Chapter 7

7.2 The generator polynomial of the double-error-correcting RS code over $GF(2^5)$ is

$$g(X) = (X + \alpha)(X + \alpha^2)(X + \alpha^3)(X + \alpha^4)$$

= $\alpha^{10} + \alpha^{29}X + \alpha^{19}X^2 + \alpha^{24}X^3 + X^4$.

The generator polynomial of the triple-error-correcting RS code over $GF(2^5)$ is

$$g(X) = (X + \alpha)(X + \alpha^2)(X + \alpha^3)(X + \alpha^4)(X + \alpha^5)(X + \alpha^6)$$

= $\alpha^{21} + \alpha^{24}X + \alpha^{16}X^2 + \alpha^{24}X^3 + \alpha^9X^4 + \alpha^{10}X^5 + X^6.$

7.4 The syndrome components of the received polynomial are:

$$S_{1} = \boldsymbol{r}(\alpha) = \alpha^{7} + \alpha^{2} + \alpha = \alpha^{13},$$

$$S_{2} = \boldsymbol{r}(\alpha^{2}) = \alpha^{10} + \alpha^{10} + \alpha^{14} = \alpha^{14},$$

$$S_{3} = \boldsymbol{r}(\alpha^{3}) = \alpha^{13} + \alpha^{3} + \alpha^{12} = \alpha^{9},$$

$$S_{4} = \boldsymbol{r}(\alpha^{4}) = \alpha + \alpha^{11} + \alpha^{10} = \alpha^{7},$$

$$S_{5} = \boldsymbol{r}(\alpha^{5}) = \alpha^{4} + \alpha^{4} + \alpha^{8} = \alpha^{8},$$

$$S_{6} = \boldsymbol{r}(\alpha^{6}) = \alpha^{7} + \alpha^{12} + \alpha^{6} = \alpha^{3}.$$

The iterative procedure for finding the error location polynomial is shown in Table P.7.4. The error location polynomial is

$$\boldsymbol{\sigma}(X) = 1 + \alpha^9 X^3.$$

The roots of this polynomial are α^2 , α^7 , and α^{12} . Hence the error location numbers are α^3 , α^8 , and α^{13} .

From the syndrome components of the received polynomial and the coefficients of the error

μ	$\sigma^{\mu}(X)$	d_{μ}	l_{μ}	$\mu - l_{\mu}$
-1	1	1	0	-1
0	1	α^{13}	0	0
1	$1 + \alpha^{13}X$	α^{10}	1	0 (take $\rho = -1$)
2	$1 + \alpha X$	α^7	1	1 (take $\rho = 0$)
3	$1+\alpha^{13}X+\alpha^{10}X^2$	$lpha^9$	2	1 (take $\rho = 1$)
4	$1+\alpha^{14}X+\alpha^{12}X^2$	α^8	2	2 (take $\rho = 2$)
5	$1 + \alpha^9 X^3$	0	3	2 (take $\rho = 3$)
6	$1 + \alpha^9 X^3$	_	_	_

Table P.7.4

location polynomial, we find the error value evaluator,

$$\mathbf{Z}_{0}(X) = S_{1} + (S_{2} + \sigma_{1}S_{1})X + (S_{3} + \sigma_{1}S_{2} + \sigma_{2}S_{1})X^{2}$$

$$= \alpha^{13} + (\alpha^{14} + 0\alpha^{13})X + (\alpha^{9} + 0\alpha^{14} + 0\alpha^{13})X^{2}$$

$$= \alpha^{13} + \alpha^{14}X + \alpha^{9}X^{2}.$$

The error values at the positions X^3 , X^8 , and X^{13} are:

$$e_{3} = \frac{-\mathbf{Z}_{0}(\alpha^{-3})}{\boldsymbol{\sigma}'(\alpha^{-3})} = \frac{\alpha^{13} + \alpha^{11} + \alpha^{3}}{\alpha^{3}(1 + \alpha^{8}\alpha^{-3})(1 + \alpha^{13}\alpha^{-3})} = \frac{\alpha^{7}}{\alpha^{3}} = \alpha^{4},$$

$$e_{8} = \frac{-\mathbf{Z}_{0}(\alpha^{-8})}{\boldsymbol{\sigma}'(\alpha^{-8})} = \frac{\alpha^{13} + \alpha^{6} + \alpha^{8}}{\alpha^{8}(1 + \alpha^{3}\alpha^{-8})(1 + \alpha^{13}\alpha^{-8})} = \frac{\alpha^{2}}{\alpha^{8}} = \alpha^{9},$$

$$e_{13} = \frac{-\mathbf{Z}_{0}(\alpha^{-13})}{\boldsymbol{\sigma}'(\alpha^{-13})} = \frac{\alpha^{13} + \alpha + \alpha^{13}}{\alpha^{13}(1 + \alpha^{3}\alpha^{-13})(1 + \alpha^{8}\alpha^{-13})} = \frac{\alpha}{\alpha^{13}} = \alpha^{3}.$$

Consequently, the error pattern is

$$e(X) = \alpha^4 X^3 + \alpha^9 X^8 + \alpha^3 X^{13}$$

and the decoded codeword is the all-zero codeword.

7.5 The syndrome polynomial is

$$\mathbf{S}(X) = \alpha^{13} + \alpha^{14}X + \alpha^{9}X^{2} + \alpha^{7}X^{3} + \alpha^{8}X^{4} + \alpha^{3}X^{5}$$

Table P.7.5 displays the steps of Euclidean algorithm for finding the error location and error value polynomials.

Table P.7.5						
i	$\mathbf{Z}_{0}^{(i)}(X)$	$oldsymbol{q}_i(X)$	$\boldsymbol{\sigma}_i(X)$			
-1	X^6	—	0			
0	$\alpha^{13} + \alpha^{14}X + \alpha^{9}X^{2} + \alpha^{7}X^{3} + \alpha^{8}X^{4} + \alpha^{3}X^{5}$	_	1			
1	$1 + \alpha^8 X + \alpha^5 X^3 + \alpha^2 X^4$	$\alpha^2 + \alpha^{12} X$	$\alpha^2 + \alpha^{12} X$			
2	$\alpha + \alpha^{13}X + \alpha^{12}X^3$	$\alpha^{12} + \alpha X$	$\alpha^3 + \alpha X + \alpha^{13} X^2$			
3	$\alpha^7 + \alpha^8 X + \alpha^3 X^2$	$\alpha^8 + \alpha^5 X$	$\alpha^9 + \alpha^3 X^3$			

The error location and error value polynomials are:

$$\sigma(X) = \alpha^9 + \alpha^3 X^3 = \alpha^9 (1 + \alpha^9 X^3)$$
$$\mathbf{Z}_0(X) = \alpha^7 + \alpha^8 X + \alpha^3 X^2 = \alpha^9 (\alpha^{13} + \alpha^{14} X + \alpha^9 X^2)$$

From these polynomials, we find that the error location numbers are α^3 , α^8 , and α^{13} , and error values are

$$e_{3} = \frac{-\mathbf{Z}_{0}(\alpha^{-3})}{\boldsymbol{\sigma}'(\alpha^{-3})} = \frac{\alpha^{7} + \alpha^{5} + \alpha^{12}}{\alpha^{9}\alpha^{3}(1 + \alpha^{8}\alpha^{-3})(1 + \alpha^{13}\alpha^{-3})} = \frac{\alpha}{\alpha^{12}} = \alpha^{4},$$

$$e_{8} = \frac{-\mathbf{Z}_{0}(\alpha^{-8})}{\boldsymbol{\sigma}'(\alpha^{-8})} = \frac{\alpha^{7} + 1 + \alpha^{2}}{\alpha^{9}\alpha^{8}(1 + \alpha^{3}\alpha^{-8})(1 + \alpha^{13}\alpha^{-8})} = \frac{\alpha^{11}}{\alpha^{2}} = \alpha^{9},$$

$$e_{13} = \frac{-\mathbf{Z}_{0}(\alpha^{-13})}{\boldsymbol{\sigma}'(\alpha^{-13})} = \frac{\alpha^{7} + \alpha^{10} + \alpha^{7}}{\alpha^{9}\alpha^{13}(1 + \alpha^{3}\alpha^{-13})(1 + \alpha^{8}\alpha^{-13})} = \frac{\alpha^{10}}{\alpha^{7}} = \alpha^{3}.$$

Hence the error pattern is

$$e(X) = \alpha^4 X^3 + \alpha^9 X^8 + \alpha^3 X^{13}.$$

and the received polynomial is decoded into the all-zero codeword.

7.6 From the received polynomial,

$$\mathbf{r}(X) = \alpha^2 + \alpha^{21} X^{12} + \alpha^7 X^{20},$$

we compute the syndrome,

$$S_{1} = \mathbf{r}(\alpha^{1}) = \alpha^{2} + \alpha^{33} + \alpha^{27} = \alpha^{27},$$

$$S_{2} = \mathbf{r}(\alpha^{2}) = \alpha^{2} + \alpha^{45} + \alpha^{47} = \alpha,$$

$$S_{3} = \mathbf{r}(\alpha^{3}) = \alpha^{2} + \alpha^{57} + \alpha^{67} = \alpha^{28},$$

$$S_{4} = \mathbf{r}(\alpha^{4}) = \alpha^{2} + \alpha^{69} + \alpha^{87} = \alpha^{29},$$

$$S_{5} = \mathbf{r}(\alpha^{5}) = \alpha^{2} + \alpha^{81} + \alpha^{107} = \alpha^{15},$$

$$S_{6} = \mathbf{r}(\alpha^{6}) = \alpha^{2} + \alpha^{93} + \alpha^{127} = \alpha^{8}.$$

Therefore, the syndrome polynomial is

$$\mathbf{S}(X) = \alpha^{27} + \alpha X + \alpha^{28} X^2 + \alpha^{29} X^3 + \alpha^{15} X^4 + \alpha^8 X^5$$

Using the Euclidean algorithm, we find

$$\boldsymbol{\sigma}(X) = \alpha^{23}X^3 + \alpha^9X + \alpha^{22},$$
$$\mathbf{Z}_0(X) = \alpha^{26}X^2 + \alpha^6X + \alpha^{18},$$

as shown in the following table: The roots of $\sigma(X)$ are: $1 = \alpha^0$, α^{11} and α^{19} . From these roots, we find the error location numbers: $\beta_1 = (\alpha^0)^{-1} = \alpha^0$, $\beta_2 = (\alpha^{11})^{-1} = \alpha^{20}$, and

i	$\mathbf{Z}_{0}^{(i)}(X)$	$\mathbf{q}_i(X)$	$\boldsymbol{\sigma}_i(X)$
-1	X^6	-	0
0	S(X)	-	1
1	$\alpha^{5}X^{4} + \alpha^{9}X^{3} + \alpha^{22}X^{2} + \alpha^{11}X + \alpha^{26}$	$\alpha^{23}X + \alpha^{30}$	$\alpha^{23}X + \alpha^{30}$
2	$\alpha^8 X^3 + \alpha^4 X + \alpha^6$	$\alpha^3 X + \alpha^5$	$\alpha^{24}X^2 + \alpha^{30}X + \alpha^{10}$
3	$\alpha^{26}X^2 + \alpha^6X + \alpha^{18}$	$\alpha^{28}X + \alpha$	$\alpha^{23}X^3 + \alpha^9X + \alpha^{22}$

 $\beta^3 = (\alpha^{19})^{-1} = \alpha^{12}$. Hence the error pattern is

$$\mathbf{e}(X) = e_0 + e_{12}X^{12} + e_{20}X^{20}.$$

The error location polynomial and its derivative are:

$$\begin{aligned} \boldsymbol{\sigma}(X) &= \alpha^{22}(1+X)(1+\alpha^{12}X)(1+\alpha^{20}X), \\ \boldsymbol{\sigma}'(X) &= \alpha^{22}(1+\alpha^{12}X)(1+\alpha^{20}X) + \alpha^3(1+X)(1+\alpha^{20}X) + \alpha^{11}(1+X)(1+\alpha^{12}X). \end{aligned}$$

The error values at the 3 error locations are given by:

$$e_{0} = \frac{-\mathbf{Z}_{0}(\alpha^{0})}{\boldsymbol{\sigma}'(\alpha^{0})} = \frac{\alpha^{26} + \alpha^{6} + \alpha^{8}}{\alpha^{22}(1 + \alpha^{12})(1 + \alpha^{20})} = \alpha^{2},$$

$$e_{12} = \frac{-\mathbf{Z}_{0}(\alpha^{-12})}{\boldsymbol{\sigma}'(\alpha^{-12})} = \frac{\alpha^{2} + \alpha^{25} + \alpha^{18}}{\alpha^{3}(1 + \alpha^{19})(1 + \alpha^{8})} = \alpha^{21},$$

$$e_{20} = \frac{-\mathbf{Z}_{0}(\alpha^{-20})}{\boldsymbol{\sigma}'(\alpha^{-20})} = \frac{\alpha^{17} + \alpha^{17} + \alpha^{18}}{\alpha^{11}(1 + \alpha^{11})(1 + \alpha^{23})} = \alpha^{7}.$$

Hence, the error pattern is

$$\mathbf{e}(X) = \alpha^2 + \alpha^{21} X^{12} + \alpha^7 X^{20}$$

and the decoded codeword is

$$\mathbf{v}(X) = \mathbf{r}(X) - \mathbf{e}(X) = \mathbf{0}.$$

7.9 Let $\mathbf{g}(X)$ be the generator polynomial of a *t*-symbol correcting RS code \mathcal{C} over GF(q) with α , $\alpha^2, \ldots, \alpha^{2t}$ as roots, where α is a primitive element of GF(q). Since $\mathbf{g}(X)$ divides $X^{q-1} - 1$, then

$$X^{q-1} - 1 = \mathbf{g}(X)\mathbf{h}(X).$$

The polynomial $\mathbf{h}(X)$ has $\alpha^{2t+1}, \ldots, \alpha^{q-1}$ as roots and is called the parity polynomial. The dual code \mathcal{C}_d of \mathcal{C} is generated by the reciprocal of $\mathbf{h}(X)$,

$$\mathbf{h}^*(X) = X^{q-1-2t}\mathbf{h}(X^{-1}).$$

We see that $\mathbf{h}^*(X)$ has $\alpha^{-(2t+1)} = \alpha^{q-2t-2}$, $\alpha^{-(2t+2)} = \alpha^{q-2t-3}$, ..., $\alpha^{-(q-2)} = \alpha$, and $\alpha^{-(q-1)} = 1$ as roots. Thus $\mathbf{h}^*(X)$ has the following consecutive powers of α as roots:

1,
$$\alpha$$
, α^2 , ..., α^{q-2t-2} .

Hence C_d is a (q-1, 2t, q-2t) RS code with minimum distance q-2t.

- 7.10 The generator polynomial g_{rs}(X) of the RS code C has α, α², ..., α^{d-1} as roots. Note that GF(2^m) has GF(2) as a subfield. Consider those polynomial v(X) over GF(2) with degree 2^m-2 or less that has α, α², ..., α^{d-1} (also their conjugates) as roots. These polynomials over GF(2) form a primitive BCH code C_{bch} with designed distance d. Since these polynomials are also code polynomials in the RS code C_{rs}, hence C_{bch} is a subcode of C_{rs}.
- 7.11 Suppose $\mathbf{c}(X) = \sum_{i=0}^{2^m-2} c_i X^i$ is a minimum weight code polynomial in the $(2^m 1, k)$ RS code C. The minimum weight is increased to d + 1 provided

$$c_{\infty} = -\mathbf{c}(1) = -\sum_{i=0}^{2^m - 2} c_i \neq 0.$$

We know that c(X) is divisible by g(X). Thus c(X) = a(X)g(X) with $a(X) \neq 0$. Consider

$$\mathbf{c}(1) = \mathbf{a}(1)\mathbf{g}(1).$$

Since 1 is not a root of $\mathbf{g}(X)$, $\mathbf{g}(1) \neq 0$. If $\mathbf{a}(1) \neq 0$, then $c_{\infty} = -\mathbf{c}(1) \neq 0$ and the vector $(c_{\infty}, c_0, c_1, \dots, c_{2^m-2})$ has weight d+1. Next we show that $\mathbf{a}(1)$ is not equal to 0. If $\mathbf{a}(1) = 0$,

then $\mathbf{a}(X)$ has X - 1 as a factor and $\mathbf{c}(X)$ is a multiple of $(X - 1)\mathbf{g}(X)$ and must have a weight at least d + 1. This contradicts to the hypothesis that $\mathbf{c}(X)$ is a minimum weight code polynomial. Consequently the extended RS code has a minimum distance d + 1.

- 7.12 To prove the minimum distance of the doubly extended RS code, we need to show that no 2t or fewer columns of \mathbf{H}_1 sum to zero over $GF(2^m)$ and there are 2t + 1 columns in \mathbf{H}_1 sum to zero. Suppose there are δ columns in \mathbf{H}_1 sum to zero and $\delta \leq 2t$. There are 4 case to be considered:
 - (1) All δ columns are from the same submatrix **H**.
 - (2) The δ columns consist of the first column of \mathbf{H}_1 and $\delta 1$ columns from \mathbf{H} .
 - (3) The δ columns consist of the second column of \mathbf{H}_1 and $\delta 1$ columns from \mathbf{H} .
 - (4) The δ columns consist of the first two columns of \mathbf{H}_1 and $\delta 2$ columns from \mathbf{H} .

The first case leads to a $\delta \times \delta$ Vandermonde determinant. The second and third cases lead to a $(\delta - 1) \times (\delta - 1)$ Vandermonde determinant. The 4th case leads to a $(\delta - 2) \times (\delta - 2)$ Vandermonde determinant. The derivations are exactly the same as we did in the book. Since Vandermonde determinants are nonzero, δ columns of \mathbf{H}_1 can not be sum to zero. Hence the minimum distance of the extended RS code is at least 2t + 1. However, \mathbf{H} generates an RS code with minimum distance exactly 2t + 1. There are 2t + 1 columns in \mathbf{H} (they are also in \mathbf{H}_1), which sum to zero. Therefore the minimum distance of the extended RS code is exactly 2t + 1.

7.13 Consider

$$\mathbf{v}(X) = \sum_{i=0}^{2^{m}-2} \mathbf{a}(\alpha^{i}) X^{i} = \sum_{i=0}^{2^{m}-2} (\sum_{j=0}^{k-1} a_{j} \alpha^{ij}) X^{i}$$

Let α be a primitive element in $GF(2^m)$. Replacing X by α^q , we have

$$\mathbf{v}(\alpha^{q}) = \sum_{i=0}^{2^{m-2}} \sum_{j=0}^{k-1} a_{j} \alpha^{ij} \alpha^{iq}$$
$$= \sum_{j=0}^{k-1} a_{j} (\sum_{i=0}^{2^{m-2}} \alpha^{i(j+q)}).$$

We factor $1 + X^{2^{-1}}$ as follows:

$$1 + X^{2^{m}-1} = (1+X)(1 + X + X^{2} + \dots + X^{2^{m}-2})$$

Since the polynomial $1 + X + X^2 + \cdots + X^{2^m-2}$ has $\alpha, \alpha^2, \ldots, \alpha^{2^m-2}$ as roots, then for $1 \le l \le 2^m - 2$,

$$\sum_{i=0}^{2^{m}-2} \alpha^{li} = 1 + \alpha^{l} + \alpha^{2l} + \dots + \alpha^{(2^{m}-2)l} = 0.$$

Therefore,

$$\sum_{i=0}^{2^m-2} \alpha^{i(j+q)} = 0 \qquad \text{ when } 1 \le j+q \le 2^m-2.$$

This implies that

$$\mathbf{v}(\alpha^q) = 0$$
 for $0 \le j < k$ and $1 \le q \le 2^m - k - 1$.

Hence $\mathbf{v}(X)$ has α , α^2 , ..., α^{2^m-k-1} as roots. The set $\{\mathbf{v}(X)\}$ is a set of polynomial over $\mathbf{GF}(2^m)$ with 2^m-k-1 consecutive powers of α as roots and hence it forms a $(2^m-1, k, 2^m-k)$ cyclic RS code over $\mathbf{GF}(2^m)$.