ELEC 6131 – Error Detecting and Correcting Codes Final Exam April 12, 2016

1) Consider the Galois field GF (2⁴) generated by the polynomial $p(x) = x^4 + x + 1$.

a) Find the generating polynomial of (15, 13) RS code over this field (5 Marks).

$$g(x) = (x + \alpha)(x + \alpha^2) = x^2 + (\alpha + \alpha^2)x + \alpha^3$$

From:

Power representation	Polynomial representation	4-Tuple representation
0	0	(0000)
1	1	(1000)
α	α	(0100)
α ²	α ²	(0010)
α^3	α ³	(0.001)
α^4	$1+\alpha$	(1100)
α ⁵	$\alpha + \alpha^2$	(0110)
α ⁶	$\alpha^2 + \alpha^3$	(0011)
α7	$1+\alpha + \alpha^3$	(1101)
a ⁸	$ \begin{array}{c} \alpha^2 + \alpha^3 \\ 1 + \alpha + \alpha^3 \\ 1 + \alpha^2 \end{array} $	(1,010)
α ⁹	$1 + \alpha^{2}$ $\alpha + \alpha^{3}$ $1 + \alpha + \alpha^{2}$ $\alpha + \alpha^{2} + \alpha^{3}$	(0101)
α^{10}	$1 + \alpha + \alpha^2$	(1110)
α^{11}	$\alpha + \alpha^2 + \alpha^3$	(0111)
a ¹²	$1 + \alpha + \alpha^2 + \alpha^3$	(1111)
α ¹³	$1 + \alpha^2 + \alpha^3$	(1011)
α ¹⁴	$1 + \alpha^3$	(1001)

we get: $\alpha + \alpha^2 = \alpha^5$. So,

$$g(x) = x^2 + \alpha^5 x + \alpha^3$$

b) What is the error correcting capability of this code? Erasure correcting capability? (1 Mark)

n-k = 15 - 13 = 2 = 2t. So, the code can correct one error. It can correct two erasures.

c) Encode the sequence $u(x) = x^3$ in a systematic form. (3 Marks) $x^{n-k}u(x) = x^{15-13}x^3 = x^5$

Dividing x^5 by $g(x) = x^2 + \alpha^5 x + \alpha^3$, we get:

 $x^{5} = (x^{3} + \alpha^{5}x^{2} + \alpha^{12}x + 1)(x^{2} + \alpha^{5}x + \alpha^{3}) + \alpha^{10}x + \alpha^{3}$ So parity is $p(x) = \alpha^{10}x + \alpha^{3}$ and the codeword is: $v(x) = x^{5} + \alpha^{10}x + \alpha^{3}$.

d) Decode the received sequence $r(x) = e_1 x + e_2 x^3$ where e_1 and e_2 are erased symbols (3 Marks). Compute the syndromes:

$$S_1 = r(\alpha) = e_1 \alpha + e_2 \alpha^3 = 0$$

and

$$S_2 = r(\alpha^2) = e_1 \alpha^2 + e_2 \alpha^6 = 0$$

It is easy to see that $e_1 = e_2 = 0$ soles the above system of equations. 2) Consider the Galois field GF (2⁴) generated by the polynomial $p(x) = x^4 + x + 1$. Find the generator polynomial of a primitive binary BCH code with n = 15 and t =3 (7 Marks). What is the minimum distance and the rate of the resulting code (3 Marks)?

$$g(x) = \phi_1(x)\phi_3(x)\phi_5(x)$$

Using the table:

Conjugate Roots	$\emptyset(X)$	
0	X	
1	<i>X</i> + 1	
$\alpha, \alpha^2, \alpha^4, \alpha^8$	$X^4 + X + 1$	
$\alpha^3, \alpha^6, \alpha^9, \alpha^{12}$	$X^4 + X^3 + X^2 + X + 1$	
α^5, α^{10}	$X^2 + X + 1$	
$\alpha^7, \alpha^{11}, \alpha^{13}, \alpha^{14}$	$X^4 + X^3 + 1$	

we get:

$$\phi_1(x) = X^4 + X + 1$$

$$\phi_3(x) = X^4 + X^3 + X^2 + X + 1$$

$$\phi_5(x) = X^2 + X + 1$$

So,

$$g(x) = X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1$$

The distance of the code is 7.

$$n-k=10.$$

So k = 15 - 10=5. The code is (15, 5) with rate 1/3.

3) Consider the following convolutional encoder with generating function $G(D) = \left[\frac{1+D^2}{1+D+D^2}, \frac{D}{1+D+D^2}\right]$

a) Draw the trellis diagram for the code (2 Marks). The state diagram is:

The trellis diagram is:

$$d_{free} = 3$$

- c) Encode 1101011 staring from state zero (2 Marks). 01,10,00,10,00,10,01
- d) Using the Viterbi Algorithm decode 0101001010 (4 Marks). Note: The encoding has started from an unknown state.

The answer is 11101.

4) What is a catastrophic encoder? What is the condition for a convolutional encoder not to be catastrophic? (3 Marks).

A catastrophic encoder is one that generates outputs with finite distance for inputs with infinite distance.

In order for a code to be non-catastrophic, the greatest common divisor of its generating polynomials should be either one or a one shifted by *i*, i.e., D^i .

5) Let x and y be independent binary random variables.

a) Find the LLR of x if P(x = 0) = 0.5(1 Mark). $LLR(x) = \log \frac{0.5}{0.5} = 0$ b) Find the LLR of x if x = 1, i.e., P(x = 0) = 0 (1 Mark). $LLR(x) = \log \frac{0}{1} = -\infty$ c) Find the LLR of x if x = 0 (1 Mark). $LLR(x) = \log \frac{1}{0} = \infty$ d) Find the LLR of $z = x \oplus y$ if P(x = 0) = P(y = 1) = 0.25 (3 Marks). P(x = 0) = 0.25, P(x = 1) = 0.25 P(y = 0) = 0.75, P(y = 1) = 0.25 P(z = 0) = P(x = 0, y = 0) + P(x = 1, y = 1) $= 0.25 \times 0.75 + 0.75 \times 0.25 = 0.375$ So,

$$LLR(z) = log \frac{0.375}{0.625} \approx -0.51$$

6) Consider a code with the following Tanner graph:

a) Write the parity check matrix of the code (2 Marks).

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- b) What are the row and column degree distribution functions (2 Marks)?
- c) Find the rate of the code using the result of part b (2 Marks) and compare with the design rate.

$$\lambda_{2} = \frac{10}{13}, \lambda_{3} = \frac{3}{13}, \text{ and } \lambda_{i} = 0, i \neq 2 \text{ or } i \neq 3. \text{ So,}$$
$$\lambda(x) = \frac{10}{13}x + \frac{3}{13}x^{2}$$
Therefore, $\int_{0}^{1} \lambda(x) dx = \frac{10}{13 \times 2}x^{2} + \frac{3}{13 \times 3}x^{3} \text{ (at } x = 1) = \frac{6}{13}$
$$\rho_{4} = \frac{8}{13}, \rho_{5} = \frac{5}{13} \text{ and } \rho_{i} = 0, i \neq 4 \text{ or } i \neq 5. \text{ So,}$$

 $\rho(x) = \frac{8}{13}x^3 + \frac{5}{13}x^4$ Therefore, $\int_0^1 \rho(x) dx = \frac{8}{13 \times 4}x^4 + \frac{5}{13 \times 5}x^5$ (at x = 1) = $\frac{3}{13}$ So, the rate is:

$$R = 1 - \frac{\frac{3}{13}}{\frac{6}{13}} = \frac{1}{2}$$

that is the same as the design rate.

- d) Is 010111 a codeword? (1 Mark). $c_1 = 0, c_2 = 1, c_3 = 1$. So, it is not a codeword.
- e) Decode eleel1 where e is an erasure (2 Marks). $e_1 + 1 + e_2 + 1 = 0 \Rightarrow e_1 + e_2 = 0$ $e_1 + 1 + e_3 + 1 = 0 \Rightarrow e_1 + e_3 = 0$ $e_1 + e_2 + e_3 + 1 + 1 = 0 \Rightarrow e_1 + e_2 + e_3 = 0$ Substituting the first equation into third, we get $e_3 = 0$. Substituting $e_3 = 0$ into the second equation, we get $e_1 = 0$. Substituting $e_1 = 0$ into the first equation, we get $e_2 = 0$. So, $e_1 = e_2 = e_3 = 0$ and the decoded codeword is 010011.