
Chapter 7

7.2 The generator polynomial of the double-error-correcting RS code over GF(25) is

g(X) = (X + α)(X + α2)(X + α3)(X + α4)

= α10 + α29X + α19X2 + α24X3 + X4.

The generator polynomial of the triple-error-correcting RS code over GF(25) is

g(X) = (X + α)(X + α2)(X + α3)(X + α4)(X + α5)(X + α6)

= α21 + α24X + α16X2 + α24X3 + α9X4 + α10X5 + X6.

7.4 The syndrome components of the received polynomial are:

S1 = r(α) = α7 + α2 + α = α13,

S2 = r(α2) = α10 + α10 + α14 = α14,

S3 = r(α3) = α13 + α3 + α12 = α9,

S4 = r(α4) = α + α11 + α10 = α7,

S5 = r(α5) = α4 + α4 + α8 = α8,

S6 = r(α6) = α7 + α12 + α6 = α3.

The iterative procedure for finding the error location polynomial is shown in Table P.7.4. The

error location polynomial is

σ(X) = 1 + α9X3.

The roots of this polynomial areα2, α7, andα12. Hence the error location numbers areα3, α8,

andα13.

From the syndrome components of the received polynomial and the coefficients of the error
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Table P.7.4

µ σµ(X) dµ lµ µ− lµ

−1 1 1 0 −1

0 1 α13 0 0

1 1 + α13X α10 1 0 (takeρ = −1)

2 1 + αX α7 1 1 (takeρ = 0)

3 1 + α13X + α10X2 α9 2 1 (takeρ = 1)

4 1 + α14X + α12X2 α8 2 2 (takeρ = 2)

5 1 + α9X3 0 3 2 (takeρ = 3)

6 1 + α9X3 − − −

location polynomial, we find the error value evaluator,

Z0(X) = S1 + (S2 + σ1S1)X + (S3 + σ1S2 + σ2S1)X
2

= α13 + (α14 + 0α13)X + (α9 + 0α14 + 0α13)X2

= α13 + α14X + α9X2.

The error values at the positionsX3, X8, andX13 are:

e3 =
−Z0(α

−3)

σ′(α−3)
=

α13 + α11 + α3

α3(1 + α8α−3)(1 + α13α−3)
=

α7

α3
= α4,

e8 =
−Z0(α

−8)

σ′(α−8)
=

α13 + α6 + α8

α8(1 + α3α−8)(1 + α13α−8)
=

α2

α8
= α9,

e13 =
−Z0(α

−13)

σ′(α−13)
=

α13 + α + α13

α13(1 + α3α−13)(1 + α8α−13)
=

α

α13
= α3.

Consequently, the error pattern is

e(X) = α4X3 + α9X8 + α3X13.

and the decoded codeword is the all-zero codeword.
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7.5 The syndrome polynomial is

S(X) = α13 + α14X + α9X2 + α7X3 + α8X4 + α3X5

Table P.7.5 displays the steps of Euclidean algorithm for finding the error location and error

value polynomials.

Table P.7.5

i Z
(i)
0 (X) qi(X) σi(X)

−1 X6 − 0

0 α13 + α14X + α9X2 + α7X3 + α8X4 + α3X5 − 1

1 1 + α8X + α5X3 + α2X4 α2 + α12X α2 + α12X

2 α + α13X + α12X3 α12 + αX α3 + αX + α13X2

3 α7 + α8X + α3X2 α8 + α5X α9 + α3X3

The error location and error value polynomials are:

σ(X) = α9 + α3X3 = α9(1 + α9X3)

Z0(X) = α7 + α8X + α3X2 = α9(α13 + α14X + α9X2)

From these polynomials, we find that the error location numbers areα3, α8, andα13, and error

values are

e3 =
−Z0(α

−3)

σ′(α−3)
=

α7 + α5 + α12

α9α3(1 + α8α−3)(1 + α13α−3)
=

α

α12
= α4,

e8 =
−Z0(α

−8)

σ′(α−8)
=

α7 + 1 + α2

α9α8(1 + α3α−8)(1 + α13α−8)
=

α11

α2
= α9,

e13 =
−Z0(α

−13)

σ′(α−13)
=

α7 + α10 + α7

α9α13(1 + α3α−13)(1 + α8α−13)
=

α10

α7
= α3.
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Hence the error pattern is

e(X) = α4X3 + α9X8 + α3X13.

and the received polynomial is decoded into the all-zero codeword.

7.6 From the received polynomial,

r(X) = α2 + α21X12 + α7X20,

we compute the syndrome,

S1 = r(α1) = α2 + α33 + α27 = α27,

S2 = r(α2) = α2 + α45 + α47 = α,

S3 = r(α3) = α2 + α57 + α67 = α28,

S4 = r(α4) = α2 + α69 + α87 = α29,

S5 = r(α5) = α2 + α81 + α107 = α15,

S6 = r(α6) = α2 + α93 + α127 = α8.

Therefore, the syndrome polynomial is

S(X) = α27 + αX + α28X2 + α29X3 + α15X4 + α8X5

Using the Euclidean algorithm, we find

σ(X) = α23X3 + α9X + α22,

Z0(X) = α26X2 + α6X + α18,

as shown in the following table: The roots ofσ(X) are: 1 = α0, α11 andα19. From these

roots, we find the error location numbers:β1 = (α0)
−1

= α0, β2 = (α11)−1 = α20, and
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i Z
(i)
0 (X) qi(X) σi(X)

-1 X6 - 0

0 S(X) - 1

1 α5X4 + α9X3 + α22X2 + α11X + α26 α23X + α30 α23X + α30

2 α8X3 + α4X + α6 α3X + α5 α24X2 + α30X + α10

3 α26X2 + α6X + α18 α28X + α α23X3 + α9X + α22

β3 = (α19)−1 = α12. Hence the error pattern is

e(X) = e0 + e12X
12 + e20X

20.

The error location polynomial and its derivative are:

σ(X) = α22(1 + X)(1 + α12X)(1 + α20X),

σ′(X) = α22(1 + α12X)(1 + α20X) + α3(1 + X)(1 + α20X) + α11(1 + X)(1 + α12X).

The error values at the 3 error locations are given by:

e0 =
−Z0(α

0)

σ′(α0)
=

α26 + α6 + α8

α22(1 + α12)(1 + α20)
= α2,

e12 =
−Z0(α

−12)

σ′(α−12)
=

α2 + α25 + α18

α3(1 + α19)(1 + α8)
= α21,

e20 =
−Z0(α

−20)

σ′(α−20)
=

α17 + α17 + α18

α11(1 + α11)(1 + α23)
= α7.

Hence, the error pattern is

e(X) = α2 + α21X12 + α7X20

and the decoded codeword is

v(X) = r(X)− e(X) = 0.
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7.9 Let g(X) be the generator polynomial of at-symbol correcting RS codeC over GF(q) with α,

α2, . . . , α2t as roots, whereα is a primitive element of GF(q). Sinceg(X) dividesXq−1 − 1,

then

Xq−1 − 1 = g(X)h(X).

The polynomialh(X) hasα2t+1, . . . , αq−1 as roots and is called the parity polynomial. The

dual codeCd of C is generated by the reciprocal ofh(X),

h∗(X) = Xq−1−2th(X−1).

We see thath∗(X) hasα−(2t+1) = αq−2t−2, α−(2t+2) = αq−2t−3, . . . , α−(q−2) = α, and

α−(q−1) = 1 as roots. Thush∗(X) has the following consecutive powers ofα as roots:

1, α, α2, . . . , αq−2t−2.

HenceCd is a(q − 1, 2t, q − 2t) RS code with minimum distanceq − 2t.

7.10 The generator polynomialgrs(X) of the RS codeC hasα, α2, . . . , αd−1 as roots. Note that

GF(2m) has GF(2) as a subfield. Consider those polynomialv(X) over GF(2) with degree

2m−2 or less that hasα, α2, . . . , αd−1 (also their conjugates) as roots. These polynomials over

GF(2) form a primitive BCH codeCbch with designed distanced. Since these polynomials are

also code polynomials in the RS codeCrs, henceCbch is a subcode ofCrs.

7.11 Supposec(X) =
∑2m−2

i=0 ciX
i is a minimum weight code polynomial in the(2m − 1, k) RS

codeC. The minimum weight is increased tod + 1 provided

c∞ = −c(1) = −
2m−2∑
i=0

ci 6= 0.

We know thatc(X) is divisible byg(X). Thusc(X) = a(X)g(X) with a(X) 6= 0. Consider

c(1) = a(1)g(1).

Since 1 is not a root ofg(X), g(1) 6= 0. If a(1) 6= 0, thenc∞ = −c(1) 6= 0 and the vector

(c∞, c0, c1, . . . , c2m−2) has weightd+1. Next we show thata(1) is not equal to 0. Ifa(1) = 0,
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thena(X) hasX − 1 as a factor andc(X) is a multiple of(X − 1)g(X) and must have a

weight at leastd + 1. This contradicts to the hypothesis thatc(X) is a minimum weight code

polynomial. Consequently the extended RS code has a minimum distanced + 1.

7.12 To prove the minimum distance of the doubly extended RS code, we need to show that no2t

or fewer columns ofH1 sum to zero over GF(2m) and there are2t + 1 columns inH1 sum

to zero. Suppose there areδ columns inH1 sum to zero andδ ≤ 2t. There are 4 case to be

considered:

(1) All δ columns are from the same submatrixH.

(2) Theδ columns consist of the first column ofH1 andδ − 1 columns fromH.

(3) Theδ columns consist of the second column ofH1 andδ − 1 columns fromH.

(4) Theδ columns consist of the first two columns ofH1 andδ − 2 columns fromH.

The first case leads to aδ × δ Vandermonde determinant. The second and third cases lead to

a (δ − 1) × (δ − 1) Vandermonde determinant. The 4th case leads to a(δ − 2) × (δ − 2)

Vandermonde determinant. The derivations are exactly the same as we did in the book. Since

Vandermonde determinants are nonzero,δ columns ofH1 can not be sum to zero. Hence the

minimum distance of the extended RS code is at least2t + 1. However,H generates an RS

code with minimum distance exactly2t + 1. There are2t + 1 columns inH (they are also in

H1), which sum to zero. Therefore the minimum distance of the extended RS code is exactly

2t + 1.

7.13 Consider

v(X) =
2m−2∑
i=0

a(αi)X i =
2m−2∑
i=0

(
k−1∑
j=0

ajα
ij)X i

Let α be a primitive element in GF(2m). ReplacingX by αq, we have

v(αq) =
2m−2∑
i=0

k−1∑
j=0

ajα
ijαiq

=
k−1∑
j=0

aj(
2m−2∑
i=0

αi(j+q)).
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We factor1 + X2−1 as follows:

1 + X2m−1 = (1 + X)(1 + X + X2 + · · ·+ X2m−2)

Since the polynomial1 + X + X2 + · · · + X2m−2 hasα, α2, . . . , α2m−2 as roots, then for

1 ≤ l ≤ 2m − 2,
2m−2∑
i=0

αli = 1 + αl + α2l + · · ·+ α(2m−2)l = 0.

Therefore,

∑2m−2
i=0 αi(j+q) = 0 when1 ≤ j + q ≤ 2m − 2.

This implies that

v(αq) = 0 for 0 ≤ j < k and1 ≤ q ≤ 2m − k − 1.

Hencev(X) hasα, α2, . . . , α2m−k−1 as roots. The set{v(X)} is a set of polynomial over

GF(2m) with 2m−k−1 consecutive powers ofα as roots and hence it forms a(2m−1, k, 2m−
k) cyclic RS code over GF(2m).
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