Chapter 3

3.1 The generator and parity-check matrices are:

01111000 10000111

11100100 01001110
G = H=

11010010 001011QO0T1

10110001 000110171

From the parity-check matrix we see that each column contains odd number of ones, and no
two columns are alike. Thus no two columns sum to zero and any three columns sum to a 4-
tuple with odd number of ones. However, the first, the second, the third and the sixth columns

sum to zero. Therefore, the minimum distance of the code is 4.

3.4 (a) The matrixt, is an(n—k+1) x (n+ 1) matrix. First we note that the— & rows ofH are
linearly independent. It is clear that the fitat— k) rows of H; are also linearly independent.
The last row ofH; has &'1” at its first position but other rows @f; have a&’0” at their first
position. Any linear combination including the last rowldf will never yield a zero vector.
Thus all the rows oH; are linearly independent. Hence the row spacElphas dimension
n — k 4+ 1. The dimension of its null spacé€, is then equal to

dim(Cy)=(n+1)—(n—k+1)=k
HenceC is an(n + 1, k) linear code.

(b) Note that the last row df; is an all-one vector. The inner product of a vector with odd

weight and the all-one vector13”. Hence, for any odd weight vector
v-H] #0

andv cannot be a code word ifi;,. Therefore("; consists of only even-weight code words.
(c) Letv be a code word i©. Thenv - HT = 0. Extendv by adding a digit., to its left.
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This results in a vector of + 1 digits,

Vi1 = (UOO?V) = (U007U072}17 e 7Un—1)-

For v, to be a vector irC;, we must require that

V1HT =0.

First we note that the inner productef with any of the firsto — k& rows ofH; is 0. The inner

product ofv; with the last row ofH; is

Voo + Vo + U1 + -+ + Upi.

For this sum to be zero, we must require that = 1 if the vectorv has odd weight and
vs = 0 if the vectorv has even weight. Therefore, any vectgrformed as above is a code
word in C}, there ar@* such code words. The dimension®f is &, these2* code words are

all the code words of;.

3.5 Let C, be the set of code words @ with even weight and let’, be the set of code words in
C with odd weight. Letx be any odd-weight code vector froffy. Addingx to each vector in
C,, we obtain a set of’, of even weight vector. The number of vectorgifiis equal to the
number of vectors i, i.e. |C’| = |C,|. Also C? C C.. Thus,

Co| < |C] (1)

Now addingx to each vector ir’., we obtain a set”/ of odd weight code words. The number
of vectors inC’ is equal to the number of vectorsdr and

C, G

Hence
|Ce| < 1Col )

From (1) and (2), we conclude th@t,| = |C.|.
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3.6 (a) From the given condition ofx, we see that, for any digit position, there is a rowGn
with a nonzero component at that position. This row is a code wofd iRlence in the code
array, each column contains at least one nonzero entry. Therefore no column in the code array
contains only zeros.
(b) Consider thé-th column of the code array. From part (a) we see that this column contains
at least oné’1”. Let S, be the code words with &” at the /-th position andS; be the
codewords with &1” at the/-th position. Letx be a code word frond;. Addingx to each
vector inSy, we obtain a se$’ of code words with &1” at the/-th position. Clearly,

’SH = ’SO\ (1)

and
S1C 8. (2)

Adding x to each vector in5;, we obtain a set of, of code words with &0” at the/-th

location. We see that

1So| = [S1] 3)
and
S C S (4)
From (1) and (2), we obtain
[So| < [Shl. (5)
From (3) and (4) ,we obtain
1S1] < |Sol. (6)

From (5) and (6) we havgs,| = |S1|. This implies that the&-th column of the code array
consist2*~1 zeros anc*~! ones.

(c) Let Sy be the set of code words with”8” at the/-th position. From part (b), we see that
S, consists o2~ code words. Lek andy be any two code words if,. The sumx + y
also has a zero at theth location and hence is code word$h. ThereforeS, is a subspace
of the vector space of afi-tuples over GR2). SinceS| is a subset of’, it is a subspace af'.
The dimension o is k — 1.
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3.7 Letx, y andz be any three:-tuples over GR2). Note that

dx,y) = w(x+y),
d(y,z) = w(y+2),
dx,z) = w(x+2z).

It is easy to see that
w(u) +w(v) > w(u+v). (1)

Letu = x+ y andv = y + z. It follows from (1) that
wx+y)tw(ly+z) >wx+y+y+z)=w(x+z)
From the above inequality, we have

d(x,y) +d(y,z) > d(x,z).

3.8 From the given condition, we see that | %=2=1] |t follows from the theorem 3.5 that all
the error patterns of or fewer errors can be used as coset leaders in a standard array. Hence,
they are correctable. In order to show that any error pattefroofewer errors is detectable,
we need to show that no error pattetrof / or fewer errors can be in the same coset as an
error patterny of A or fewer errors. Suppose thatandy are in the same coset. Thent+ y
is a nonzero code word. The weight of this code word is

wx+y) <wx)+wly) <0+ X< dpin.

This is impossible since the minimum weight of the codeljs,. Hencex andy are in
different cosets. As a result, whenoccurs, it will not be mistaken ag. Thereforex is
detectable.

3.11 In a systematic linear code, every nonzero code vector has at least one nonzero component in
its information section (i.e. the rightmaspositions). Hence a nonzero vector that consists of

only zeros in its rightmogt position can not be a code word in any of the systematic cole in
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Now consider a nonzero vecter= (vg, vy, - ,v,_1) With at least one nonzero component
in its & rightmost positions,say,, ,.; = 1 for 0 < i < k. Consider a matrix of the following

form which hasv as its:-th row:

Poo Po1 Po,n—k—1 1 0 0 0
D10 P11 Pin—k-1 0 1 0
Vo U1 Un—k—1 Un—k  Un—k+1 Un—1
Di+1,0 Pit1,1 Pitin—k-1 O 0 0
| Prk—1,0 Pr-1,1 Prk—1n-k-1 0 0 00 --- 1

By elementary row operations, we can fuitinto systematic formG,. The code generated
by G, containsv as a code word. Since eag}) has 2 choiceq) or 1, there are*~D k)
matricesG with v as thei-th row. Each can be put into systematic fof# and eachGz,
generates a systematic code containirgs a code word. Henoeis contained ir2(*~1(»—k)

codes inl.
3.13 The generator matrix of the code is

G = {Pl Ik P2 Ik]
= [G1 Gy

Hence a nonzero codeword @nis simply a cascade of a nonzero codewerdn C; and a
nonzero codeworst, in Cy, i.e.,

(V17 VQ).

Sincew(vy) > dy andw(vy) > dg, hencew|(vy, vq)] > di + dos.
3.15 It follows from Theorem 3.5 that all the vectors of weiglur less can be used as coset leaders.

()< ()= ()
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such vectors. Since there a¥&* cosets, we must have

= (o) (1) =+ ()

Taking logarithm on both sides of the above inequality, we obtain the Hamming bound on
n—k>log {1+ (T) + -+ (7;)}

3.16 Arrange the2* code words as & x n array. From problem 6(b), each column of this code
array contain®*~! zeros an@*~! ones. Thus the total number of ones in the array-i2"—1.
Note that each nonzero code word has weight (ones) atdgastHence

(28 — 1) - dppin < m - 2871

This implies that
n - 2k1

dmin<—'
- 2k—1

3.17 The number of nonzero vectors of lengtland weightd — 1 or less is

> ()

i=1

From the result of problem 3.11, each of these vectors is contained in a2tfidgt’ ") linear

systematic codes. Therefore there are at most

d—1

M = Db § (")
2

=1

linear systematic codes contain nonzero codewords of wéight or less. The total number

of linear systematic codes is
N = o(k(n—k)

If M < N, there exists at least one code with minimum weight at léast/ < N implies
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that

3.18 Let d,,;, be the smallest positive integer such that

d'min

Irin L) . n
> (1)< <2 ()

i=1

From problem 3.17, the first inequality garantees the existence of a systematic linear code
with minimum distancel,,,;,,.
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