Problem 3.1

Assuming M is even we have
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As we see, this signal set is indeed equivalent to a 4-phase PSK signal.

_3_:_'2 1.2. The signal space diagram, together with the Gray encoding of each signal point is given
in the following figure :
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The signal points that may be transmitted at times t = 2nT n = 0,1, ... are given with blank
circles, while the ones that may be transmitted at times ¢t = 2nT + 1, n=0,1,... are given with
filled circles.



Problem 3.4

1. Consider the QAM constellation of Fig. P3-4. Using the Pythagorean theorem we can find the

radius of the inner circle as:

a2+a2=A2=>a=iA
V2

The radius of the outer circle can be found using the cosine rule. Since b is the third side of a
triangle with a and A the two other sides and angle between then equal to § = 75°, we obtain:

1++/3
b2 =a2+ A2 —2aAcosT5’ = b = +2\/_A

2. If we denote by r the radius of the circle, then using the cosine theorem we obtain:

A2 =124 7% - 2rcosd5’ = r = ———
22

3. The average transmitted power of the PSK constellation is:
2
1 A A
Ppgg =8x g% (——2 ﬁ) = PPSK =575

whereas the average transmitted power of the QAM constellation:

A2 (1+v3)?
PQAM=§<47+4—'4—A2 =>PQAM=

The relative power advantage of the PSK constellation over the QAM constellation is:

2+ (1+v3)?
8

A2

. _ Ppsk _ 8 _
gain = PQAM = e+ (T2 - VB =1.5927 dB

Problem 3.5

;(.i':clth:ugl} it is Possi‘ble to assign three bits to each point of the 8-PSK signal constellation so that
> i ltz)nl 11)8(1)nts ﬁf;izr in only one bit, (e.g. going in a clockwise direction : 000, 001, 011, 010, 110
- ,fuuy, Con). tt ) is not ht;he case for the 8-QAM constellation of Figure P3-4. This is bec’a.use ’therei
nected graphs consisted of three points. To see this consi i
: . ! . sider an equilateral tri
with Yertlces AB a:nd C. If, without loss of generality, we assign the all zero squence {rO 0 e
to point A, then point B and ¢ should have the form OO

B={0,...,0,1,0,...,0} C={0,...,0,1,0,...,0}
where the position of the 1 in the sequences i i
of B ond O aiffe 1 e 1 2 q es 1s not the same, otherwise B=C. Thus, the sequences
2. Since each symbol conveys 3 bits of information, the resulted symbol rate is :

_ 90 x 108

R, 3

= 30 x 10® symbols/sec



Problem 3.6

The constellation of Fig. P3-6(a) has four points at a distance 24 from the origin and four points
at a distance 2v/2A. Thus, the average transmitted power of the constellation is:

P, = % [4x 24) + 4 x (2v24)?] = 642
The second constellation has four points at a distance v/7A4 from the origin,

tance v/34 and two points at a distance A. Thus, the average transmitted
constellation is:

two points at a dis-
power of the second

Pb=%[4>< (V7TA)? +2 x (\/§A)2+2A2J =§A2 5

Since P, < P, the second constellation is more power efficient.

Problem 3.7

One way to label the points of the V.29 constellation using the Gray-code is depicted in the next
figure.
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Problem 3.21

1) The power spectral density of X (t) is given by

8:() = ZSHIV(S)P
The Fourier transform of u(t) is

U(f) = Flu(®)] = AT%”Ie—jwa

Hence,
U(H)? = (AT)sinc?(fT)

and therefore,
S (f) = A*TS;(f)sinc?(fT) = A2Tsinc?(fT)

2) If uy(t) is used instead of u(t) and the symbol interval is T', then

S:lf) = FSNUPP
- %(A2T)2sin02( f2T) = 4ATsinc?(£2T)

3) If we precode the input sequence as b, = I, + al,_1, then

14a? m=0
Rb(m)= o m = +1

0 otherwise
and therefore, the power spectral density Sp(f) is
So(f) =1+ a® + 2acos(2m fT)
To obtain a null at f = 3, the parameter a should be such that
2 _
1+a°+2a cos(27rfT)lf=3}r =0

and « does not have a real-valued solution. Therefore the above precoding cannot result in a PAM
system with the desired spectral null.

4) The answer to this question is no. This is because Sy(f) is an analytic function and unless it
is identical to zero it can have at most a countable number of zeros. This property of the analytic
functions is also referred as the theorem of isolated zeros.

PROPRIETARY MATERIAL. ©The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed,
reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the
limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a
student using this Manual, you are using it without permission.



Problem 4.5

1. Note that sa(t) = 2s1(t) and s3(t) = 0s1(t), hence the system is PAM and a singular basis

function of the form ¢, (t) = -‘41781(15) would work

¢(t)—{_1ﬁ 0<t<T/3

1
—= T/3<t<T

Assuming E; = A?T, we have s3 = 0, s1 = VE1, 82 = 2y/E;. The constellation is shown

below.
83 81 82
——t—— 0
0 vEi  V2E;

2. For equiprobable messages the optimal decision rule is the nearest neighbor rule and the
perpendicular bisectors are the boundaries of the decision regions as indicated in the figure.

3. Th.is is ternary PAM system with the distance between adjacent pints in the constellation
being d = v/Ey = AVT. The average energy is Enyg = 1(0 + A2T + 442T) = 342T, and
- 3
Epavg = Eavg/logy 3 = mzz—3A2T, from which we obtain ’

3log, 3
d? = ~—52—E,,,,wg ~ 0.951 Epayg

The error probability of the optimal detector is the average of the error probabilities of the

three signals. For the two outer signals error probability is P(n>d/2) =@ (—d-& and
No/2

for the middle point s; it is P d/2) = —g/2 ;
1 it is P(In| > d/2) = 2Q T3 ) From this,

4 | @ 4 [0.951E /
P, =~ — | == 90" Thavg | _ Ebay,
39 ( 2No) 39 ( 2Np g) =430 ( 0475 23vog>

4. R = R,;logy M = 3000 x log, 3 ~ 4755 bps.



Problem 4.6

For binary phase modulation, the error probability is

R

With P, = 1075 we find from tables that

2
A /% = 4.74 => AT = 44.9352 x 10~10
0

If the data rate is 10 Kbps, then the bit interval is T = 10~4 and therefore, the signal amplitude is

A =1/44.9352 x 10-10 x 10% = 6.7034 x 10~3

Similarly we find that when the rate is 10° bps and 10 bps, the required amplitude of the signal
is A=2.12x10"2 and A = 6.703 x 10~2 respectively.

Problem 4.7

1. The PDF of the noise n is :
p(n) = %e‘””'

where A = 302 The optimal receiver uses the criterion :

A A
P(rlA)  _  _Ajr—al-frra) > >
p(rl—A)—e < l=r7r < 0

—-A —-A

The average probability of error is :
1 1
Ple) = §P(e|A) + 5P(e| - A)
1 [0 1 [
= 5/ st | st1- ayar
—00 0
1 0 Ar—A 1 oo
= —/ Age~ A= Id7'+—/ Age Ar+Al gy
2/ 2 Jo

A2 el A [P g
= Z/_ooe d:z:+Z/A e dz

1 -\ — 16—10244

2



2. The variance of the noise is :
o0
o2 = é/ e~ el 224z

2 J-wo
e 21 2
= )\/0 e Mz2dr = )\F =32 = o’

Hence, the SNR is:
A2

SNR = ﬁ .
and the probability of error is given by:
1 _ rssvE
P(e) — 56_ 2SNR

For P(e) = 1075 we obtain:

In(2 x 107°) = —~v2SNR — SNR = 58.534 = 17.6741 dB

If the noise was Gaussian, then the probability of error for antipodal signalling is:

PE=Q [\/EN%J - o[VNE]

where SNR is the signal to noise ratio at the output of the matched filter. With P(e) =105 we
find VSNR = 4.26 and therefore SNR = 18.1476 = 12.594 dB. Thus the required signal to noise
ratio is 5 dB less when the additive noise is Gaussian.

Problem 4.8

= 242 /Ny ).
1. Since demiy, = 24, from the union bound we have P, < 15Q (\/d,zmn/ZNo) 15Q (\/ / )
. min T )
= 242 = A? + 942 = 10A?, and
9. Three levels of energy are present, B; = A? + A% = 12A , £1'72 ,11 += s
. E; = 9A2 + 9A% = 18A2. The average energy is Eayg = 7 E1+ 5E2 + 3 E3
= e
Epavg = Eavg/logy 16 = 2.5A4%.

3. P, <15Q (v/2A%/No) = 15Q (/4 Foavg/5No).

4. For a 16-level PAL system

4 Eba;/
6log, M Eba.vg _ 2_ —bavg
P3N2Q< M22_1 N0 _2Q 255 No

i ~ 8.5~ 9.3 dB
The difference is 55z = 255/30 ~ 8.5 ~ 9.3 d




Problem 4.20

The optimum decision boundary of a point is determined by the perpedicular bisectors of each line
segment connecting the point with its neighbors. The decision regions for this QAM constellation

are depicted in the next figure:

S|l 0| O ©

@)

Problem 4.28
Using the Pythagorean theorem for the four-phase constellation, we find:

d
T%+T%=d2=>'r1=—

V2
The radius of the 8-PSK constellation is found using the cosine rule. Thus:

d
d® =13 +713 — 2rcos(45°) = rp = —— _

V2-+2

The average transmitted power of the 4-PSK and the 8-PSK constellation is given by:

d? d?
P4,m,=7, PS,av=_2_ﬁ
Thus, the additional transmitted power needed by the 8-PSK signal is:
2d?
P =10log;) ————— = 5.3329 dB
10 (2 _ \/i)d2

We obtain the same results if we use the probability of error given by (see 4-3-17) :
.
Py =20Q [ 27, sin M]

where 7, is the SNR per symbol. In this case, equal error probability for the two signaling schemes,
implies that

inZ
sin 7

Y4 ¢ Sin? T_ 78 ¢ sin? T = 10log Vs _ 20 log
) 2 \ 10 10

8 V4,s sin %

Since we consider that error ocuur only between adjacent points, the above result is equal to the
additional transmitted power we need for the 8-PSK scheme to achieve the same distance d between
adjacent points.

= 5.3329 dB



Problem 4.44

2
1. Using the definition of Q-functien Q(z) = [;° -\/1—2-;6—% dt we have

E[Q(8X)] = / ” Qon) e e

T 22
= ~5 dt| —e 27 dx
/0 [v27r /:1: ] 02

where the region of integration is 0 < z < 0o and Sz <t < 0. Reordering integrals we have

x

BIQX) - /°° T [ [ _jd] dt

—.];_._1_ (1+ la)dt
1

ﬂ2a2 1 o0 _ﬁd
= —— — e e 2 S
2 1+ﬂ202 \/27('_/0

1 1 202
T2\ V1+8%02

2 52
where we have used the change of variables s =1 1—;@;?—

2. This is similar to case 1 with 8 = %, therefore

1
=—=11- —_—
E[Pb] 2 \1_}_0-2%}

3. Obviously here

B[R] =3

4. Note that for 02% > 1, we have

N - |1- 1
1+2§h

1
T o1 a2E
2+402N%

where we have used the approximation that for small €, /T — e~ 1 — 5. From the above we
have

1 / SNR ) .
5(1" 8% ] S—;ﬁ antipodal

1 SNR
2 (1 -

E[Py) =
1
2+58R) ~ 78Nk Orthogonal

Q



5. We have

o0 2
32 _=
e P —e 202 dz
o
— z? (1+2ﬂa’2)
e 202 dx

sl -

00

J
z

[

1 o 2

= WA te” 2 dt

_ 1

" 1+ 2802

zL for Bo? > 1
2802

where we have used the change of variables ¢t = z l“—L‘—fng We will see later that the error

B
probability for noncoherent detection of BFSK is P, = %e 2No and for binary DPSK is
E

y:/y . .
B = %e No. If we have Rayleigh attenuation as in part 2, we can substitute 8 = %"5 and
B= % and obtain

11
B[R] = {W s STRl noncoherent BFSK
aeR "~ Iam binary DPSK

As noticed from parts 4 and 5, all error probabilities are inversely proportional to SNR.
Problem 4.45

Here the noise is not Gaussian, therefore none of the results of Gaussian noise can be used. We
start from the MAP rule

Dy = {r : p(s1|r) > p(s2|r)}
= {r: p(s1)p(r|s1) > p(s2)p(r|s2)}
= {r :p(r|s;) > p(r|sz)}  since the signals are equiprobable

1 e 1 _ _ . . .
={r:Ze Ir1=1]=fr2-1] 7€ Im+1l=Ir2+11}  since noise components are independent

={r:ln+1+rs+1| > |r1 — 1| + Jrp — 1]}

Ifri,ro>1,then Dy ={r:r+14+r+1>r —1+7r— 1} which is always satisfied. Therefore
the entire 71,72 > 1 region belongs to D;. Similarly it can be shown that the entire 71,12 < —1
region belongs to D,. For r1 > 1 and 5 < —1 we have D; = {r:m+1-r—-1 >r—1-ry+1}
or 0> 0, i.e,r1,72 < —1 can be either in D; or D,. Similarly we can consider other regions of the
plane. The final result is shown in the figure below. Regions D; and D» are shown in the figure
and the rest of the plane can be either D; or Ds.

Dy
(-1,1)

v

=Y
D




Problem 4.59

1. For n repeaters in cascade, the probability of i out of n repeaters to produce an error is given
by the binomial distribution

n . .
P=| |prQ-p""
1

However, there is a bit error at the output of the terminal receiver only when an odd number of
repeaters produces an error. Hence, the overall probability of error is

n . .
P,=Paa= », | . |FQ-p""
i=odd \ !

Let Poyen be the probability that an even number of repeaters produces an error. Then

n . .
Peven = E , pz(l - p)'n—z

i=even i

and therefore,
n

n . .
Peven+Podd=Z . pz(l_p)n—1=(p+1_p)n=1
=0 \ °

One more relation between Peven and Podd can be provided if we consider the difference Peyen — Podd-
Clearly,

3

Fa-p)" - Y "l pa-p

i=odd \

Peven—Podd = Z

i=even

>

i=even

= (1-p-p"=01-2p)"

where the equality (a) follows from the fact that (—1) is 1 for i even and —1 when 4 is odd. Solving
the system

o,

e
3

=y -p i+ Y ’: (~p)i —p)*"

i=odd

.

Peven+Podd = 1
Poven — Poda = (1_2p)'n

we obtain 1
B, = Podd = ’2'(1_ (1_2p)n)

2. Expanding the quantity (1 — 2p)®, we obtain

1— n_1_ n(n—l
(1-2p) 1 n2p+T)(2p)2+n_

Sin i
ce, p K 1 we can 1gnore all the powers of P which are greater than one Hence
. ’

Pam S(1-1
n®~ 5(1—1+n2p) =np=100 x 107° =107*



Problem 4.60

The overall probability of error is approximated by (see 4-10-2)

Pe) = KQ l\/%]

Thus, with P(e) = 107% and K = 100, we obtain the probability of each repeater P, = Q [ %g =
1078. The argument of the function @[] that provides a value of 10~8 is found from tables to be

2, _
‘/WE = 5.61

Hence, the required %% is 5.612/2 = 15.7

Problem 4.61

1. The antenna gain for a parabolic antenna of diameter D is :

D 2
ocen(2)

If we assume that the efficiency factor is 0.5, then with :

c_3><108_

we obtain :
Gr =Gt = 45.8458 = 16.61 dB

2. The effective radiated power is :

EIRP = PrGr = G = 16.61 dB

3. The received power is :

_ PrGrGgr

(5’

Py =2.995 x 1079 = —85.23 dB = —55.23 dBm

Note that :

actual power in Watts
10-3

dBm = 10log;g ( ) = 30 + 10log;o(power in Watts )



Problem 4.62

1. The antenna gain for a parabolic antenna of diameter D is :

D 2
-

If we assume that the efficiency factor is 0.5, then with :

=03 m and D=1m

we obtain :
Gr=Gr= 54.83 = 17.39 dB

2. The effective radiated power is
EIRP = PrGr = 0.1 x 54.83 = 7.39 dB

3. The received power is :

Pr=
(45%)

Problem 4.63

The wavelength of the transmitted signal is:

3 x 108
A=1gxe - o0
The gain of the parabolic antenna is:
Gr = T _ 710
R=T7 (—/\ ) =0.6 <ﬁ)§ = 6.58 x 10° = 58.18 dB

The received power at the output of the receiver antenna is:

e — PrGrGr _ 3 x 10'° x 6.58 x 10°
rd)? (4 x3.14159 x 4x107y2

_ PrGrGRr _ | gp4 x 10710 = —97.20 dB = —67.20 dBm

=222 x 10718 = -126.53 dB



Problem 4.64

1. Since T = 300°K, it follows that
No = kT =1.38 x 10723 x 300 = 4.14 x 10~%! W/Hz

If we assume that the receiving antenna has an efficiency 1 = 0.5, then its gain is given by :

2
D\? 3.14159
Gr=rn (WT) =05 (%) = 5.483 x 10° = 57.39 dB

2x109
Hence, the received power level is :

p. _ PrGrGr _ 10 x 10 x 5.483 x 10°

4r$? (4% 3.14159 x 1&)2

=7.8125 x 1071 = —121.07 dB

2. If g; =10dB =10, then

r_Pr (Eb )‘1 _ 7.8125 x 10713

_IR (% - Bl x U ™ -1 _ 7 _ .
N \ I 114 x 102 % 10 1.8871 x 10" = 18.871 Mbits/sec

Problem 4.65

The wavelength of the transmission is :

c 3x108

If 1 MHz is the passband bandwidth, then the rate of binary transmission is R, = W = 108 bps.
Hence, with Np = 4.1 x 102! W/Hz we obtain :

% = Rb% = 10° x 4.1 x 1072 x 105 = 1.2965 x 10~13
0 0

A=

The transmitted power is related to the received power through the relation (see 5-5-6) :

PrGrGpg Pr ( d>2
Pp=""t s o= gy
" (4m$)2 =TT GrGr \"x

Substituting in this expression the values Gz = 10%6, Gg = 10°, d = 36 x 10% and )\ = 0.75 we

obtain
Pr =10.1185 = —9.26 dBW



Problem 5.16

The PDF of the carrier phase error ¢, is given by :

2

1 4
= e ¢

Thus the average probability of error is :

P, = [z Py (¢e)p(0e)dde

= /°° Q l: %V_E cos? ¢e] (¢e)d¢g

—00

[ e )
2noy m e




Problem 7.13

a. Interchanging the first and third rows, we obtain the systematic form :

1001110

G={0100111

0011101

b.

1011000
1110100

H=[PT|L] = .
1100010
01100 0.1

c. Since we have a (7,3) code, there are 23 = 8 valid codewords, and 2¢ possible syndromes. From
these syndromes the all-zero one corresponds to no error, 7 will correspond to single errors and 8
will correspond to double errors (the choice is not unique) :

Error pattern Syndrome
0 000O0O0TUW 0000
0 000O0O01 0 001
000001O0 OOT1T0
0000100 0100
0001000 1 000
0010000 1101
01 00000 0111
1 0000©O0TO0 1110
1000001 1111
1000010 1100
1 000100 1010
1001000 0110
1010000 0011
1100000 1001
01 00010 0101
0001101 1011

d. We note that there are 3 linearly independent columns in H, hence there is a codeword C,,
with weight wy, =4 such that C,,HT = 0. Accordingly : dpmi, = 4. This can be also obtained by
generating all 8 codewords for this code and checking their minimum weight.

e. 101 generates the codeword : 101 — C = 1010011. Then : CHT = [0000].

Problem 7.14

We have (n,k) = (n,n — k), thus n — k = k, hence n = 2k is even and R = k/n = 1/2.



Problem 7.15

g ?

Problem 7.16

1011000 1000101

G, = 0101100 G, = 0100111

0010110 0010110

0001011 0001011

Message Xm Cma = XunGa Cmb = XmGb

0 00O 000O0O0O0O 0000O0O0O
0001 0001011 0001011
0010 0010110 0010110
0011 0011101 0011101
0100 0101100 0100111
0101 0100111 0101100
0110 0111010 0110001
0111 0110001 0111010
1000 1011000 1000101
1001 1010011 1001110
1010 1001110 1010011
1011 1000101 1011000
1100 1110100 1100010
1101 1111111 1101001
1110 1100010 1110100
1111 1101001 1111111

As we see, the two generator matrices generate the same set of codewords.
Problem 7.17
The weight distribution of the (7,4) Hamming code is (n =7) :
Az) = 3[1+2)7+7(1+2)31 - 2)¥]
1 [8+ 5623 + 56z* + 827
= 1473+ 72+ 27

Hence, we have 1 codeword of weight zero, 7 codewords of weight 3, 7 codewords of weight 4, and
one codeword of weight 7. which agrees with the codewords given in Table 7-9-2.



Problem 7.25

The number of errors is d and the number of components received with no error is n — d.
Therefore,

d
P(ylz) =p*(1 - p)" ¢ = (1 - p)" (1%)

If p< 1, then p/(1 — p) < 1 and P(y|z) is a decreasing function of d, hence an ML decoder that
maximizes P(y|x) should minimize d. If p > 1, then an ML decoder should maximize d.

Problem 7.43

We can determine G, in a systematic form, from the generator poly'nomjal g(p) = pP+p?+ 1

6 _ (n3 1 2 2
=@’ +p°+ +p°+ 1000110
p5 ((22+p+1§)£(’,(§)+ p+1p 0100011 Lor11o0
A e G= H=|1110010
pP=(@+1g@)+p*+p+1 0010111 5111001
P =g()+p*+1 0001101
Hence, the parity check matrix for the extended code will be (according to 7-8-5) :
10111000
11100100
H.=
01110010
11111111
and in systematic form (we add rows 1,2,3 to the last one) :
10111000 10001101
11100100 01000111
Hes= =>Ges=
01110010 00101110
11010001 00011011

Note that G¢s; can be obtained from the generator matrix G for the initial code, by adding an



overall parity check bit. The code words for the extended systematic code are :

Message Xm Codeword Cy,

0000 OOOOOOOO
0 001 0 00 1011
0010 00101110
0 011 00110101
0100 01000111
0101 01011100
0110 01101001
0111 01110010
1 000 10001101
1 001 10010110
1 010 10100011
1011 10111000
1100 11001010
1101 11010001
1110 11100100
1111 11111111

An alternative way to obtain the codewords for the extended code is to add an additional check bit
to the codewords of the initial (7,4) code which are given in Table 8-1-2. As we see, the minimum
weight is 4 and hence : dpin = 4.

Problem 7.44

a. We have obtained the generator matrix G for the (15,11) Hamming code in the solution of
Problem 8.4. The shortened code will have a generator matrix G; obtained by G, by dropping its
first 7 rows and the first 7 columns or :

10001011
010011

G, = 00
00100110
00010011



Then the possible messages and the codewords corresponding to them will be :

Codeword C,,
000O0O0OOO0OD O
00010011

Message X

00O0O

0001

00100110

0010

00110101

01001100

0011

0100

0101

01 011111

01101010
01111001

10001011

0110

0111

1 000
1 001
1010

1011

10011000

10101101

10111010

11000111

1100
1101
1110
1111

11010100
11100001
11110010

dmin =3.

b. As we see the minimum weight and hence the minimum distance is 3 :



Problem 8.1

(a) The encoder for the (3,1) convolutional code is depicted in the next figure.

N

el

e
Input n=3
k=1 2 , Output

L/

(b) The state transition diagram for this code is depicted in the next figure.

(O 0/000

00
0/111 1/111
0/011
01 10
1/000
0/100 1/100
11
1/011

(c) In the next figure we draw two frames of the trellis associated with the code. Solid lines indicate
an input equal to 0, whereas dotted lines correspond to an input equal to 1.

00

01

10

11

(d) The diagram used to find the transfer function is shown in the next figure.



D2NJ

Xa
DNJ DJ
D3NJ D2J D3J
Xa’ Xc Xb Xa"

NJ

Using the flow graph results, we obtain the system

X, = D3NJXy +NJXy

X, = D*JX.+ DJX4
X; = DNJX.+ D?NJX,
X = D3JX,
Eliminating X3, X, and X results in
X D8NJ3(1+ NJ — D®*NJ)

TN =5 = T-DPNJ1+ NP+ J - D*J%)

To find the free distance of the code we set N = J =1 in the transfer function, so that

D31 —2D?)

8 10
LN Ter ) 2D
T—DE-Dy D TATA

Ty(D) =T(D,N,J)|N=J=1 =

Hence, dgo0 =8

(e) Since there is no self loop corresponding to an input equal to 1 such that the output is the all
zero sequence, the code is not catastrophic.

Problem 8.2

The code of Problem 81 is a (3,1) convolutional code with K = 3. The length of the received
sequence y is 15. This means that 5 symbols have been transmitted, and since we assume that the
information sequence has been padded by two 0’s, the actual length of the information sequence is
3. The following figure depicts 5 frames of the trellis used by the Viterbi decoder. The numbers on
the nodes denote the metric (Hamming distance) of the survivor paths (the non-survivor paths are
shown with an X). In the case of a tie of two merging paths at a node, we have purged the upper
path.
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The decoded sequence is {111,100,011,100,111} (i.e the path with the minimum final metric -
heavy line) and corresponds to the information sequence {1,1, 1} followed by two zeros.

Problem 8.3

(a) The encoder for the (3,1) convolutional code is depicted in the next figure.
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(b) The state transition diagram for this code is shown below
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The decoded sequence is {111,100,011,100,111} (i.e the path with the minimum final metric - |
heavy line) and corresponds to the information sequence {1,1, 1} followed by two zeros. |

Problem 8.3

(a) The encoder for the (3,1) convolutional code is depicted in the next figure.
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(b) The state transition diagram for this code is shown below

0/000
00
0/011 1/111
/0/101
01 10
1/100
0/110 1/010
11
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(c) In the next figure we draw two frames of the trellis associated with the code. Solid lines indicate
an input equal to 0, whereas dotted lines correspond to an input equal to 1.
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(d) The diagram used to find the transfer function is shown in the next figure.

Xa
DNJ D2y
D3NJ D%J D2J
Xy X, Xs Xon
DNJ

Using the flow graph results, we obtain the system

X, = D?NJX, +DNJX,

X, = D?*JX.+D*JXy
Xy = DNJX,+DNJXy4
X, = D*JX,
Eliminating X3, X, and X results in
X D'NJ3

T(D = =
(DN, J) Xy 1-DNJ-D3NJ?

To find the free distance of the code we set N = J =1 in the transfer function, so that

D7

—_n7 8 9
=5 = D'+ D* 4 DOt

Ti(D) =T(D,N,J)|N=J=1 =
Hence, dgpe =7

(e) Since there is no self loop corresponding to an input equal to 1 such that the output is the all
zero sequence, the code is not catastrophic.



Problem 8.4

(a) The state transition diagram for this code is depicted in the next figure.

() 0/000

00
0/011 1/111
/__0/o01 .
01 10
1/100
0/010 1/110
11
1/101

(b) The diagram used to find the transfer function is shown in the next figure.

Xall

DNJ

Using the flow graph results, we obtain the system
X, = D3NJXy+ DNJX,

X, = DJX.+DJXy
X; = D®NJX.+D>NJX,
Xor = D%*JX,
Eliminating X3, X, and Xg results in
Xon DSNJ3

ﬂaNJ%:Xf=1<WNJ<WNﬂ

(c) To find the free distance of the code we set N = J =1 in the transfer function, so that

DS

_nb 8 10

T1(D) =T(D,N,J)|N=y=1 =
Hence, dfpqe = 6

(d) The following figure shows 7 frames of the trellis diagram used by the Viterbi decoder. It is
assumed that the input sequence is padded by two zeros, so that the actual length of the information



sequence is 5. The numbers on the nodes indicate the Hamming distance of the survivor paths.
The deleted branches have been marked with an X. In the case of a tie we deleted the upper branch.
The survivor path at the end of the decoding is denoted by a thick line.

110 110 110 111 010 101 100
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\
\
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The information sequence is 11110 and the corresponding codeword 111 110 101 101 010 011 000...

(e) An upper to the bit error probability of the code is given by

dT(D,N,J = 1)
<

By
dN N=1,D=+/4p(1-p)

But

dT(D,N,1) _ d [ D°N ] _D°—-2D%1-N)
dN  dN (1-2D2N|  (1-2D2N)?

and since p = 1075, we obtain

~6.14-10714

D=+/4p(1-p)

D6
< =
B < ey

Problem 8.17

The encoder is shown in Probl. 8.8. The channel is binary symmetric and the metric for Viterbi

decoding is the Hamming distance. The trellis and the surviving paths are illustrated in the
following figure :

State






