Chapter 11

Convolutional Codes

11.1 (a) The encoder diagram is shown below.

(b) The generator matrix is given by

$$
\mathbf{G}=\left[\begin{array}{cccccc}
111 & 101 & 011 & & & \\
& 111 & 101 & 011 & & \\
& & 111 & 101 & 011 & \\
& & & \ddots & & \ddots
\end{array}\right]
$$

(c) The codeword corresponding to $\mathbf{u}=(11101)$ is given by

$$
\mathbf{v}=\mathbf{u} \cdot \mathbf{G}=(111,010,001,110,100,101,011)
$$

11.2 (a) The generator sequences of the convolutional encoder in Figure 11.3 on page 460 are given in (11.21).
(b) The generator matrix is given by

$$
\mathbf{G}=\left[\begin{array}{ccccc}
1111 & 0000 & 0000 & & \\
0101 & 0110 & 0000 & & \\
0011 & 0100 & 0011 & & \\
& 1111 & 0000 & 0000 & \\
& 0101 & 0110 & 0000 & \\
& 0011 & 0100 & 0011 & \\
& & \ddots & & \ddots
\end{array}\right]
$$

(c) The codeword corresponding to $\mathbf{u}=(110,011,101)$ is given by

$$
\mathbf{v}=\mathbf{u} \cdot \mathbf{G}=(1010,0000,1110,0111,0011)
$$

11.3 (a) The generator matrix is given by

$$
\mathbf{G}(D)=\left[\begin{array}{lll}
1+D & 1+D^{2} & 1+D+D^{2}
\end{array}\right] .
$$

(b) The output sequences corresponding to $\mathbf{u}(D)=1+D^{2}+D^{3}+D^{4}$ are

$$
\begin{aligned}
\mathbf{V}(D) & =\left[\mathbf{v}^{(0)}(D), \mathbf{v}^{(1)}(D), \mathbf{v}^{(2)}(D)\right] \\
& =\left[1+D+D^{2}+D^{5}, 1+D^{3}+D^{5}+D^{6}, 1+D+D^{4}+D^{6}\right]
\end{aligned}
$$

and the corresponding codeword is

$$
\begin{aligned}
\mathbf{v}(D) & =\mathbf{v}^{(0)}\left(D^{3}\right)+D \mathbf{v}^{(1)}\left(D^{3}\right)+D^{2} \mathbf{v}^{(2)}\left(D^{3}\right) \\
& =1+D+D^{2}+D^{3}+D^{5}+D^{6}+D^{10}+D^{14}+D^{15}+D^{16}+D^{19}+D^{20}
\end{aligned}
$$

11.4 (a) The generator matrix is given by

$$
\mathbf{G}(D)=\left[\begin{array}{ccc}
1+D & D & 1+D \\
D & 1 & 1
\end{array}\right]
$$

and the composite generator polynomials are

$$
\begin{aligned}
\mathbf{g}_{1}(D) & =\mathbf{g}_{1}^{(0)}\left(D^{3}\right)+D \mathbf{g}_{1}^{(1)}\left(D^{3}\right)+D^{2} \mathbf{g}_{1}^{(2)}\left(D^{3}\right) \\
& =1+D^{2}+D^{3}+D^{4}+D^{5}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{g}_{2}(D) & =\mathbf{g}_{2}^{(0)}\left(D^{3}\right)+D \mathbf{g}_{2}^{(1)}\left(D^{3}\right)+D^{2} \mathbf{g}_{2}^{(2)}\left(D^{3}\right) \\
& =D+D^{2}+D^{3}
\end{aligned}
$$

(b) The codeword corresponding to the set of input sequences $\mathbf{U}(D)=\left[1+D+D^{3}, 1+D^{2}+D^{3}\right]$ is

$$
\begin{aligned}
\mathbf{v}(D) & =\mathbf{u}^{(1)}\left(D^{3}\right) \mathbf{g}_{1}(D)+\mathbf{u}^{(2)}\left(D^{3}\right) \mathbf{g}_{2}(D) \\
& =1+D+D^{3}+D^{4}+D^{6}+D^{10}+D^{13}+D^{14}
\end{aligned}
$$

11.5 (a) The generator matrix is given by

$$
\mathbf{G}=\left[\begin{array}{ccccccccc}
111 & 001 & 010 & 010 & 001 & 011 & & & \\
& 111 & 001 & 010 & 010 & 001 & 011 & & \\
& & 111 & 001 & 010 & 010 & 001 & 011 & \\
& & & \ddots & & & & & \ddots
\end{array}\right] .
$$

(b) The parity sequences corresponding to $\mathbf{u}=(1101)$ are given by

$$
\begin{aligned}
\mathbf{v}^{(1)}(D) & =\mathbf{u}(D) \cdot \mathbf{g}^{(1)}(D) \\
& =\left(1+D+D^{3}\right)\left(1+D^{2}+D^{3}+D^{5}\right) \\
& =1+D+D^{2}+D^{3}+D^{4}+D^{8},
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{v}^{(2)}(D) & =\mathbf{u}(D) \cdot \mathbf{g}^{(2)}(D) \\
& =\left(1+D+D^{3}\right)\left(1+D+D^{4}+D^{5}\right) \\
& =1+D^{2}+D^{3}+D^{6}+D^{7}+D^{8} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \mathbf{v}^{(1)}=(111110001) \\
& \mathbf{v}^{(2)}=(101100111) .
\end{aligned}
$$

11.6 (a) The controller canonical form encoder realization, requiring 6 delay elements, is shown below.

(b) The observer canonical form encoder realization, requiring only 3 delay elements, is shown below.

11.14 (a) The GCD of the generator polynomials is 1.
(b) Since the GCD is 1 , the inverse transfer function matrix $\mathbf{G}^{-1}(D)$ must satisfy

$$
\mathbf{G}(D) \mathbf{G}^{-1}(D)=\left[\begin{array}{ll}
1+D^{2} & 1+D+D^{2}
\end{array}\right] \mathbf{G}^{-1}(D)=\mathbf{I} .
$$

By inspection,

$$
\mathbf{G}^{-1}(D)=\left[\begin{array}{c}
1+D \\
D
\end{array}\right] .
$$

11.15 (a) The GCD of the generator polynomials is $1+D^{2}$ and a feedforward inverse does not exist.
(b) The encoder state diagram is shown below.

(c) The cycles $S_{2} S_{5} S_{2}$ and $S_{7} S_{7}$ both have zero output weight.
(d) The infinite-weight information sequence

$$
\mathbf{u}(D)=\frac{1}{1+D^{2}}=1+D^{2}+D^{4}+D^{6}+D^{8}+\cdots
$$

results in the output sequences

$$
\begin{aligned}
& \mathbf{v}^{(0)}(D)=\mathbf{u}(D)\left(1+D^{2}\right)=1 \\
& \mathbf{v}^{(1)}(D)=\mathbf{u}(D)\left(1+D+D^{2}+D^{3}\right)=1+D
\end{aligned}
$$

and hence a codeword of finite weight.
(e) This is a catastrophic encoder realization.
11.16 For a systematic (n, k, ν) encoder, the generator matrix $\mathbf{G}(D)$ is a $k \times n$ matrix of the form

$$
\mathbf{G}(D)=\left[\mathbf{I}_{k} \mid \mathbf{P}(D)\right]=\left[\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & \mathbf{g}_{1}^{(k)}(D) & \cdots & \mathbf{g}_{1}^{(n-1)}(D) \\
0 & 1 & \cdots & 0 & \mathbf{g}_{2}^{(k)}(D) & \cdots & \mathbf{g}_{2}^{(n-1)}(D) \\
\vdots & & & & \vdots & & \vdots \\
0 & 0 & \cdots & 1 & \mathbf{g}_{k}^{(k)}(D) & \cdots & \mathbf{g}_{k}^{(n-1)}(D)
\end{array}\right]
$$

The transfer function matrix of a feedforward inverse $\mathbf{G}^{-1}(D)$ with delay $l=0$ must be such that

$$
\mathbf{G}(D) \mathbf{G}^{-1}(D)=\mathbf{I}_{k}
$$

A matrix satisfying this condition is given by

$$
\mathbf{G}^{-1}(D)=\left[\begin{array}{c}
\mathbf{I}_{k} \\
\mathbf{0}_{(n-k) \times k}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

11.19 (a) The encoder state diagram is shown below.

(b) The modified state diagram is shown below.

(c) The WEF function is given by

$$
A(X)=\frac{\sum_{i} F_{i} \Delta_{i}}{\Delta}
$$

There are 3 cycles in the graph:

$$
\begin{array}{lll}
\text { Cycle 1: } & S_{1} S_{2} S_{1} & C_{1}=X^{3} \\
\text { Cycle 2: } & S_{1} S_{3} S_{2} S_{1} & C_{2}=X^{4} \\
\text { Cycle 3: } & S_{3} S_{3} & C_{3}=X
\end{array}
$$

There is one pair of nontouching cycles:
Cycle pair 1: (Cycle 1, Cycle 3) $\quad C_{1} C_{3}=X^{4}$.
There are no more sets of nontouching cycles. Therefore,

$$
\begin{aligned}
\Delta & =1-\sum_{i} C_{i}+\sum_{i^{\prime}, j^{\prime}} C_{i^{\prime}} C_{j^{\prime}} \\
& =1-\left(X+X^{3}+X^{4}\right)+X^{4} \\
& =1-X-X^{3} .
\end{aligned}
$$

There are 2 forward paths:
$\begin{array}{lll}\text { Forward path 1: } & S_{0} S_{1} S_{2} S_{0} & F_{1}=X^{7} \\ \text { Forward path 2: } & S_{0} S_{1} S_{3} S_{2} S_{0} & F_{2}=X^{8} .\end{array}$
Only cycle 3 does not touch forward path 1 , and hence

$$
\Delta_{1}=1-X
$$

Forward path 2 touches all the cycles, and hence

$$
\Delta_{2}=1
$$

Finally, the WEF is given by

$$
A(X)=\frac{X^{7}(1-X)+X^{8}}{1-X-X^{3}}=\frac{X^{7}}{1-X-X^{3}}
$$

Carrying out the division,

$$
A(X)=X^{7}+X^{8}+X^{9}+2 X^{10}+\cdots
$$

indicating that there is one codeword of weight 7 , one codeword of weight 8 , one codeword of weight 9,2 codewords of weight 10 , and so on.
(d) The augmented state diagram is shown below.
(e) The IOWEF is given by

$$
A(W, X, L)=\frac{\sum_{i} F_{i} \Delta_{i}}{\Delta}
$$

There are 3 cycles in the graph:

$$
\begin{array}{lll}
\text { Cycle 1: } & S_{1} S_{2} S_{1} & C_{1}=W X^{3} L^{2} \\
\text { Cycle 2: } & S_{1} S_{3} S_{2} S_{1} & C_{2}=W^{2} X^{4} L^{3} \\
\text { Cycle 3: } & S_{3} S_{3} & C_{3}=W X L .
\end{array}
$$

There is one pair of nontouching cycles:
Cycle pair 1: (Cycle 1, Cycle 3) $\quad C_{1} C_{3}=W^{2} X^{4} L^{3}$.
There are no more sets of nontouching cycles. Therefore,

$$
\begin{aligned}
\Delta & =1-\sum_{i} C_{i}+\sum_{i^{\prime}, j^{\prime}} C_{i^{\prime}} C_{j^{\prime}} \\
& =1-W X^{3} L^{2}+W^{2} X^{4} L^{3}+W X L+W^{2} X^{4} L^{3} .
\end{aligned}
$$

There are 2 forward paths:

$$
\begin{array}{lll}
\text { Forward path 1: } & S_{0} S_{1} S_{2} S_{0} & F_{1}=W X^{7} L^{3} \\
\text { Forward path 2: } & S_{0} S_{1} S_{3} S_{2} S_{0} & F_{2}=W^{2} X^{8} L^{4}
\end{array}
$$

Only cycle 3 does not touch forward path 1 , and hence

$$
\Delta_{1}=1-W X L
$$

Forward path 2 touches all the cycles, and hence

$$
\Delta_{2}=1
$$

Finally, the IOWEF is given by

$$
A(W, X, L)=\frac{W X^{7} L^{3}(1-W X L)+W^{2} X^{8} L^{4}}{1-\left(W X^{3} L^{2}+W^{2} X^{4} L^{3}+W X L\right)+X^{4} Y^{2} Z^{3}}=\frac{W X^{7} L^{3}}{1-W X L-W X^{3} L^{2}} .
$$

Carrying out the division,

$$
A(W, X, L)=W X^{7} L^{3}+W^{2} X^{8} L^{4}+W^{3} X^{9} L^{5}+\cdots,
$$

indicating that there is one codeword of weight 7 with an information weight of 1 and length 3 , one codeword of weight 8 with an information weight of 2 and length 4 , and one codeword of weight 9 with an information weight of 3 and length 5 .
11.20 Using state variable method described on pp. 505-506, the WEF is given by
$A(X)=\frac{-X^{4}\left(-1-2 X^{4}+X^{3}+9 X^{20}-42 X^{18}+78 X^{16}+38 X^{12}+3 X^{17}+5 X^{13}+9 X^{11}-9 X^{15}-2 X^{7}-74 X^{14}-14 X^{10}-9 X^{9}+X^{6}+6 X^{8}\right)}{1-X+2 X^{4}-X^{3}-X^{2}+3 X^{24}+X^{21}-3 X^{20}+32 X^{18}-8 X^{22}-X^{19}-45 X^{16}-8 X^{12}-5 X^{17}-6 X^{11}+9 X^{15}+2 X^{7}+27 X^{14}+3 X^{10}-2 X^{9}-4 X^{6}+X^{8}}$.
Performing the division results in

$$
A(X)=X^{4}+X^{5}+2 X^{6}+3 X^{7}+6 X^{8}+9 X^{9}+\cdots,
$$

which indicates that there is one codeword of weight 4 , one codeword of weight 5 , two codewords of weight 6 , and so on.
11.28 (a) From Problem 11.19(c), the WEF of the code is

$$
A(X)=X^{7}+X^{8}+X^{9}+2 X^{10}+\cdots
$$

and the free distance of the code is therefore $d_{\text {free }}=7$, the lowest power of X in $A(X)$.
(b) The complete CDF is shown below.

(c) The minimum distance is

$$
d_{\min }=\left.d_{l}\right|_{l=m=2}=5 .
$$

11.29 (a) By examining the encoder state diagram in Problem 11.15 and considering only paths that begin and end in state S_{0} (see page 507), we find that the free distance of the code is $d_{\text {free }}=6$. This corresponds to the path $S_{0} S_{1} S_{2} S_{4} S_{0}$ and the input sequence $\mathbf{u}=(1000)$.
(b) The complete CDF is shown below.

(c) The minimum distance is

$$
d_{\min }=\left.d_{l}\right|_{l=m=3}=3
$$

11.31 By definition, the free distance $d_{\text {free }}$ is the minimum weight path that has diverged from and remerged with the all-zero state. Assume that $[\mathbf{v}]_{j}$ represents the shortest remerged path through the state diagram with weight free $d_{f r e e}$. Letting $\left[d_{l}\right]_{r e}$ be the minimum weight of all remerged paths of length l, it follows that $\left[d_{l}\right]_{r e}=d_{\text {free }}$ for all $l \geq j$. Also, for a noncatastrophic encoder, any path that remains unmerged must accumulate weight. Letting $\left[d_{l}\right]_{u n}$ be the minimum weight of all unmerged paths of length l, it follows that

$$
\lim _{l \rightarrow \infty}\left[d_{l}\right]_{u n} \rightarrow \infty
$$

Therefore

$$
\lim _{l \rightarrow \infty} d_{l}=\min \left\{\lim _{l \rightarrow \infty}\left[d_{l}\right]_{r e}, \lim _{l \rightarrow \infty}\left[d_{l}\right]_{u n}\right\}=d_{f r e e}
$$

Q. E. D.

