ELEC6151: Information Theory and Source Coding Midterm

March 27, 2013

1) Consider a source with output +1 and -1 . Assume that $P(X=-1)=0.25$.
a) Find $H(Y)$ for $Y=X^{3}+2$ in bits (2 Mark).
b) Find $H(Z)$ for $Z=X^{2}+1$ (2 Mark).
2) A source generates character x taking values from the set $\{0,1,2, \ldots, 9, a, b, c, \ldots, y, z\}$. The character x is a numeral, $\{0,1,2, \ldots, 9\}$, with probability $1 / 3$, is a vowel, $\{a, e, i, o, u\}$ with probability $1 / 3$ and is otherwise one of the 21 consonants. Find the maximum entropy of X (4 Marks).
3) a) For the source with five symbols with probability distribution $\mathbf{p}=(0.3,0.3,0.2,0.1,0.1)$ construct a binary Huffman code and find its average length (2 Marks).
b) Find the probability distribution \mathbf{q} on five symbols such that the code you constructed in part (a) is optimum, i.e., its average length under \mathbf{q} is equal to its entropy $H(\mathbf{q})$ (3 Marks).
4) Find the capacity of the channel given by $p(y \mid x)$,

$$
p(y \mid x)=\left[\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
0 & 1 / 3 & 2 / 3 \\
1 / 3 & 0 & 2 / 3
\end{array}\right]
$$

(5 Marks).
5) The following diagrams show, the three basic gates (XOR, AND, OR).

with the following truth tables:

X	Z	Y
0	0	0
0	1	1
1	0	1
1	1	0

a) XOR Gate

0	0	0
0	1	0
1	0	0
1	1	1

b) AND Gate

X	Z	Y
0	0	0
0	1	1
1	0	1
1	1	1

c) OR Gate

Consider each gate as a noisy channel with X being the input, Y the output and Z the noise. Find the capacity of the following channels:
a) XOR gate with Z being a binary memoryless random variable with parameter p (probability of Z being one is p) (4 Marks).
b) AND gate with Z being a binary memoryless random variable with parameter $1 / 2$ (4 Marks).
c) OR gate with Z being a binary memoryless random variable with parameter $1 / 2(4$ Marks).

