ELEC 6131 – Error Detecting and Correcting Codes Midterm March 8, 2016

- 1) Consider the polynomial $p(x) = x^8 + x^5 + x + 1$ in GF(2). Is p(x) primitive? Why? (2 Marks).
- 2) Consider a (7, 4) Hamming code with the following generating matrix:

<i>G</i> =	1	1	0	1	0	0	0
	0	1	1	0	1	0	0
	1	1	1	0	0	1	0
	1	0	1	0	0	0	1

- a. Find the generator polynomial the code. (2 Marks).
- b. Find the generator matrix of dual code of this code (2 Marks).
- c. Is the dual code a perfect code? Why? (2 Marks).
- d. Find the generator polynomial of the dual code. (2 Mark).
- 3) Consider the polynomial $p(x) = x^3 + x + 1$
 - a. Prove that p(x) is a primitive polynomial (2 Marks).
 - b. List all elements of $GF(2^3)$ generated by p(x) (3 Marks).
 - c. List the minimal polynomials of all elements of $GF(2^3)$ (3 Marks).
- 4) Consider a code with the following generating matrix:

<i>G</i> =	0	1	1	1	1	0	0	0	
	1	1	1	0	0	1	0	0	
	1	1	0	1	0	0	1	0	•
	1	0	1	1	0	0	0	1	

- a. How many error patterns can this code correct? (2 Marks).
- b. Find the parity check matrix of the code (2 Marks).
- c. The received bits are $\begin{bmatrix} 1 & e_1 & 0 & e_3 & e_4 & 0 & e_7 & 1 \end{bmatrix}$ where e_1, e_3, e_4 and e_7 are erased bits. Find the transmitted codeword (3 Marks).
- 5) Draw the block diagram of the encoder and decoder for the (15,11) cyclic Hamming code with generator polynomial $g(x) = x^4 + x + 1$ (5 Marks)