ELEC6151: Information Theory and Source Coding Midterm March 27, 2013

1) Consider a source with output +1 and -1. Assume that P(X = -1) = 0.25.

- a) Find H(Y) for $Y = X^3 + 2$ in bits (2 Mark).
 - b) Find H(Z) for $Z = X^{2} + 1$ (2 Mark).

2) A source generates character x taking values from the set $\{0, 1, 2, ..., 9, a, b, c, ..., y, z\}$. The character x is a numeral, $\{0, 1, 2, ..., 9\}$, with probability 1/3, is a vowel, $\{a, e, i, o, u\}$ with probability 1/3 and is otherwise one of the 21 consonants. Find the maximum entropy of X (4 Marks).

3) a) For the source with five symbols with probability distribution $\mathbf{p} = (0.3, 0.3, 0.2, 0.1, 0.1)$ construct a binary Huffman code and find its average length (2 Marks).

b) Find the probability distribution \mathbf{q} on five symbols such that the code you constructed in part (a) is optimum, i.e., its average length under \mathbf{q} is equal to its entropy $H(\mathbf{q})$ (3 Marks).

4) Find the capacity of the channel given by p(y | x),

$$p(y \mid x) = \begin{bmatrix} 1/3 & 2/3 & 0\\ 0 & 1/3 & 2/3\\ 1/3 & 0 & 2/3 \end{bmatrix}.$$

(5 Marks).

5) The following diagrams show, the three basic gates (XOR, AND, OR).

with the following truth tables:

0	0	0
0	1	0
1	0	0
1	1	1
	b) AND	Gate
V		
X	Z	Y
0	Z 0	Y 0
	Z	Y
0	Z 0	Y 0
0 0	Z 0 1	Y 0 1

c) OR Gate

Consider each gate as a noisy channel with X being the input, Y the output and Z the noise. Find the capacity of the following channels:

- a) XOR gate with Z being a binary memoryless random variable with parameter p (probability of Z being one is p) (4 Marks).
- b) AND gate with Z being a binary memoryless random variable with parameter $\frac{1}{2}$ (4 Marks).
- c) OR gate with Z being a binary memoryless random variable with parameter $\frac{1}{2}$ (4 Marks).