ELEC 6131 - Error Detecting and Correcting Codes

Final Exam

April 12, 2016

1) Consider the Galois field GF (2^{4}) generated by the polynomial $p(x)=x^{4}+x+1$.
a) Find the generating polynomial of $(15,13)$ RS code over this field (5 Marks).

$$
g(x)=(x+\alpha)\left(x+\alpha^{2}\right)=x^{2}+\left(\alpha+\alpha^{2}\right) x+\alpha^{3}
$$

From:
Three representations for the elements

we get: $\alpha+\alpha^{2}=\alpha^{5}$.
So,

$$
g(x)=x^{2}+\alpha^{5} x+\alpha^{3}
$$

b) What is the error correcting capability of this code? Erasure correcting capability? (1 Mark)
$n-k=15-13=2=2 t$. So, the code can correct one error. It can correct two erasures.
c) Encode the sequence $u(x)=x^{3}$ in a systematic form. (3 Marks)

$$
x^{n-k} u(x)=x^{15-13} x^{3}=x^{5}
$$

Dividing x^{5} by $g(x)=x^{2}+\alpha^{5} x+\alpha^{3}$, we get:

$$
x^{5}=\left(x^{3}+\alpha^{5} x^{2}+\alpha^{12} x+1\right)\left(x^{2}+\alpha^{5} x+\alpha^{3}\right)+\alpha^{10} x+\alpha^{3}
$$

So parity is $p(x)=\alpha^{10} x+\alpha^{3}$ and the codeword is:

$$
v(x)=x^{5}+\alpha^{10} x+\alpha^{3}
$$

d) Decode the received sequence $r(x)=e_{1} x+e_{2} x^{3}$ where e_{1} and e_{2} are erased symbols (3 Marks).
Compute the syndromes:

$$
S_{1}=r(\alpha)=e_{1} \alpha+e_{2} \alpha^{3}=0
$$

and

$$
S_{2}=r\left(\alpha^{2}\right)=e_{1} \alpha^{2}+e_{2} \alpha^{6}=0
$$

It is easy to see that $e_{1}=e_{2}=0$ soles the above system of equations.
2) Consider the Galois field GF (2^{4}) generated by the polynomial $p(x)=x^{4}+x+1$. Find the generator polynomial of a primitive binary BCH code with $n=15$ and $t=$ 3 (7 Marks). What is the minimum distance and the rate of the resulting code (3 Marks)?

$$
g(x)=\phi_{1}(x) \phi_{3}(x) \phi_{5}(x)
$$

Using the table:

Conjugate Roots
$\varnothing(X)$

$$
\begin{gathered}
0 \\
1 \\
\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8} \\
\alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12} \\
\alpha^{5}, \alpha^{10} \\
\alpha^{7}, \alpha^{11}, \alpha^{13}, \alpha^{14} \\
\\
\phi_{1}(x)=X^{4}+X+1 \\
\phi_{3}(x)=X^{4}+X^{3}+X^{2}+X+1 \\
\phi_{5}(x)=X^{2}+X+1
\end{gathered}
$$

$$
X^{4}+X^{3}+X^{2}+X+1
$$

$$
X^{2}+X+1
$$

$$
X^{4}+X^{3}+1
$$

we get:

So,

$$
g(x)=X^{10}+X^{8}+X^{5}+X^{4}+X^{2}+X+1
$$

The distance of the code is 7 .

$$
n-k=10 .
$$

So $k=15-10=5$. The code is $(15,5)$ with rate $1 / 3$.
3) Consider the following convolutional encoder with generating function $G(D)=\left[\frac{1+D^{2}}{1+D+D^{2}}, \frac{D}{1+D+D^{2}}\right]$

a) Draw the trellis diagram for the code (2 Marks). The state diagram is:

The trellis diagram is:

b) What is the minimum free distance of the code (2 Marks).

$$
d_{\text {free }}=3
$$

c) Encode 1101011 staring from state zero (2 Marks).
01,10,00,10,00,10,01
d) Using the Viterbi Algorithm decode 0101001010 (4 Marks).

Note: The encoding has started from an unknown state.

The answer is 11101.
4) What is a catastrophic encoder? What is the condition for a convolutional encoder not to be catastrophic? (3 Marks).
A catastrophic encoder is one that generates outputs with finite distance for inputs with infinite distance.
In order for a code to be non-catastrophic, the greatest common divisor of its generating polynomials should be either one or a one shifted by i, i.e., D^{i}.
5) Let x and y be independent binary random variables.
a) Find the LLR of x if $P(x=0)=0.5$ (1 Mark).

$$
\operatorname{LLR}(x)=\log \frac{0.5}{0.5}=0
$$

b) Find the LLR of x if $x=1$, i.e., $P(x=0)=0$ (1 Mark).

$$
\operatorname{LLR}(x)=\log \frac{0}{1}=-\infty
$$

c) Find the LLR of x if $x=0$ (1 Mark).

$$
\operatorname{LLR}(x)=\log \frac{1}{0}=\infty
$$

d) Find the LLR of $z=x \oplus y$ if $P(x=0)=P(y=1)=0.25$ (3 Marks).

$$
\begin{gathered}
P(x=0)=0.25, P(x=1)=0.75 \\
P(y=0)=0.75, P(y=1)=0.25 \\
P(z=0)=P(x=0, y=0)+P(x=1, y=1) \\
=0.25 \times 0.75+0.75 \times 0.25=0.375
\end{gathered}
$$

So,

$$
\operatorname{LLR}(z)=\log \frac{0.375}{0.625} \approx-0.51
$$

6) Consider a code with the following Tanner graph:

a) Write the parity check matrix of the code (2 Marks).

$$
H=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

b) What are the row and column degree distribution functions (2 Marks)?
c) Find the rate of the code using the result of part b (2 Marks) and compare with the design rate.

$$
\begin{array}{r}
\lambda_{2}=\frac{10}{13}, \lambda_{3}=\frac{3}{13}, \text { and } \lambda_{i}=0, i \neq 2 \text { or } i \neq 3 . \text { So, } \\
\lambda(x)=\frac{10}{13} x+\frac{3}{13} x^{2}
\end{array}
$$

Therefore, $\int_{0}^{1} \lambda(x) d x=\frac{10}{13 \times 2} x^{2}+\frac{3}{13 \times 3} x^{3}($ at $x=1)=\frac{6}{13}$
$\rho_{4}=\frac{8}{13}, \rho_{5}=\frac{5}{13}$ and $\rho_{i}=0, i \neq 4$ or $i \neq 5$. So,

$$
\rho(x)=\frac{8}{13} x^{3}+\frac{5}{13} x^{4}
$$

Therefore, $\int_{0}^{1} \rho(x) d x=\frac{8}{13 \times 4} x^{4}+\frac{5}{13 \times 5} x^{5}$ (at $x=1$) $=\frac{3}{13}$
So, the rate is:

$$
R=1-\frac{\frac{3}{13}}{\frac{6}{13}}=\frac{1}{2}
$$

that is the same as the design rate.
d) Is 010111 a codeword? (1 Mark).
$c_{1}=0, c_{2}=1, c_{3}=1$. So, it is not a codeword.
e) Decode e1ee11 where e is an erasure (2 Marks).

$$
\begin{aligned}
e_{1}+1+e_{2}+1 & =0 \Rightarrow e_{1}+e_{2}=0 \\
e_{1}+1+e_{3}+1 & =0 \Rightarrow e_{1}+e_{3}=0 \\
e_{1}+e_{2}+e_{3}+1+1 & =0 \Rightarrow e_{1}+e_{2}+e_{3}=0
\end{aligned}
$$

Substituting the first equation into third, we get $e_{3}=0$.
Substituting $e_{3}=0$ into the second equation, we get $e_{1}=0$.
Substituting $e_{1}=0$ into the first equation, we get $e_{2}=0$.
So, $e_{1}=e_{2}=e_{3}=0$ and the decoded codeword is 010011 .

