
& & & 11 & 01 & 11 & 11 & \\
& & & & 11 & 01 & 11 & 11
\end{array}\right] \\
& =(11,01,00,01,01,01,00,11)
\end{aligned}
$$

Example: A rate $\frac{2}{3}$ non-systematic feed forward convolutional code:

Let $\underline{g}_{i}^{(j)}$ represent the generator sequence corresponding to input I and output j , we have:

$$
\begin{array}{ll}
g_{1}^{(0)}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) & g_{1}^{(1)}=\left(\begin{array}{lll}
0 & 1
\end{array}\right) \\
g_{1}^{(2)}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
g_{2}^{(0)}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) & g_{2}^{(1)}=\left(\begin{array}{lll}
1 & 0
\end{array}\right) \\
g_{2}^{(2)}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
\end{array}
$$

Then:
$v^{(0)}=u^{1} \oplus g_{1}^{(0)}+u^{(2)} \oplus g_{2}^{(0)}$
$v^{(1)}=u^{1} \oplus g_{1}^{(1)}+u^{(2)} \circledast g_{2}^{(1)}$
$v^{(2)}=u^{1} \oplus g_{1}^{(2)}+u^{(2)} \circledast g_{2}^{(2)}$
So,

$$
\begin{gathered}
v_{l}^{(0)}=u_{l}^{(1)}++u_{l-1}^{(1)}+u_{l-1}^{(2)} \\
v_{l}^{(1)}=u_{l}^{(2)}+u_{l-1}^{(1)} \\
v_{l}^{(2)}=u_{l}^{(1)}+u_{l}^{(1)}+u_{l-1}^{(2)}
\end{gathered}
$$

While rate $\frac{k}{n}$ codes with $\mathrm{k} \neq 1$ can be used, it is easier to use a code $\frac{1}{n}$ rate to generate codes $\frac{k}{n}$. This is done using puncturing. Assume that we have a rate $\frac{1}{2}$ code, we can feed it two bits at a time and out of 4 bits we get at the output throughout one to get a rate $\frac{2}{3}$ code. Or input 3 bits and get 6 bits out and throughout 2 bits to get $\frac{3}{4}$ code .

Example: Industry Standard Code:

Figore 8. 64-State Carvolitional Ennoter

Polynomial Domain Representation:

Similar to block codes, we can transform the time domain representation by transforming the generating sequences to generating polynomial and similarly input and output sequences to input and output polynomials:

For example for the $(2,1,3)$ code, i.e. rate $\frac{1}{2}$ memory $=3$ code, instead of $g^{(0)}=\left(\begin{array}{lll}1 & 0 & 1\end{array} 1\right)$ and $g^{(1)}$ = ($\left.\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$, we can use:

$$
g^{(0)}(D)=1+D^{2}+D^{3} \text { and } g^{(1)}(D)=1+D+D^{2}+D^{3}
$$

If we denote the input sequence as,

$$
u(D)=u_{0}+u_{1} D+u_{2} D^{2}+\cdots
$$

Then

$$
v^{(0)} D=u(D) g^{(0)}(D)
$$

And

$$
v^{(1)} D=u(D) g^{(1)}(D)
$$

So,

$$
v(D)=\left[v^{(0)}(D), v^{(1)}(D)\right]=v^{0}(D)^{2}+D v^{(1)}\left(D^{2}\right)
$$

Assume that $\underline{\mathrm{u}}=10111 \rightarrow \mathrm{u}(\mathrm{D})=1+D^{2}+D^{3}+D^{4}$.
Then,

$$
\begin{gathered}
v^{(0)}(D)=\left(1+D^{2}+D^{3}+D^{4}\right)\left(1+D^{2}+D^{3}\right)=1+D^{7} \\
v^{(1)}(D)=\left(1+D^{2}+D^{3}+D^{4}\right)\left(1+D+D^{2}+D^{3}\right)=1+D+D^{3}+D^{4}+D^{5}+D^{7}
\end{gathered}
$$

And

$$
\begin{aligned}
& V(D)=\left[1+D^{7}+1+D+D^{3}+D^{4}+D^{5}+D^{7}\right] \\
& =1+D+D^{3}+D^{7}+D^{9}+D^{11}+D^{14}+D^{15}
\end{aligned}
$$

As an exercise try to get 11010001010100 by feeding 10111 to the encoder.
Equivalently, we could use $g(D)=g^{(0)}\left(D^{2}\right)+D g^{(1)}\left(D^{2}\right)$ and find the output using $v(D)=u\left(D^{2}\right) g(D)$

For the above example:

$$
\begin{aligned}
& g(D)=1+D^{4}+D^{6}+D\left[1+D^{2}+D^{4}+D^{6}\right] \\
& \quad=1+D^{4}+D^{6}+D+D^{3}+D^{5}+D^{7} \\
& \quad=1+D+D^{3}+D^{4}+D^{5}+D^{6}+D^{7}
\end{aligned}
$$

And

$$
\begin{gathered}
v(D)=u\left(D^{2}\right) g(D)=\left(1+D^{4}+D^{6}+D^{8}\right)\left(1+D+D^{3}+D^{4}+D^{5}+D^{6}+D^{7}\right) \\
=1+D+D^{3}+D^{7}+D^{9}+D^{11}+D^{14}+D^{15}
\end{gathered}
$$

In general, for a code with k inputs and n outputs, we have:

$$
g_{i}(D)=g_{i}^{(0)}\left(D^{n}\right)+D g_{i}^{(1)}\left(D^{n}\right)+\cdots+D^{n-1} g_{i}^{n-1}\left(D^{n}\right) \quad \text { for } 1 \leq i \leq k
$$

And

$$
v(D)=\sum_{i=1}^{k} u^{(i)}\left(D^{n}\right) g_{i} D
$$

Graphical representation of Convolutional codes:

Trees, Trellises and FSM
Consider a code with m memory elements, each bit takes the contents of shift register from one of the 2^{m} possible values to another value. For simplicity take the case of feed forward, $\mathrm{k}=1$ code. Let's start from all zero content for m memory elements i.e., start from $00 \ldots 0$. If the bit entering the encoder is zero it moves to the same state. Otherwise goes to $100 \ldots 0$. Next bit takes it to 0 $10 \ldots 0$ or $110 \ldots 0$.

For example: for the 3-bit memory encoder $(2,1,3)$ we will have:

Note that after entering 3 bits, we get to 8 terminal nodes with all possible binary values. If we continue, we get trees with $16,32,64, \ldots$ of terminal nodes. But node labels will still be one of the eight patterns $000,001, \ldots, 111$.

So, instead of a tree, we can use a trellis. For the above code, we have the following trellis. We label the nodes by state values and the arcs by the input and let's first draw the state-diagram:

Each state is labeled with the content of the memory elements and each transition is labeled with the input and output. So, an input 1 takes the system from state 000 to state 100 generating output 11 , so, $1 / 11$ is the label of the transition from 000 to 1000 . Since this is a binary (one bit) input code, we can represent the input by thickness or shape of line, e.g., using solid line for zero and dashed line for one.

A code can be systematic, e.g.,

A $(2,1,3)$ binary systematic feedforward convolutional encoder.
Convolutional encoders can also have feedback. Following is an example of $(2,1,2)$ systematic feedback encoder.

These codes are defined in terms of their feedback and feedforward transfer functions (or generator functions). The above code has $g_{0}(D)=1$
And $g_{1}(D)=\frac{1+D^{2}}{1+D+D^{2}}$
Or the generator matrix is

$$
G(D)=\left[1,\left(1+D^{2}\right) /\left(1+D+D^{2}\right)\right]
$$

Trellis Diagrams list all possible codewords. For example, for a convolutional code with binary input, after entering k bits, i.e., passing through k stages, we have 2^{k} paths to consider. Note that for a rate $\frac{1}{n}$ after entering k bits. We have $n k$ bit sequence. So, the search is for one of the 2^{k} trellis paths among 2^{nk} possibilities.

We will have an error if the transmitted sequence belongs to one path of trellis and we decide in favour of another path. That is, if the noise make the path diverge at one node and coverage at another node. To see this, let's try a simple example.

Consider the $(2,1,2)$ feedback code above.

Assume, for example, that input the encoder is all zero sequence. Then the top line is the path taken by the output of the encoder.

Now assume that at some point there is an error and instead of straight (solid line), the decoder takes the dashed line. Unlike un-coded case, the next output is not un-constraint since the first divergence has rested in 00 being 11, then the next two bits are either 01 or 10. This continues until the two paths merge. Any convergence of two diverged paths is called an error event. The
shortest error event defines, the minimum or free distance of the code. In this case the free distance is 5 and is a result of $00,00,00$ being changed to $11,01,00$. That means decoding 100 instead of 000 .

Catastrophic Convolutional encoder:

A convolutional encoder, is one that creates a trellis diagram in which a stream with an infinite number of errors appears as having a finite distance from the original sequence.

Example: Take the convolutional code with $G(D)=\left[1+D, 1+D^{2}\right]$
The encoder is:

The trellis for this encoder is:

Now assume that $00 \ldots 0$ be encoded, i.e., $00,00, \ldots 00$ (upper path) be transmitted. The distance between $11,01,00, \ldots, 00$ (the violet path) and the correct path is 3 . But one decodes to all $\underline{0}$ and the other to all one.

Let's analyze the situation. Note that $1+D$ is a common divisor to $g_{0}(D)=1+D$ and
$g_{1}(D)=1+D^{2}=(1+D)(1+D)$ So, the encoder can be conceived as an m=1 encoder $[1$, $1+D]$ and a multiplication (say prior to encoding) by $1+D$.

Note that

$$
\frac{1}{1+D}=1+D+D^{2}+D^{3}+\cdots
$$

Or

$$
\left(1+D+D^{2}+D^{3}+\cdots\right)(1+D)
$$

So, if we feed the all one sequence to the $1+\mathrm{D}$, we get a single 1 and all zero. The same is true for any encoder whose constituent $g_{i}(D)$ have a common divisor other than unity (or shift of unity say D^{L}). A $\frac{1}{n}$ code is not catastrophic if and only if
$G C D\left[g_{0}(D), g_{1}(D), \ldots, g_{n-1}(D)\right]=D^{l} \quad$ for some integer L .

Performance of Convolutional Codes:

The performance of convolutional codes is computed based on their distance profile (Spectrum) Assume that in the trellis of a code there are A_{d} error event paths of distance d, for all possible d.

Then

$$
A(X)=\sum_{d=d_{\text {free }}}^{\infty} A_{d} X^{d}
$$

Assuming that probability of error event for a path of distance d is P_{d}.
Then:

$$
P(E) \leq \sum_{d=d_{f r e e}}^{\infty} A_{d} P_{d}
$$

$P(E)$ can be approximated as (upper bound approximated) for BSC:

$$
P(E)<\sum_{d=d_{\text {free }}}^{\infty} A_{d}[2 \sqrt{p(1-p)}]^{d}=\left.A(X)\right|_{x=2 \sqrt{p(1-p)}}
$$

For low p , i.e., high SNR, we have the path with distance $d_{\text {free }}$ as dominant so:

$$
P(E) \simeq A_{d_{\text {free }}}[2 \sqrt{p(1-p)}]^{d_{\text {free }}}
$$

Instead of A_{d} which is the number of error event of weight d , we may use B_{d} which is the sum of numbers of non-zero bits on all d paths divided by the number of information bits k .

Then:

$$
P_{b}(E)<\sum_{d=d_{f r e e}}^{\infty} B_{d} P_{d}=\sum_{d=d_{\text {free }}}^{\infty} B_{d}[2 p \sqrt{1-p}]^{d}
$$

Again, taking $d_{f r e e}$ path as the dominant path:

$$
\begin{aligned}
P(E) & \simeq B_{d_{\text {free }}}[2 \sqrt{p(1-p)}]^{d_{\text {free }}} \\
& \cong B_{d_{\text {free }}} 2^{d_{\text {free }} P^{d_{\text {free }}}}
\end{aligned}
$$

Letting

$$
P=Q\left(\sqrt{\frac{2 E_{s}}{N_{0}}}\right) \simeq \frac{1}{2} e^{-\frac{E_{s}}{N_{0}}} \quad, \text { i.e., }
$$

Assuming BPSK:

$$
P_{b}(E) \simeq B_{d_{\text {free }}} 2^{\frac{d_{\text {free }}}{2}} e^{-\left(\frac{d_{\text {free }}}{2}\right)\left(\frac{E_{s}}{N_{0}}\right)}
$$

Note that $E_{b}=\frac{E_{s}}{R}$, So

$$
P_{b}(E) \simeq B_{d_{\text {free }}} 2^{\frac{d_{\text {free }}}{2}} e^{-\left(\frac{R . d_{\text {free }}}{2}\right)\left(\frac{E_{s}}{N_{0}}\right)}
$$

Comparing this with un-coded BPSK, i.e.,

$$
P_{b}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \simeq \frac{1}{2} e^{-\frac{E_{b}}{N_{0}}}
$$

We find that there is power gain of $\frac{R d_{\text {free }}}{2}$.
This in decibel is called the asymptotic coding gain:

$$
\gamma \triangleq 10 \log _{10}\left(\frac{R_{d_{\text {free }}}}{2}\right) \quad d B
$$

Soft Decoding:

If we do not do demodulation prior to decoding, we use Euclidean distance.
Then:

$$
P(E)<\sum_{d=d_{f r e e}}^{\infty} A_{d} Q\left(\sqrt{\frac{2 d R E_{b}}{N_{0}}}\right)
$$

Or

$$
P_{b}(E)<\sum_{d=d_{\text {free }}}^{\infty} B_{d} Q\left(\sqrt{\frac{2 d R E_{b}}{N_{0}}}\right)
$$

We can approximate the $Q($.$) function so that,$

$$
P_{b}(E)<\sum_{d=d_{\text {free }}}^{\infty} B_{d} e^{-\frac{d R E_{b}}{N_{0}}}
$$

Or

$$
P_{b}(E) \simeq B_{d_{\text {free }}} e^{-\frac{d_{f r e e} R E_{b}}{N_{0}}}
$$

Comparing with un-coded BPSK, i.e.,

$$
P_{b} \cong e^{-\frac{E_{b}}{N_{0}}}
$$

We get coding gain (asympthotic):

$$
\gamma \triangleq 10 \log _{10}\left(R d_{\text {free }}\right) \quad d B
$$

Which is 3 dB better than hard decision decoding.

