Chapter 5

5.6 (a) A polynomial over $\mathrm{GF}(2)$ with odd number of terms is not divisible by $X+1$, hence it can not be divisible by $\mathbf{g}(X)$ if $\mathbf{g}(X)$ has $(X+1)$ as a factor. Therefore, the code contains no code vectors of odd weight.
(b) The polynomial $X^{n}+1$ can be factored as follows:

$$
X^{n}+1=(X+1)\left(X^{n-1}+X^{n-2}+\cdots+X+1\right)
$$

Since $\mathbf{g}(X)$ divides $X^{n}+1$ and since $\mathbf{g}(X)$ does not have $X+1$ as a factor, $\mathbf{g}(X)$ must divide the polynomial $X^{n-1}+X^{n-2}+\cdots+X+1$. Therefore $1+X+\cdots+X^{n-2}+X^{n-1}$ is a code polynomial, the corresponding code vector consists of all 1's.
(c) First, we note that no X^{i} is divisible by $\mathrm{g}(X)$. Hence, no code word with weight one. Now, suppose that there is a code word $\mathbf{v}(X)$ of weight 2 . This code word must be of the form,

$$
\mathbf{v}(X)=X^{i}+X^{j}
$$

with $0 \leq i<j<n$. Put $\mathbf{v}(X)$ into the following form:

$$
\mathbf{v}(X)=X^{i}\left(1+X^{j-i}\right)
$$

Note that $\mathbf{g}(X)$ and X^{i} are relatively prime. Since $\mathbf{v}(X)$ is a code word, it must be divisible by $\mathbf{g}(X)$. Since $\mathbf{g}(X)$ and X^{i} are relatively prime, $\mathbf{g}(X)$ must divide the polynomial $X^{j-i}+1$. However, $j-i<n$. This contradicts the fact that n is the smallest integer such that $\mathbf{g}(X)$ divides $X^{n}+1$. Hence our hypothesis that there exists a code vector of weight 2 is invalid. Therefore, the code has a minimum weight at least 3 .
5.7 (a) Note that $X^{n}+1=\mathbf{g}(X) \mathbf{h}(X)$. Then

$$
X^{n}\left(X^{-n}+1\right)=X^{n} \mathbf{g}\left(X^{-1}\right) \mathbf{h}\left(X^{-1}\right)
$$

$$
\begin{gathered}
1+X^{n}=\left[X^{n-k} \mathbf{g}\left(X^{-1}\right)\right]\left[X^{k} \mathbf{h}\left(X^{-1}\right)\right] \\
=\mathbf{g}^{*}(X) \mathbf{h}^{*}(X)
\end{gathered}
$$

where $\mathbf{h}^{*}(X)$ is the reciprocal of $\mathbf{h}(X)$. We see that $\mathbf{g}^{*}(X)$ is factor of $X^{n}+1$. Therefore, $\mathbf{g}^{*}(X)$ generates an (n, k) cyclic code.
(b) Let C and C^{*} be two (n, k) cyclic codes generated by $\mathbf{g}(X)$ and $\mathbf{g}^{*}(X)$ respectively. Let $\mathbf{v}(X)=v_{0}+v_{1} X+\cdots+v_{n-1} X^{n-1}$ be a code polynomial in C. Then $\mathbf{v}(X)$ must be a multiple of $\mathbf{g}(X)$, i.e.,

$$
\mathbf{v}(X)=\mathbf{a}(X) \mathbf{g}(X)
$$

Replacing X by X^{-1} and multiplying both sides of above equality by X^{n-1}, we obtain

$$
X^{n-1} \mathbf{v}\left(X^{-1}\right)=\left[X^{k-1} \mathbf{a}\left(X^{-1}\right)\right]\left[X^{n-k} \mathbf{g}\left(X^{-1}\right)\right]
$$

Note that $X^{n-1} \mathbf{v}\left(X^{-1}\right), X^{k-1} \mathbf{a}\left(X^{-1}\right)$ and $X^{n-k} \mathbf{g}\left(X^{-1}\right)$ are simply the reciprocals of $\mathbf{v}(X)$, $\mathbf{a}(X)$ and $\mathbf{g}(X)$ respectively. Thus,

$$
\begin{equation*}
\mathbf{v}^{*}(X)=\mathbf{a}^{*}(X) \mathbf{g}^{*}(X) \tag{1}
\end{equation*}
$$

From (1), we see that the reciprocal $\mathbf{v}^{*}(X)$ of a code polynomial in C is a code polynomial in C^{*}. Similarly, we can show the reciprocal of a code polynomial in C^{*} is a code polynomial in C. Since $\mathbf{v}^{*}(X)$ and $\mathbf{v}(X)$ have the same weight, C^{*} and C have the same weight distribution.
5.8 Let C_{1} be the cyclic code generated by $(X+1) \mathbf{g}(X)$. We know that C_{1} is a subcode of C and C_{1} consists all the even-weight code vectors of C as all its code vectors. Thus the weight enumerator $A_{1}(z)$ of C_{1} should consists of only the even-power terms of $A(z)=\sum_{i=0}^{n} A_{i} z^{i}$. Hence

$$
\begin{equation*}
A_{1}(z)=\sum_{j=0}^{\lfloor n / 2\rfloor} A_{2 j} z^{2 j} \tag{1}
\end{equation*}
$$

Consider the sum

$$
A(z)+A(-z)=\sum_{i=0}^{n} A_{i} z^{i}+\sum_{i=0}^{n} A_{i}(-z)^{i}
$$

$$
=\sum_{i=0}^{n} A_{i}\left[z^{i}+(-z)^{i}\right] .
$$

We see that $z^{i}+(-z)^{i}=0$ if i is odd and that $z^{i}+(-z)^{i}=2 z^{i}$ if i is even. Hence

$$
\begin{equation*}
A(z)+A(-z)=\sum_{j=0}^{\lfloor n / 2\rfloor} 2 A_{2 j} z^{2 j} \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain

$$
A_{1}(z)=1 / 2[A(z)+A(-z)] .
$$

5.10 Let $\mathbf{e}_{1}(X)=X^{i}+X^{i+1}$ and $\mathbf{e}_{2}(X)=X^{j}+X^{j+1}$ be two different double-adjacent-error patterns such that $i<j$. Suppose that $\mathbf{e}_{1}(X)$ and $\mathbf{e}_{2}(X)$ are in the same coset. Then $\mathbf{e}_{1}(X)+$ $\mathbf{e}_{2}(X)$ should be a code polynomial and is divisible by $\mathbf{g}(X)=(X+1) \mathbf{p}(X)$. Note that

$$
\begin{gathered}
\mathbf{e}_{1}(X)+\mathbf{e}_{2}(X)=X^{i}(X+1)+X^{j}(X+1) \\
=(X+1) X^{i}\left(X^{j-i}+1\right)
\end{gathered}
$$

Since $\mathbf{g}(X)$ divides $\mathbf{e}_{1}(X)+\mathbf{e}_{2}(X), \mathbf{p}(X)$ should divide $X^{i}\left(X^{j-i}+1\right)$. However $\mathbf{p}(X)$ and X^{i} are relatively prime. Therefore $\mathbf{p}(X)$ must divide $X^{j-i}+1$. This is not possible since $j-i<2^{m}-1$ and $\mathbf{p}(X)$ is a primitive polynomial of degree m (the smallest integer n such that $\mathbf{p}(X)$ divides $X^{n}+1$ is $2^{m}-1$). Thus $\mathbf{e}_{1}(X)+\mathbf{e}_{2}(X)$ can not be in the same coset.
5.12 Note that $\mathbf{e}^{(i)}(X)$ is the remainder resulting from dividing $X^{i} \mathbf{e}(X)$ by $X^{n}+1$. Thus

$$
\begin{equation*}
X^{i} \mathbf{e}(X)=\mathbf{a}(X)\left(X^{n}+1\right)+\mathbf{e}^{(i)}(X) \tag{1}
\end{equation*}
$$

Note that $\mathbf{g}(X)$ divides $X^{n}+1$, and $\mathbf{g}(X)$ and X^{i} are relatively prime. From (1), we see that if $\mathbf{e}(X)$ is not divisible by $\mathbf{g}(X)$, then $\mathbf{e}^{(i)}(X)$ is not divisible by $\mathbf{g}(X)$. Therefore, if $\mathbf{e}(X)$ is detectable, $\mathbf{e}^{(i)}(X)$ is also detectable.
5.14 Suppose that ℓ does not divide n. Then

$$
n=k \cdot \ell+r, \quad 0<r<\ell .
$$

Note that

$$
\begin{equation*}
\mathbf{v}^{(n)}(X)=\mathbf{v}^{(k \cdot \ell+r)}(X)=\mathbf{v}(X) \tag{1}
\end{equation*}
$$

Since $\mathbf{v}^{(\ell)}(X)=\mathbf{v}(X)$,

$$
\begin{equation*}
\mathbf{v}^{(k \cdot \ell)}(X)=\mathbf{v}(X) \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\mathbf{v}^{(r)}(X)=\mathbf{v}(X)
$$

This is not possible since $0<r<\ell$ and ℓ is the smallest positive integer such that $\mathbf{v}^{(\ell)}(X)=$ $\mathbf{v}(X)$. Therefore, our hypothesis that ℓ does not divide n is invalid, hence ℓ must divide n.
5.17 Let n be the order of β. Then $\beta^{n}=1$, and β is a root of $X^{n}+1$. It follows from Theorem 2.14 that $\phi(X)$ is a factor of $X^{n}+1$. Hence $\phi(X)$ generates a cyclic code of length n.
5.18 Let n_{1} be the order of β_{1} and n_{2} be the order of β_{2}. Let n be the least common multiple of n_{1} and n_{2}, i.e. $n=\operatorname{LCM}\left(n_{1}, n_{2}\right)$. Consider $X^{n}+1$. Clearly, β_{1} and β_{2} are roots of $X^{n}+1$. Since $\phi_{1}(X)$ and $\phi_{2}(X)$ are factors of $X^{n}+1$. Since $\phi_{1}(X)$ and $\phi_{2}(X)$ are relatively prime, $\mathrm{g}(X)=\phi_{1}(X) \cdot \phi_{2}(X)$ divides $X^{n}+1$. Hence $\mathrm{g}(X)=\phi_{1}(X) \cdot \phi_{2}(X)$ generates a cyclic code of length $n=\operatorname{LCM}\left(n_{1}, n_{2}\right)$.
5.19 Since every code polynomial $\mathbf{v}(X)$ is a multiple of the generator polynomial $\mathbf{p}(X)$, every root of $\mathbf{p}(X)$ is a root of $\mathbf{v}(X)$. Thus $\mathbf{v}(X)$ has α and its conjugates as roots. Suppose $\mathbf{v}(X)$ is a binary polynomial of degree $2^{m}-2$ or less that has α as a root. It follows from Theorem 2.14 that $\mathbf{v}(X)$ is divisible by the minimal polynomial $\mathbf{p}(X)$ of α. Hence $\mathbf{v}(X)$ is a code polynomial in the Hamming code generated by $\mathbf{p}(X)$.
5.20 Let $\mathbf{v}(X)$ be a code polynomial in both C_{1} and C_{2}. Then $\mathbf{v}(X)$ is divisible by both $\mathbf{g}_{1}(X)$ and $\mathbf{g}_{2}(X)$. Hence $\mathbf{v}(X)$ is divisible by the least common multiple $\mathbf{g}(X)$ of $\mathbf{g}_{1}(X)$ and $\mathbf{g}_{2}(X)$, i.e. $\mathbf{v}(X)$ is a multiple of $\mathbf{g}(X)=L C M\left(\mathbf{g}_{1}(X), \mathbf{g}_{2}(X)\right)$. Conversely, any polynomial of degree $n-1$ or less that is a multiple of $\mathbf{g}(X)$ is divisible by $\mathbf{g}_{1}(X)$ and $\mathbf{g}_{2}(X)$. Hence $\mathbf{v}(X)$ is in both C_{1} and C_{2}. Also we note that $\mathbf{g}(X)$ is a factor of $X^{n}+1$. Thus the code
polynomials common to C_{1} and C_{2} form a cyclic code of length n whose generator polynomial is $\mathbf{g}(X)=L C M\left(\mathbf{g}_{1}(X), \mathbf{g}_{2}(X)\right)$. The code C_{3} generated by $\mathbf{g}(X)$ has minimum distance $d_{3} \geq \max \left(d_{1}, d_{2}\right)$.

5.21 See Problem 4.3.

5.22 (a) First, we note that $X^{2^{m}-1}+1=\mathbf{p}^{*}(X) \mathbf{h}^{*}(X)$. Since the roots of $X^{2^{m}-1}+1$ are the $2^{m}-1$ nonzero elements in $\operatorname{GF}\left(2^{m}\right)$ which are all distinct, $\mathbf{p}^{*}(X)$ and $\mathbf{h}^{*}(X)$ are relatively prime. Since every code polynomial $\mathbf{v}(X)$ in C_{d} is a polynomial of degree $2^{m}-2$ or less, $\mathbf{v}(X)$ can not be divisible by $\mathbf{p}(X)$ (otherwise $\mathbf{v}(X)$ is divisible by $\mathbf{p}^{*}(X) \mathbf{h}^{*}(X)=X^{2^{m}-1}+1$ and has degree at least $2^{m}-1$). Suppose that $\mathbf{v}^{(i)}(X)=\mathbf{v}(X)$. It follows from (5.1) that

$$
\begin{gathered}
X^{i} \mathbf{v}(X)=\mathbf{a}(X)\left(X^{2^{m}-1}+1\right)+\mathbf{v}^{(i)}(X) \\
=\mathbf{a}(X)\left(X^{2^{m}-1}+1\right)+\mathbf{v}(X)
\end{gathered}
$$

Rearranging the above equality, we have

$$
\left(X^{i}+1\right) \mathbf{v}(X)=\mathbf{a}(X)\left(X^{2^{m}-1}+1\right)
$$

Since $\mathbf{p}(X)$ divides $X^{2^{m}-1}+1$, it must divide $\left(X^{i}+1\right) \mathbf{v}(X)$. However $\mathbf{p}(X)$ and $\mathbf{v}(X)$ are relatively prime. Hence $\mathbf{p}(X)$ divides $X^{i}+1$. This is not possible since $0<i<2^{m}-1$ and $\mathbf{p}(X)$ is a primitive polynomial(the smallest positive integer n such that $\mathbf{p}(X)$ divides $X^{n}+1$ is $n=2^{m}-1$). Therefore our hypothesis that, for $0<i<2^{m}-1, \mathbf{v}^{(i)}(X)=\mathbf{v}(X)$ is invalid, and $\mathbf{v}^{(i)}(X) \neq \mathbf{v}(X)$.
(b) From part (a), a code polynomial $\mathbf{v}(X)$ and its $2^{m}-2$ cyclic shifts form all the $2^{m}-1$ nonzero code polynomials in C_{d}. These $2^{m}-1$ nonzero code polynomial have the same weight, say w. The total number of nonzero components in the code words of C_{d} is $w \cdot\left(2^{m}-1\right)$. Now we arrange the 2^{m} code words in C_{d} as an $2^{m} \times\left(2^{m}-1\right)$ array. It follows from Problem 3.6 (b) that every column in this array has exactly 2^{m-1} nonzero components. Thus the total nonzero components in the array is $2^{m-1} \cdot\left(2^{m}-1\right)$. Equating $w \cdot\left(2^{m}-1\right)$ to $2^{m-1} \cdot\left(2^{m}-1\right)$, we have

$$
w=2^{m-1}
$$

5.25 (a) Any error pattern of double errors must be of the form,

$$
\mathbf{e}(X)=X^{i}+X^{j}
$$

where $j>i$. If the two errors are not confined to $n-k=10$ consecutive positions, we must have

$$
\begin{gathered}
j-i+1>10, \\
15-(j-i)+1>10 .
\end{gathered}
$$

Simplifying the above inequalities, we obtain

$$
\begin{aligned}
& j-i>9 \\
& j-i<6 .
\end{aligned}
$$

This is impossible. Therefore any double errors are confined to 10 consecutive positions and can be trapped.
(b) An error pattern of triple errors must be of the form,

$$
\mathbf{e}(X)=X^{i}+X^{j}+X^{k}
$$

where $0 \leq i<j<k \leq 14$. If these three errors can not be trapped, we must have

$$
\begin{gathered}
k-i>9 \\
j-i<6 \\
k-j<6
\end{gathered}
$$

If we fix i, the only solutions for j and k are $j=5+i$ and $k=10+i$. Hence, for three errors not confined to 10 consecutive positions, the error pattern must be of the following form

$$
\mathbf{e}(X)=X^{i}+X^{5+i}+X^{10+i}
$$

for $0 \leq i<5$. Therefore, only 5 error patterns of triple errors can not be trapped.
5.26 (b) Consider a double-error pattern,

$$
\mathbf{e}(X)=X^{i}+X^{j}
$$

where $0 \leq i<j<23$. If these two errors are not confined to 11 consecutive positions, we must have

$$
\begin{gathered}
j-i+1>11 \\
23-(j-i-1)>11
\end{gathered}
$$

From the above inequalities, we obtain

$$
10<j-i<13
$$

For a fixed i, j has two possible solutions, $j=11+i$ and $j=12+i$. Hence, for a double-error pattern that can not be trapped, it must be either of the following two forms:

$$
\begin{aligned}
& \mathbf{e}_{1}(X)=X^{i}+X^{11+i} \\
& \mathbf{e}_{1}(X)=X^{i}+X^{12+i}
\end{aligned}
$$

There are a total of 23 error patterns of double errors that can not be trapped.
5.27 The coset leader weight distribution is

$$
\begin{gathered}
\alpha_{0}=1, \alpha_{1}=\binom{23}{1}, \alpha_{2}=\binom{23}{2}, \alpha_{3}=\binom{23}{3} \\
\alpha_{4}=\alpha_{5}=\cdots=\alpha_{23}=0
\end{gathered}
$$

The probability of a correct decoding is

$$
P(C)=(1-p)^{23}+\binom{23}{1} p(1-p)^{22}+\binom{23}{2} p^{2}(1-p)^{21}
$$

$$
+\binom{23}{3} p^{3}(1-p)^{20}
$$

The probability of a decoding error is

$$
P(E)=1-P(C)
$$

5.29(a) Consider two single-error patterns, $\mathbf{e}_{1}(X)=X^{i}$ and $\mathbf{e}_{2}(X)=X^{j}$, where $j>i$. Suppose that these two error patterns are in the same coset. Then $X^{i}+X^{j}$ must be divisible by $\mathbf{g}(X)=\left(X^{3}+1\right) \mathbf{p}(X)$. This implies that $X^{j-i}+1$ must be divisible by $\mathbf{p}(X)$. This is impossible since $j-i<n$ and n is the smallest positive integer such that $\mathbf{p}(X)$ divides $X^{n}+1$. Therefore no two single-error patterns can be in the same coset. Consequently, all single-error patterns can be used as coset leaders.

Now consider a single-error pattern $\mathbf{e}_{1}(X)=X^{i}$ and a double-adjacent-error pattern $\mathbf{e}_{2}(X)=$ $X^{j}+X^{j+1}$, where $j>i$. Suppose that $\mathbf{e}_{1}(X)$ and $\mathbf{e}_{2}(X)$ are in the same coset. Then $X^{i}+X^{j}+X^{j+1}$ must be divisible by $\mathbf{g}(X)=\left(X^{3}+1\right) \mathbf{p}(X)$. This is not possible since $\mathbf{g}(X)$ has $X+1$ as a factor, however $X^{i}+X^{j}+X^{j+1}$ does not have $X+1$ as a factor. Hence no single-error pattern and a double-adjacent-error pattern can be in the same coset.

Consider two double-adjacent-error patterns, $X^{i}+X^{i+1}$ and $X^{j}+X^{j+1}$ where $j>i$. Suppose that these two error patterns are in the same cosets. Then $X^{i}+X^{i+1}+X^{j}+X^{j+1}$ must be divisible by $\left(X^{3}+1\right) \mathbf{p}(X)$. Note that

$$
X^{i}+X^{i+1}+X^{j}+X^{j+1}=X^{i}(X+1)\left(X^{j-i}+1\right)
$$

We see that for $X^{i}(X+1)\left(X^{j-i}+1\right)$ to be divisible by $\mathbf{p}(X), X^{j-i}+1$ must be divisible by $\mathbf{p}(X)$. This is again not possible since $j-i<n$. Hence no two double-adjacent-error patterns can be in the same coset.

Consider a single error pattern X^{i} and a triple-adjacent-error pattern $X^{j}+X^{j+1}+X^{j+2}$. If these two error patterns are in the same coset, then $X^{i}+X^{j}+X^{j+1}+X^{j+2}$ must be divisible by $\left(X^{3}+1\right) \mathbf{p}(X)$. But $X^{i}+X^{j}+X^{j+1}+X^{j+2}=X^{i}+X^{j}\left(1+X+X^{2}\right)$ is not divisible by $X^{3}+1=(X+1)\left(X^{2}+X+1\right)$. Therefore, no single-error pattern and a triple-adjacent-error pattern can be in the same coset.

Now we consider a double-adjacent-error pattern $X^{i}+X^{i+1}$ and a triple-adjacent-error pattern
$X^{j}+X^{j+1}+X^{j+2}$. Suppose that these two error patterns are in the same coset. Then

$$
X^{i}+X^{i+1}+X^{j}+X^{j+1}+X^{j+2}=X^{i}(X+1)+X^{j}\left(X^{2}+X+1\right)
$$

must be divisible by $\left(X^{3}+1\right) \mathbf{p}(X)$. This is not possible since $X^{i}+X^{i+1}+X^{j}+X^{j+1}+X^{j+2}$ does not have $X+1$ as a factor but $X^{3}+1$ has $X+1$ as a factor. Hence a double-adjacent-error pattern and a triple-adjacent-error pattern can not be in the same coset.

Consider two triple-adjacent-error patterns, $X^{i}+X^{i+1}+X^{i+2}$ and $X^{j}+X^{j+1}+X^{j+2}$. If they are in the same coset, then their sum

$$
X^{i}\left(X^{2}+X+1\right)\left(1+X^{j-i}\right)
$$

must be divisible by $\left(X^{3}+1\right) \mathbf{p}(X)$, hence by $\mathbf{p}(X)$. Note that the degree of $\mathbf{p}(X)$ is 3 or greater. Hence $\mathbf{p}(X)$ and $\left(X^{2}+X+1\right)$ are relatively prime. As a result, $\mathbf{p}(X)$ must divide $X^{j-i}+1$. Again this is not possible. Hence no two triple-adjacent-error patterns can be in the same coset.

Summarizing the above results, we see that all the single-, double-adjacent-, and triple-adjacent-error patterns can be used as coset leaders.

