
Chapter 3

3.1 The generator and parity-check matrices are:

G =




0 1 1 1 1 0 0 0

1 1 1 0 0 1 0 0

1 1 0 1 0 0 1 0

1 0 1 1 0 0 0 1




H =




1 0 0 0 0 1 1 1

0 1 0 0 1 1 1 0

0 0 1 0 1 1 0 1

0 0 0 1 1 0 1 1




From the parity-check matrix we see that each column contains odd number of ones, and no

two columns are alike. Thus no two columns sum to zero and any three columns sum to a 4-

tuple with odd number of ones. However, the first, the second, the third and the sixth columns

sum to zero. Therefore, the minimum distance of the code is 4.

3.4 (a) The matrixH1 is an(n−k+1)×(n+1) matrix. First we note that then−k rows ofH are

linearly independent. It is clear that the first(n− k) rows ofH1 are also linearly independent.

The last row ofH1 has a′′1′′ at its first position but other rows ofH1 have a′′0′′ at their first

position. Any linear combination including the last row ofH1 will never yield a zero vector.

Thus all the rows ofH1 are linearly independent. Hence the row space ofH1 has dimension

n− k + 1. The dimension of its null space,C1, is then equal to

dim(C1) = (n + 1)− (n− k + 1) = k

HenceC1 is an(n + 1, k) linear code.

(b) Note that the last row ofH1 is an all-one vector. The inner product of a vector with odd

weight and the all-one vector is′′1′′. Hence, for any odd weight vectorv,

v ·HT
1 6= 0

andv cannot be a code word inC1. Therefore,C1 consists of only even-weight code words.

(c) Let v be a code word inC. Thenv ·HT = 0. Extendv by adding a digitv∞ to its left.
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This results in a vector ofn + 1 digits,

v1 = (v∞,v) = (v∞, v0, v1, · · · , vn−1).

Forv1 to be a vector inC1, we must require that

v1H
T
1 = 0.

First we note that the inner product ofv1 with any of the firstn−k rows ofH1 is 0. The inner

product ofv1 with the last row ofH1 is

v∞ + v0 + v1 + · · ·+ vn−1.

For this sum to be zero, we must require thatv∞ = 1 if the vectorv has odd weight and

v∞ = 0 if the vectorv has even weight. Therefore, any vectorv1 formed as above is a code

word inC1, there are2k such code words. The dimension ofC1 is k, these2k code words are

all the code words ofC1.

3.5 Let Ce be the set of code words inC with even weight and letCo be the set of code words in

C with odd weight. Letx be any odd-weight code vector fromCo. Addingx to each vector in

Co, we obtain a set ofC ′
e of even weight vector. The number of vectors inC ′

e is equal to the

number of vectors inCo, i.e. |C ′
e| = |Co|. Also C ′

e ⊆ Ce. Thus,

|Co| ≤ |Ce| (1)

Now addingx to each vector inCe, we obtain a setC ′
o of odd weight code words. The number

of vectors inC ′
o is equal to the number of vectors inCe and

C ′
o ⊆ Co

Hence

|Ce| ≤ |Co| (2)

From (1) and (2), we conclude that|Co| = |Ce|.
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3.6 (a) From the given condition onG, we see that, for any digit position, there is a row inG

with a nonzero component at that position. This row is a code word inC. Hence in the code

array, each column contains at least one nonzero entry. Therefore no column in the code array

contains only zeros.

(b) Consider thè-th column of the code array. From part (a) we see that this column contains

at least one′′1′′. Let S0 be the code words with a′′0′′ at the`-th position andS1 be the

codewords with a′′1′′ at the`-th position. Letx be a code word fromS1. Addingx to each

vector inS0, we obtain a setS ′1 of code words with a′′1′′ at the`-th position. Clearly,

|S ′1| = |S0| (1)

and

S ′1 ⊆ S1. (2)

Adding x to each vector inS1, we obtain a set ofS ′0 of code words with a′′0′′ at the`-th

location. We see that

|S ′0| = |S1| (3)

and

S ′0 ⊆ S0. (4)

From (1) and (2), we obtain

|S0| ≤ |S1|. (5)

From (3) and (4) ,we obtain

|S1| ≤ |S0|. (6)

From (5) and (6) we have|S0| = |S1|. This implies that thè-th column of the code array

consists2k−1 zeros and2k−1 ones.

(c) Let S0 be the set of code words with a′′0′′ at the`-th position. From part (b), we see that

S0 consists of2k−1 code words. Letx andy be any two code words inS0. The sumx + y

also has a zero at thè-th location and hence is code word inS0. ThereforeS0 is a subspace

of the vector space of alln-tuples over GF(2). SinceS0 is a subset ofC, it is a subspace ofC.

The dimension ofS0 is k − 1.
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3.7 Let x, y andz be any threen-tuples over GF(2). Note that

d(x,y) = w(x + y),

d(y, z) = w(y + z),

d(x, z) = w(x + z).

It is easy to see that

w(u) + w(v) ≥ w(u + v). (1)

Let u = x + y andv = y + z. It follows from (1) that

w(x + y) + w(y + z) ≥ w(x + y + y + z) = w(x + z).

From the above inequality, we have

d(x,y) + d(y, z) ≥ d(x, z).

3.8 From the given condition, we see thatλ < bdmin−1
2

c. It follows from the theorem 3.5 that all

the error patterns ofλ or fewer errors can be used as coset leaders in a standard array. Hence,

they are correctable. In order to show that any error pattern of` or fewer errors is detectable,

we need to show that no error patternx of ` or fewer errors can be in the same coset as an

error patterny of λ or fewer errors. Suppose thatx andy are in the same coset. Thenx + y

is a nonzero code word. The weight of this code word is

w(x + y) ≤ w(x) + w(y) ≤ ` + λ < dmin.

This is impossible since the minimum weight of the code isdmin. Hencex andy are in

different cosets. As a result, whenx occurs, it will not be mistaken asy. Thereforex is

detectable.

3.11 In a systematic linear code, every nonzero code vector has at least one nonzero component in

its information section (i.e. the rightmostk positions). Hence a nonzero vector that consists of

only zeros in its rightmostk position can not be a code word in any of the systematic code inΓ.
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Now consider a nonzero vectorv = (v0, v1, · · · , vn−1) with at least one nonzero component

in its k rightmost positions,sayvn−k+i = 1 for 0 ≤ i < k. Consider a matrix of the following

form which hasv as itsi-th row:




p00 p01 · · · p0,n−k−1 1 0 0 0 · · · 0

p10 p11 · · · p1,n−k−1 0 1 0 0 · · · 0

...
...

v0 v1 · · · vn−k−1 vn−k vn−k+1 · · · · · vn−1

pi+1,0 pi+1,1 · · · pi+1,n−k−1 0 0 · · 1 · · 0

...
...

pk−1,0 pk−1,1 · · · pk−1,n−k−1 0 0 0 0 · · · 1




By elementary row operations, we can putG into systematic formG1. The code generated

by G1 containsv as a code word. Since eachpij has 2 choices,0 or 1, there are2(k−1)(n−k)

matricesG with v as thei-th row. Each can be put into systematic formG1 and eachG1

generates a systematic code containingv as a code word. Hencev is contained in2(k−1)(n−k)

codes inΓ.

3.13 The generator matrix of the code is

G = [P1 Ik P2 Ik]

= [G1 G2]

Hence a nonzero codeword inC is simply a cascade of a nonzero codewordv1 in C1 and a

nonzero codewordv2 in C2, i.e.,

(v1,v2).

Sincew(v1) ≥ d1 andw(v2) ≥ d2, hencew[(v1,v2)] ≥ d1 + d2.

3.15 It follows from Theorem 3.5 that all the vectors of weightt or less can be used as coset leaders.

There are (
n

0

)
+

(
n

1

)
+ · · ·+

(
n

t

)
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such vectors. Since there are2n−k cosets, we must have

2n−k ≥
(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

t

)
.

Taking logarithm on both sides of the above inequality, we obtain the Hamming bound ont,

n− k ≥ log2{1 +

(
n

1

)
+ · · ·+

(
n

t

)
}.

3.16 Arrange the2k code words as a2k × n array. From problem 6(b), each column of this code

array contains2k−1 zeros and2k−1 ones. Thus the total number of ones in the array isn ·2k−1.

Note that each nonzero code word has weight (ones) at leastdmin. Hence

(2k − 1) · dmin ≤ n · 2k−1

This implies that

dmin ≤ n · 2k−1

2k − 1
.

3.17 The number of nonzero vectors of lengthn and weightd− 1 or less is

d−1∑
i=1

(
n

i

)

From the result of problem 3.11, each of these vectors is contained in at most2(k−1)(n−k) linear

systematic codes. Therefore there are at most

M = 2(k−1)(n−k)

d−1∑
i=1

(
n

i

)

linear systematic codes contain nonzero codewords of weightd− 1 or less. The total number

of linear systematic codes is

N = 2(k(n−k)

If M < N , there exists at least one code with minimum weight at leastd. M < N implies
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that

2(k−1)(n−k)

d−1∑
i=1

(
n

i

)
< 2k(n−k)

d−1∑
i=1

(
n

i

)
< 2(n−k).

3.18 Let dmin be the smallest positive integer such that

dmin−1∑
i=1

(
n

i

)
< 2(n−k) ≤

dmin∑
i=1

(
n

i

)

From problem 3.17, the first inequality garantees the existence of a systematic linear code

with minimum distancedmin.
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