Chapter 7

7.2 The generator polynomial of the double-error-correcting RS code over $\operatorname{GF}\left(2^{5}\right)$ is

$$
\begin{aligned}
\mathbf{g}(X) & =(X+\alpha)\left(X+\alpha^{2}\right)\left(X+\alpha^{3}\right)\left(X+\alpha^{4}\right) \\
& =\alpha^{10}+\alpha^{29} X+\alpha^{19} X^{2}+\alpha^{24} X^{3}+X^{4}
\end{aligned}
$$

The generator polynomial of the triple-error-correcting RS code over $\mathrm{GF}\left(2^{5}\right)$ is

$$
\begin{aligned}
\mathbf{g}(X) & =(X+\alpha)\left(X+\alpha^{2}\right)\left(X+\alpha^{3}\right)\left(X+\alpha^{4}\right)\left(X+\alpha^{5}\right)\left(X+\alpha^{6}\right) \\
& =\alpha^{21}+\alpha^{24} X+\alpha^{16} X^{2}+\alpha^{24} X^{3}+\alpha^{9} X^{4}+\alpha^{10} X^{5}+X^{6}
\end{aligned}
$$

7.4 The syndrome components of the received polynomial are:

$$
\begin{aligned}
& S_{1}=\boldsymbol{r}(\alpha)=\alpha^{7}+\alpha^{2}+\alpha=\alpha^{13}, \\
& S_{2}=\boldsymbol{r}\left(\alpha^{2}\right)=\alpha^{10}+\alpha^{10}+\alpha^{14}=\alpha^{14}, \\
& S_{3}=\boldsymbol{r}\left(\alpha^{3}\right)=\alpha^{13}+\alpha^{3}+\alpha^{12}=\alpha^{9}, \\
& S_{4}=\boldsymbol{r}\left(\alpha^{4}\right)=\alpha+\alpha^{11}+\alpha^{10}=\alpha^{7}, \\
& S_{5}=\boldsymbol{r}\left(\alpha^{5}\right)=\alpha^{4}+\alpha^{4}+\alpha^{8}=\alpha^{8}, \\
& S_{6}=\boldsymbol{r}\left(\alpha^{6}\right)=\alpha^{7}+\alpha^{12}+\alpha^{6}=\alpha^{3} .
\end{aligned}
$$

The iterative procedure for finding the error location polynomial is shown in Table P.7.4. The error location polynomial is

$$
\boldsymbol{\sigma}(X)=1+\alpha^{9} X^{3} .
$$

The roots of this polynomial are α^{2}, α^{7}, and α^{12}. Hence the error location numbers are α^{3}, α^{8}, and α^{13}.

From the syndrome components of the received polynomial and the coefficients of the error

Table P.7.4

μ	$\boldsymbol{\sigma}^{\mu}(X)$	d_{μ}	l_{μ}	$\mu-l_{\mu}$
-1	1	1	0	-1
0	1	α^{13}	0	0
1	$1+\alpha^{13} X$	α^{10}	1	0 (take $\rho=-1)$
2	$1+\alpha X$	α^{7}	1	1 (take $\rho=0)$
3	$1+\alpha^{13} X+\alpha^{10} X^{2}$	α^{9}	2	1 (take $\rho=1)$
4	$1+\alpha^{14} X+\alpha^{12} X^{2}$	α^{8}	2	$2($ take $\rho=2)$
5	$1+\alpha^{9} X^{3}$	0	3	2 (take $\rho=3)$
6	$1+\alpha^{9} X^{3}$	-	-	-

location polynomial, we find the error value evaluator,

$$
\begin{aligned}
\mathbf{Z}_{0}(X) & =S_{1}+\left(S_{2}+\sigma_{1} S_{1}\right) X+\left(S_{3}+\sigma_{1} S_{2}+\sigma_{2} S_{1}\right) X^{2} \\
& =\alpha^{13}+\left(\alpha^{14}+0 \alpha^{13}\right) X+\left(\alpha^{9}+0 \alpha^{14}+0 \alpha^{13}\right) X^{2} \\
& =\alpha^{13}+\alpha^{14} X+\alpha^{9} X^{2}
\end{aligned}
$$

The error values at the positions X^{3}, X^{8}, and X^{13} are:

$$
\begin{aligned}
& e_{3}=\frac{-\mathbf{Z}_{0}\left(\alpha^{-3}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-3}\right)}=\frac{\alpha^{13}+\alpha^{11}+\alpha^{3}}{\alpha^{3}\left(1+\alpha^{8} \alpha^{-3}\right)\left(1+\alpha^{13} \alpha^{-3}\right)}=\frac{\alpha^{7}}{\alpha^{3}}=\alpha^{4}, \\
& e_{8}=\frac{-\mathbf{Z}_{0}\left(\alpha^{-8}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-8}\right)}=\frac{\alpha^{13}+\alpha^{6}+\alpha^{8}}{\alpha^{8}\left(1+\alpha^{3} \alpha^{-8}\right)\left(1+\alpha^{13} \alpha^{-8}\right)}=\frac{\alpha^{2}}{\alpha^{8}}=\alpha^{9}, \\
& e_{13}=\frac{-\mathbf{Z}_{0}\left(\alpha^{-13}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-13}\right)}=\frac{\alpha^{13}+\alpha+\alpha^{13}}{\alpha^{13}\left(1+\alpha^{3} \alpha^{-13}\right)\left(1+\alpha^{8} \alpha^{-13}\right)}=\frac{\alpha}{\alpha^{13}}=\alpha^{3} .
\end{aligned}
$$

Consequently, the error pattern is

$$
\boldsymbol{e}(X)=\alpha^{4} X^{3}+\alpha^{9} X^{8}+\alpha^{3} X^{13}
$$

and the decoded codeword is the all-zero codeword.
7.5 The syndrome polynomial is

$$
\mathbf{S}(X)=\alpha^{13}+\alpha^{14} X+\alpha^{9} X^{2}+\alpha^{7} X^{3}+\alpha^{8} X^{4}+\alpha^{3} X^{5}
$$

Table P.7.5 displays the steps of Euclidean algorithm for finding the error location and error value polynomials.

Table P.7.5

i	$\mathbf{Z}_{0}^{(i)}(X)$	$\boldsymbol{q}_{i}(X)$	$\boldsymbol{\sigma}_{i}(X)$
-1	X^{6}	-	0
0	$\alpha^{13}+\alpha^{14} X+\alpha^{9} X^{2}+\alpha^{7} X^{3}+\alpha^{8} X^{4}+\alpha^{3} X^{5}$	-	1
1	$1+\alpha^{8} X+\alpha^{5} X^{3}+\alpha^{2} X^{4}$	$\alpha^{2}+\alpha^{12} X$	$\alpha^{2}+\alpha^{12} X$
2	$\alpha+\alpha^{13} X+\alpha^{12} X^{3}$	$\alpha^{12}+\alpha X$	$\alpha^{3}+\alpha X+\alpha^{13} X^{2}$
3	$\alpha^{7}+\alpha^{8} X+\alpha^{3} X^{2}$	$\alpha^{8}+\alpha^{5} X$	$\alpha^{9}+\alpha^{3} X^{3}$

The error location and error value polynomials are:

$$
\begin{aligned}
& \boldsymbol{\sigma}(X)=\alpha^{9}+\alpha^{3} X^{3}=\alpha^{9}\left(1+\alpha^{9} X^{3}\right) \\
& \mathbf{Z}_{0}(X)=\alpha^{7}+\alpha^{8} X+\alpha^{3} X^{2}=\alpha^{9}\left(\alpha^{13}+\alpha^{14} X+\alpha^{9} X^{2}\right)
\end{aligned}
$$

From these polynomials, we find that the error location numbers are α^{3}, α^{8}, and α^{13}, and error values are

$$
\begin{aligned}
& e_{3}=\frac{-\mathbf{Z}_{0}\left(\alpha^{-3}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-3}\right)}=\frac{\alpha^{7}+\alpha^{5}+\alpha^{12}}{\alpha^{9} \alpha^{3}\left(1+\alpha^{8} \alpha^{-3}\right)\left(1+\alpha^{13} \alpha^{-3}\right)}=\frac{\alpha}{\alpha^{12}}=\alpha^{4}, \\
& e_{8}=\frac{-\mathbf{Z}_{0}\left(\alpha^{-8}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-8}\right)}=\frac{\alpha^{7}+1+\alpha^{2}}{\alpha^{9} \alpha^{8}\left(1+\alpha^{3} \alpha^{-8}\right)\left(1+\alpha^{13} \alpha^{-8}\right)}=\frac{\alpha^{11}}{\alpha^{2}}=\alpha^{9}, \\
& e_{13}=\frac{-\mathbf{Z}_{0}\left(\alpha^{-13}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-13}\right)}=\frac{\alpha^{7}+\alpha^{10}+\alpha^{7}}{\alpha^{9} \alpha^{13}\left(1+\alpha^{3} \alpha^{-13}\right)\left(1+\alpha^{8} \alpha^{-13}\right)}=\frac{\alpha^{10}}{\alpha^{7}}=\alpha^{3} .
\end{aligned}
$$

Hence the error pattern is

$$
\boldsymbol{e}(X)=\alpha^{4} X^{3}+\alpha^{9} X^{8}+\alpha^{3} X^{13}
$$

and the received polynomial is decoded into the all-zero codeword.
7.6 From the received polynomial,

$$
\mathbf{r}(X)=\alpha^{2}+\alpha^{21} X^{12}+\alpha^{7} X^{20}
$$

we compute the syndrome,

$$
\begin{aligned}
& S_{1}=\mathbf{r}\left(\alpha^{1}\right)=\alpha^{2}+\alpha^{33}+\alpha^{27}=\alpha^{27}, \\
& S_{2}=\mathbf{r}\left(\alpha^{2}\right)=\alpha^{2}+\alpha^{45}+\alpha^{47}=\alpha, \\
& S_{3}=\mathbf{r}\left(\alpha^{3}\right)=\alpha^{2}+\alpha^{57}+\alpha^{67}=\alpha^{28}, \\
& S_{4}=\mathbf{r}\left(\alpha^{4}\right)=\alpha^{2}+\alpha^{69}+\alpha^{87}=\alpha^{29}, \\
& S_{5}=\mathbf{r}\left(\alpha^{5}\right)=\alpha^{2}+\alpha^{81}+\alpha^{107}=\alpha^{15}, \\
& S_{6}=\mathbf{r}\left(\alpha^{6}\right)=\alpha^{2}+\alpha^{93}+\alpha^{127}=\alpha^{8} .
\end{aligned}
$$

Therefore, the syndrome polynomial is

$$
\mathbf{S}(X)=\alpha^{27}+\alpha X+\alpha^{28} X^{2}+\alpha^{29} X^{3}+\alpha^{15} X^{4}+\alpha^{8} X^{5}
$$

Using the Euclidean algorithm, we find

$$
\begin{aligned}
\boldsymbol{\sigma}(X) & =\alpha^{23} X^{3}+\alpha^{9} X+\alpha^{22} \\
\mathbf{Z}_{0}(X) & =\alpha^{26} X^{2}+\alpha^{6} X+\alpha^{18}
\end{aligned}
$$

as shown in the following table: The roots of $\boldsymbol{\sigma}(X)$ are: $1=\alpha^{0}, \alpha^{11}$ and α^{19}. From these roots, we find the error location numbers: $\beta_{1}=\left(\alpha^{0}\right)^{-1}=\alpha^{0}, \beta_{2}=\left(\alpha^{11}\right)^{-1}=\alpha^{20}$, and

i	$\mathbf{Z}_{0}^{(i)}(X)$	$\mathbf{q}_{i}(X)$	$\boldsymbol{\sigma}_{i}(X)$
-1	X^{6}	-	0
0	$\mathbf{S}(\mathrm{X})$	-	1
1	$\alpha^{5} X^{4}+\alpha^{9} X^{3}+\alpha^{22} X^{2}+\alpha^{11} X+\alpha^{26}$	$\alpha^{23} X+\alpha^{30}$	$\alpha^{23} X+\alpha^{30}$
2	$\alpha^{8} X^{3}+\alpha^{4} X+\alpha^{6}$	$\alpha^{3} X+\alpha^{5}$	$\alpha^{24} X^{2}+\alpha^{30} X+\alpha^{10}$
3	$\alpha^{26} X^{2}+\alpha^{6} X+\alpha^{18}$	$\alpha^{28} X+\alpha$	$\alpha^{23} X^{3}+\alpha^{9} X+\alpha^{22}$

$\beta^{3}=\left(\alpha^{19}\right)^{-1}=\alpha^{12}$. Hence the error pattern is

$$
\mathbf{e}(X)=e_{0}+e_{12} X^{12}+e_{20} X^{20}
$$

The error location polynomial and its derivative are:

$$
\begin{aligned}
\boldsymbol{\sigma}(X) & =\alpha^{22}(1+X)\left(1+\alpha^{12} X\right)\left(1+\alpha^{20} X\right) \\
\boldsymbol{\sigma}^{\prime}(X) & =\alpha^{22}\left(1+\alpha^{12} X\right)\left(1+\alpha^{20} X\right)+\alpha^{3}(1+X)\left(1+\alpha^{20} X\right)+\alpha^{11}(1+X)\left(1+\alpha^{12} X\right)
\end{aligned}
$$

The error values at the 3 error locations are given by:

$$
\begin{aligned}
e_{0} & =\frac{-\mathbf{Z}_{0}\left(\alpha^{0}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{0}\right)}=\frac{\alpha^{26}+\alpha^{6}+\alpha^{8}}{\alpha^{22}\left(1+\alpha^{12}\right)\left(1+\alpha^{20}\right)}=\alpha^{2}, \\
e_{12} & =\frac{-\mathbf{Z}_{0}\left(\alpha^{-12}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-12}\right)}=\frac{\alpha^{2}+\alpha^{25}+\alpha^{18}}{\alpha^{3}\left(1+\alpha^{19}\right)\left(1+\alpha^{8}\right)}=\alpha^{21}, \\
e_{20} & =\frac{-\mathbf{Z}_{0}\left(\alpha^{-20}\right)}{\boldsymbol{\sigma}^{\prime}\left(\alpha^{-20}\right)}=\frac{\alpha^{17}+\alpha^{17}+\alpha^{18}}{\alpha^{11}\left(1+\alpha^{11}\right)\left(1+\alpha^{23}\right)}=\alpha^{7} .
\end{aligned}
$$

Hence, the error pattern is

$$
\mathbf{e}(X)=\alpha^{2}+\alpha^{21} X^{12}+\alpha^{7} X^{20}
$$

and the decoded codeword is

$$
\mathbf{v}(X)=\mathbf{r}(X)-\mathbf{e}(X)=\mathbf{0} .
$$

7.9 Let $\mathbf{g}(\mathrm{X})$ be the generator polynomial of a t-symbol correcting RS code \mathcal{C} over $\mathrm{GF}(q)$ with α, $\alpha^{2}, \ldots, \alpha^{2 t}$ as roots, where α is a primitive element of $\operatorname{GF}(q)$. Since $\mathbf{g}(X)$ divides $X^{q-1}-1$, then

$$
X^{q-1}-1=\mathbf{g}(X) \mathbf{h}(X) .
$$

The polynomial $\mathbf{h}(X)$ has $\alpha^{2 t+1}, \ldots, \alpha^{q-1}$ as roots and is called the parity polynomial. The dual code \mathcal{C}_{d} of \mathcal{C} is generated by the reciprocal of $\mathbf{h}(X)$,

$$
\mathbf{h}^{*}(X)=X^{q-1-2 t} \mathbf{h}\left(X^{-1}\right)
$$

We see that $\mathbf{h}^{*}(X)$ has $\alpha^{-(2 t+1)}=\alpha^{q-2 t-2}, \alpha^{-(2 t+2)}=\alpha^{q-2 t-3}, \ldots, \alpha^{-(q-2)}=\alpha$, and $\alpha^{-(q-1)}=1$ as roots. Thus $\mathbf{h}^{*}(X)$ has the following consecutive powers of α as roots:

$$
1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2 t-2} .
$$

Hence \mathcal{C}_{d} is a $(q-1,2 t, q-2 t)$ RS code with minimum distance $q-2 t$.
7.10 The generator polynomial $\mathbf{g}_{r s}(X)$ of the RS code \mathcal{C} has $\alpha, \alpha^{2}, \ldots, \alpha^{d-1}$ as roots. Note that $\mathrm{GF}\left(2^{m}\right)$ has $\mathrm{GF}(2)$ as a subfield. Consider those polynomial $\mathbf{v}(X)$ over $\mathrm{GF}(2)$ with degree $2^{m}-2$ or less that has $\alpha, \alpha^{2}, \ldots, \alpha^{d-1}$ (also their conjugates) as roots. These polynomials over $\mathrm{GF}(2)$ form a primitive BCH code $\mathcal{C}_{b c h}$ with designed distance d. Since these polynomials are also code polynomials in the RS code $\mathcal{C}_{r s}$, hence $\mathcal{C}_{b c h}$ is a subcode of $\mathcal{C}_{r s}$.
7.11 Suppose $\mathbf{c}(X)=\sum_{i=0}^{2^{m}-2} c_{i} X^{i}$ is a minimum weight code polynomial in the $\left(2^{m}-1, k\right)$ RS code \mathcal{C}. The minimum weight is increased to $d+1$ provided

$$
c_{\infty}=-\mathbf{c}(1)=-\sum_{i=0}^{2^{m}-2} c_{i} \neq 0 .
$$

We know that $\mathbf{c}(X)$ is divisible by $\mathbf{g}(X)$. Thus $\mathbf{c}(X)=\mathbf{a}(X) \mathbf{g}(X)$ with $\mathbf{a}(X) \neq 0$. Consider

$$
\mathbf{c}(1)=\mathbf{a}(1) \mathbf{g}(1)
$$

Since 1 is not a root of $\mathbf{g}(X), \mathbf{g}(1) \neq 0$. If $\mathbf{a}(1) \neq 0$, then $c_{\infty}=-\mathbf{c}(1) \neq 0$ and the vector $\left(c_{\infty}, c_{0}, c_{1}, \ldots, c_{2^{m}-2}\right)$ has weight $d+1$. Next we show that $\mathbf{a}(1)$ is not equal to 0 . If $\mathbf{a}(1)=0$,
then $\mathbf{a}(X)$ has $X-1$ as a factor and $\mathbf{c}(X)$ is a multiple of $(X-1) \mathbf{g}(X)$ and must have a weight at least $d+1$. This contradicts to the hypothesis that $\mathbf{c}(X)$ is a minimum weight code polynomial. Consequently the extended RS code has a minimum distance $d+1$.
7.12 To prove the minimum distance of the doubly extended RS code, we need to show that no $2 t$ or fewer columns of \mathbf{H}_{1} sum to zero over $\operatorname{GF}\left(2^{m}\right)$ and there are $2 t+1$ columns in \mathbf{H}_{1} sum to zero. Suppose there are δ columns in \mathbf{H}_{1} sum to zero and $\delta \leq 2 t$. There are 4 case to be considered:
(1) All δ columns are from the same submatrix \mathbf{H}.
(2) The δ columns consist of the first column of \mathbf{H}_{1} and $\delta-1$ columns from \mathbf{H}.
(3) The δ columns consist of the second column of \mathbf{H}_{1} and $\delta-1$ columns from \mathbf{H}.
(4) The δ columns consist of the first two columns of \mathbf{H}_{1} and $\delta-2$ columns from \mathbf{H}.

The first case leads to a $\delta \times \delta$ Vandermonde determinant. The second and third cases lead to a $(\delta-1) \times(\delta-1)$ Vandermonde determinant. The 4th case leads to a $(\delta-2) \times(\delta-2)$ Vandermonde determinant. The derivations are exactly the same as we did in the book. Since Vandermonde determinants are nonzero, δ columns of \mathbf{H}_{1} can not be sum to zero. Hence the minimum distance of the extended RS code is at least $2 t+1$. However, \mathbf{H} generates an RS code with minimum distance exactly $2 t+1$. There are $2 t+1$ columns in \mathbf{H} (they are also in \mathbf{H}_{1}), which sum to zero. Therefore the minimum distance of the extended RS code is exactly $2 t+1$.
7.13 Consider

$$
\mathbf{v}(X)=\sum_{i=0}^{2^{m}-2} \mathbf{a}\left(\alpha^{i}\right) X^{i}=\sum_{i=0}^{2^{m}-2}\left(\sum_{j=0}^{k-1} a_{j} \alpha^{i j}\right) X^{i}
$$

Let α be a primitive element in $\operatorname{GF}\left(2^{m}\right)$. Replacing X by α^{q}, we have

$$
\begin{aligned}
\mathbf{v}\left(\alpha^{q}\right) & =\sum_{i=0}^{2^{m}-2} \sum_{j=0}^{k-1} a_{j} \alpha^{i j} \alpha^{i q} \\
& =\sum_{j=0}^{k-1} a_{j}\left(\sum_{i=0}^{2^{m}-2} \alpha^{i(j+q)}\right) .
\end{aligned}
$$

We factor $1+X^{2^{-1}}$ as follows:

$$
1+X^{2^{m}-1}=(1+X)\left(1+X+X^{2}+\cdots+X^{2^{m}-2}\right)
$$

Since the polynomial $1+X+X^{2}+\cdots+X^{2^{m}-2}$ has $\alpha, \alpha^{2}, \ldots, \alpha^{2^{m}-2}$ as roots, then for $1 \leq l \leq 2^{m}-2$,

$$
\sum_{i=0}^{2^{m}-2} \alpha^{l i}=1+\alpha^{l}+\alpha^{2 l}+\cdots+\alpha^{\left(2^{m}-2\right) l}=0 .
$$

Therefore,

$$
\sum_{i=0}^{2^{m}-2} \alpha^{i(j+q)}=0 \quad \text { when } 1 \leq j+q \leq 2^{m}-2 .
$$

This implies that

$$
\mathbf{v}\left(\alpha^{q}\right)=0 \quad \text { for } 0 \leq j<k \text { and } 1 \leq q \leq 2^{m}-k-1 .
$$

Hence $\mathbf{v}(X)$ has $\alpha, \alpha^{2}, \ldots, \alpha^{2^{m}-k-1}$ as roots. The set $\{\mathbf{v}(X)\}$ is a set of polynomial over $\mathrm{GF}\left(2^{m}\right)$ with $2^{m}-k-1$ consecutive powers of α as roots and hence it forms a $\left(2^{m}-1, k, 2^{m}-\right.$ k) cyclic RS code over $\mathrm{GF}\left(2^{m}\right)$.

