Course:	Number:		Section:
Digital Transmission Systems	ELEC $462/2$		W
Examination:	Date:	Time:	# of pages:
Final	Dec. 10, 1999	3 Hours	3
Instructor:		-	
Dr. M.R. Soleymani			
Books and Materials: Allowed			
Calculators: allowed (standard type)			
Special Instructions: Try all questions,			
Make assumptions if necessary			

- 1) Two audio signals each with a bandwidth of 22 kHz. are sampled and quantized using a uniform quantizer.
 - (a) Find the minimum required sampling rate (3 Marks).
 - (b) Find the minimum number of bits per sample if a quantization Signal-to-Noise Ratio of 90 dB is desired (4 Marks).
 - (c) Find the minimum channel bandwidth required for transmitting the resulting data stream if the modulation technique used is QPSK with raised cosine filtering with a roll-off factor of 0.4 (6 Marks).
 - (d) Find the answer to part (c) if, prior to modulation, the data stream is encoded using a (511,439) BCH code (3 Marks).

2)

- (a) Calculate the bit rate of a T1 carrier (4 marks).
- (b) Repeat part (a) for a system with only 10 voice channels with everything else remaining the same as T1 (3 Marks).
- (c) Calculate and compare the efficiency of the two systems (3 Marks).
- 3) Consider the following pulse:

$$p(t) = \begin{cases} 1 & 0 \le t < \frac{T}{2} \\ -1 & \frac{T}{2} \le t < T \\ 0 & elsewhere \end{cases}$$

- (a) Find and sketch the impulse response of the filter matched to this pulse (4 Marks).
- (b) In a binary communication system a 1 is represented as $s_1(t) = Ap(t)$

and a 0 is represented as $s_2(t) = -Ap(t)$. Design the optimum receiver for this system if the bits are equally likely and the channel is AWGN (5 Marks).

- (c) Find the probability of error in terms of A, T and N_0 where $\frac{N_0}{2}$ is the two-sided power spectral density of the noise (7 Marks).
- 4) Find the difference between the $\frac{E_b}{N_0}$ requirement of coherent and non-coherent binary FSK schemes for a bit error rate of 10^{-4} (10 Marks).
- 5) A communication system uses binary PSK and transmits at a rate of 250 kbps with a bit error probability of 10^{-8} .
 - (a) Find the probability of error if the bit rate is increased to 1 Mbps with everything else remaining unchanged (6 Marks).
 - (b) Would your answer change if some other modulation technique is used (1 Mark). Justify your answer (2 Marks).
- 6) Compare the average energy of the 8-ary constellation given in Figure 1 with that of an 8PSK constellation with the same minimum distance between the points (10 Marks).

Figure 1

7) A communication system is using 64-QAM modulation. Find the $\frac{E_b}{N_0}$ (in dB) required for a bit error probability of 10^{-4} (8 Marks).

- 8) Determine the block length and the number of the redundancy symbols for a Reed-Solomon code with m=8 and error correction capability of 8 symbols (4 Marks). Find the rate of the code (2 Marks) and the block-length in bits (1 Mark).
- 9) A convolutional encoder is described by the following generator sequences:

$$g_1 = (1101),$$

$$g_2 = (1011).$$

- (a) Draw the encoder for this code (4 Marks).
- (b) Draw the state diagram of the code (5 Marks).
- (b) What is the constraint length of the code (2 Marks),
- (c) Find the output of the encoder if the input is 000101000 (3 Marks).