ELEC 6131 - Error Detecting and Correcting Codes Midterm
 March 8, 2016

1) Consider the polynomial $p(x)=x^{8}+x^{5}+x+1$ in $\operatorname{GF}(2)$. Is $p(x)$ primitive? Why? (2 Marks).
2) Consider a $(7,4)$ Hamming code with the following generating matrix:

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

a. Find the generator polynomial the code. (2 Marks).
b. Find the generator matrix of dual code of this code (2 Marks).
c. Is the dual code a perfect code? Why? (2 Marks).
d. Find the generator polynomial of the dual code. (2 Mark).
3) Consider the polynomial $p(x)=x^{3}+x+1$
a. Prove that $p(x)$ is a primitive polynomial (2 Marks).
b. List all elements of $\operatorname{GF}\left(2^{3}\right)$ generated by $p(x)$ (3 Marks).
c. List the minimal polynomials of all elements of $\operatorname{GF}\left(2^{3}\right)(3$ Marks).
4) Consider a code with the following generating matrix:

$$
G=\left[\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

a. How many error patterns can this code correct? (2 Marks).
b. Find the parity check matrix of the code (2 Marks).
c. The received bits are $\left[\begin{array}{llllllll}1 & e_{1} & 0 & e_{3} & e_{4} & 0 & e_{7} & 1\end{array}\right]$ where e_{1}, e_{3}, e_{4} and e_{7} are erased bits. Find the transmitted codeword (3 Marks).
5) Draw the block diagram of the encoder and decoder for the $(15,11)$ cyclic Hamming code with generator polynomial $g(x)=x^{4}+x+1$ (5 Marks)

