Chapter 7

7.2 The generator polynomial of the double-error-correcting RS code ovEr’Gis

g(X) = (X +a)(X +a?)(X +a’)(X +a)
— 0610+O[29X+0419X2+Oé24X3+X4.

The generator polynomial of the triple-error-correcting RS code ovéRG#s
g(X) = (X +a)(X +0*)(X +0”)(X +a")(X +0”)(X +0a°)

— Oz21+Oé24X+CY16X2+(X24X3+049X4+CY10X5+X6.

7.4 The syndrome components of the received polynomial are:

(
Sy =7r(a?) =a'+al? + o = o,
Sz =r(a®)=a®+a®+a? =a’,
Sy=r(a") =a+a' +al% =a7,
Ss=r(a®) =a*+a*+a® =ab,
Se =r(a’) =a"+al?+ab =a?

The iterative procedure for finding the error location polynomial is shown in Tablé P.The
error location polynomial is
o(X)=1+a"X"

The roots of this polynomial are?, a”, anda*2. Hence the error location numbers arg o8,
anda'.

From the syndrome components of the received polynomial and the coefficients of the error
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Table P7.4

1 o' (X) d, Ly =1,
—1 1 1 0 —1

0 1 al? 0 0

1 1+ aB3X at? 1 0 (takep = —1)
2 14+ aX a’ 1 1 (takep = 0)
3 1+ aBX + at0X? a? 2 1 (takep = 1)
4 1+ o' X +a'?X? ab 2 2 (takep = 2)

5 1+a°X3 0 3 2 (takep = 3)
6 1+ a°X3 — — —

location polynomial, we find the error value evaluator,

ZO(X) = Sl+(SQ+UlSl)X+(Sg+UlSQ+UQSl)X2
— a13—|—(oz14+00413)X—|—(a9+0al4+0a13)X2
— 0413+0414X+049X2.

The error values at the positiods®, X®, andX'? are:

. — ~Zo(a™®) _ al® +alt +a? _a o

o'(a=3)  a3(l+afa3)(1+al3a3) ol ’

o — —Zo(a®) _ al® +ab + b _ 04_2 — o

8 o'(a?) a1+ ada=8)(1+al3a8) af ’
 —Zy(a?) a® 4+ a+a®? L a
€13 = o'(@3)  aB(l+ataB)(l+afa13) aB Q.

Consequently, the error pattern is
e(X)=a'X? + X% + a3 X"

and the decoded codeword is the all-zero codeword.
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7.5 The syndrome polynomial is

S(X):()413+OZ14X+C)(9X2+C)47X3+O{8X4+OZ3X5

Table P7.5 displays the steps of Euclidean algorithm for finding the error location and error
value polynomials.

Table P7.5
iz (X) ¢ (X) oi(X)
-1 X0 — 0
0 a? + X + X% + " X3 + o8Xt 4+ o3 X7 - 1
1 14+ a®X +a5X3 + o2 X? a?+al2X o+ a?X
2 a+a3X +a?X3 a2 +aX ad +aX +al?X?
3 a” +alX + a3X? a®+ o’ X o + a3 X3

The error location and error value polynomials are:

o(X)=a+a3X? =1+ a’X3)

Z()(X):Oz7+a8X+Oé3X22049(0413+0414X+049X2)

From these polynomials, we find that the error location numbers®re®, anda'?, and error

values are
—Zo(a™3) a’ +a® + al? &Y A
€Caq = = = — = (X
3 o' (a=3) 031+ e 3)(1+a'3a—3)  al2 '
.  —Zo(a®) a’ +1+a? _oz_“_ag
T o(a®) 2’1+t d)(1+aBa®) a2
 —Zg(a™) a’ +at? +a” o
€13 = o'(aB)  aaB(l+ada " B)1+ada3) ol .
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Hence the error pattern is
e(X)=a'X? + X% + X"

and the received polynomial is decoded into the all-zero codeword.

7.6 From the received polynomial,
I'(X) _ 062 +a21X12 + Oé7X20,

we compute the syndrome,

Si = r(a')=a’+a* +a’" =,
Sy = r(@®)=a’+a”+a' =q,
S3 = r(a’) =a® 4+ +a =a®,
Sy = r(a') =’ +a” +a* = a®,
Ss = r(@®)=a’+a¥ +a'"" =a'?
Se = r(@’)=a’+a” +a¥" =a"

Therefore, the syndrome polynomial is
S(X) ="+ aX +a®X? + ¥ X? + o X* + o¥X°
Using the Euclidean algorithm, we find

o(X) = o®X*+a°X + a2,
Zo(X) = o®X*+a5X 4 a'®,

as shown in the following table: The roots@fX) are: 1 = oY, o!! anda'®. From these
roots, we find the error location numbers; = (a°)" = a° 3 = (a!)"! = o, and
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i Zy () @ (Y) 7i(X)

-1 X6 - 0

0 S(X) - 1

1 Ck5X4 + Oé9X3 + ()422X2 + ()411X + 0426 a23X + a30 0423X + a30

2 X3+ atX + af X +a® | o®X?+aPX +a'f
3 a®X? +a°X +a'® o®*X +a | X4 a’X +a”

3% = (o)~ = a!?. Hence the error pattern is
e(X) =€+ 612X12 + 620X20.
The error location polynomial and its derivative are:

o(X) = o1+ X)(1+aX)(1 + X)),
(X)) = a1 +aX)(1+a®X)+a*(1+ X)(1+®X) + a1+ X)(1 +a'2X).

The error values at the 3 error locations are given by:

. B _Zo(ao) B O[26 + 056 + OZS B a2
0 - U/(a()) - a22(1 +a12)(1 —|—a20) - 2
S —Zo(a™12) _ a? 4+ a® 4+ o'® _
2 o'(a™12)  ad(14a?)(1+ab) ’
—Zo(a*m) al7 4+ Q7 4 o8 -
620 g fr = .

o'(a=2) Al (14 o) (1 + a23)

Hence, the error pattern is
E(X> _ 042 4 Oé2lX12 4 Oé7X20
and the decoded codeword is

v(X)=r(X)—eX)=0.

5



7.9 Let g(X) be the generator polynomial oftasymbol correcting RS codgover GK¢) with a,
o?, ..., o? asroots, where is a primitive element of Gfg). Sinceg(X) divides X4~ —1,
then

X! -1 =g(X)h(X).

The polynomialh(X) hasa?™!, ..., a? ! as roots and is called the parity polynomial. The
dual codeC; of C is generated by the reciprocal bfX),

h*(X) = X717 #h(X ).

We see thah*(X) hasa~ () = qa72-2 o~C+2) — =23 4=(=2) = ¢, and

a~(@=1) = 1 as roots. Thua*(X) has the following consecutive powers®fs roots:

1,02, ..., 09722,

HenceC,is a(q — 1,2t,q — 2t) RS code with minimum distaneg— 2t.

7.10 The generator polynomigl,.,(X) of the RS cod& hasa, o?, ..., a?! as roots. Note that
GFK(2™) has GK2) as a subfield. Consider those polynomi@lX ) over GK2) with degree
2m 2 or less that has, o2, . .., a?~! (also their conjugates) as roots. These polynomials over
GK(2) form a primitive BCH codé&’,.;, with designed distancé Since these polynomials are
also code polynomials in the RS code, henceC,,;, is a subcode of,.,.

7.11 Suppose(X) = 3.7 % ¢;X* is a minimum weight code polynomial in tHe™ — 1, k) RS
codeC. The minimum weight is increased do+ 1 provided

2m—2

Coo = —C(1) = — Zci#o.
i=0

We know thaic(X) is divisible byg(X). Thusc(X) = a(X)g(X) with a(X) # 0. Consider

Since 1 is not a root of(X), g(1) # 0. If a(1) # 0, thenc,, = —c(1) # 0 and the vector
(Cooy Cos €1y - - -, Cam_2) has weightl+ 1. Next we show thai(1) is not equal to 0. I1&(1) = 0,

6



thena(X) hasX — 1 as a factor and(X) is a multiple of(X — 1)g(X) and must have a
weight at least! + 1. This contradicts to the hypothesis théf ) is a minimum weight code
polynomial. Consequently the extended RS code has a minimum distante

7.12 To prove the minimum distance of the doubly extended RS code, we need to show #iat no
or fewer columns oH; sum to zero over GR™) and there ar@t + 1 columns inH; sum
to zero. Suppose there areolumns inH; sum to zero and < 2t. There are 4 case to be
considered:

(1) All 6 columns are from the same submatix
(2) Theo columns consist of the first column &f; and — 1 columns fromH.
(3) Thed columns consist of the second columntdf andé — 1 columns fromH.

(4) Thed columns consist of the first two columnsHf, andé — 2 columns fromH.

The first case leads todax § Vandermonde determinant. The second and third cases lead to
a(d —1) x (6 — 1) Vandermonde determinant. The 4th case leads(ib-a2) x (§ — 2)
Vandermonde determinant. The derivations are exactly the same as we did in the book. Since
Vandermonde determinants are nonzéroplumns ofH,; can not be sum to zero. Hence the
minimum distance of the extended RS code is at I2ast 1. However,H generates an RS

code with minimum distance exactly + 1. There are&t + 1 columns inH (they are also in

H,), which sum to zero. Therefore the minimum distance of the extended RS code is exactly
2t + 1.

7.13 Consider

2m—2 ‘ ‘ 2m—2 k-1 B ‘
v(X)= Y al@)X'=> () aa")X
i=0 i=0 j=0

Let « be a primitive element in GB™). ReplacingX by a?, we have

2m—2 k-1

v(ad) = ZZajo/jo/q



We factorl + X2 ! as follows:

I+ X P =14+ X) 1+ X+ X2+ 4 X772

Since the polynomial + X + X2 + --- + X?"~2 hasa, o?, ..., o®"~? as roots, then for
1< <2m -2,
2m—2
Z ali:14_0{1_’_&21_’___,_’_0‘(2’“72)1:0.
=0
Therefore,
Sl = whenl < j +¢ < 2™ — 2.

This implies that
v(a?) =0 for0<j<kandl <g<2™—Fk—1.

Hencev(X) hasa, o?, ..., o?" %1 as roots. The sefv(X)} is a set of polynomial over
GF(2™) with 2™ — k& — 1 consecutive powers of as roots and hence it formg2i" — 1, k, 2™ —
k) cyclic RS code over GR™).



