Concordia University

Department of Electrical and Computer Engineering ELEC462: Digital Transmission Systems

Midterm Exam Winter 1999

- 1) A Gaussian random variable X has a mean A and a variance A^2 . What is the probability that X is greater than 4A? (20 Marks) (Numerical value is required.)
- 2) A random process x(t) has the following autocorrelation function,

$$R_X(au) = rac{K}{4} exp(-rac{| au|}{K}).$$

Find the mean squared value of x(t). (5 Marks)

- 3) An analog audio signal with a bandwidth of 15 kHz. has to be sampled and quantized using a uniform quantizer.
- a) What is the minimum required sampling rate? (5 Marks)
- b) For a signal-to-quantization-noise ratio of 89 dB, what is the required number of bits per sample? (Make any *reasonable* assumption you judge necessary.) (10 Marks)
- c) What is the required bandwidth for transmitting the quantized signal if a raised cosine pulse with a roll-off factor of $\alpha = 0.4$ is used? (15 Marks).
- 4) In a binary transmission system, a "1" is represented by a positive voltage +A for T_b seconds and a "0" is represented by a ground (zero volts) for T_b seconds. The channel is AWGN with power spectral density $\frac{N_0}{2}$ and the input symbols are equiprobable.
- a) Draw the block diagram of the receiver. (5 Marks)
- b) Find the probability of bit error in terms of A, N_0 and T_b . (20 Marks)
- c) Find a relationship between A, N_0 and T_b such that the bit error probability is 10^{-6} . (10 Marks)
- d) What would be the error probability if the transmission rate is doubled? (everything else remaining unchanged) (10 Marks)