SOLUTIONS TO ASSIGNMENT 4

Problem

1

(a) The Fourier transform of h(t) is given by (using entry 5 of the Fourier-transform pairs Table A6.3)

$$H(f) = \frac{\sqrt{\pi}}{\alpha} \cdot \frac{1}{\sqrt{\pi/\alpha}} \exp\left(-\pi \times \frac{f^2}{\pi/\alpha^2}\right)$$

$$= \exp(-(f^2 \alpha^2))$$
(1)

Substituting $\alpha = (\sqrt{\log 2/2}/W)$ into (1), we get

$$H(f) = \exp\left(-f^2 \frac{\log 2}{2} \times \frac{1}{W^2}\right)$$
$$= \exp\left(-\frac{\log 2}{2} \left(\frac{f}{W}\right)^2\right) \tag{2}$$

Let f_0 denote the 3-dB cut-off frequency of the GMSK signal. Then, by definition,

$$\begin{aligned} \left| H(f_0) \right| &= \frac{1}{\sqrt{2}} |H(0)| \\ &= \frac{1}{\sqrt{2}} \end{aligned}$$

Hence, from Eq. (2) it follows that

$$\exp\left(-\frac{\log 2}{2}\left(\frac{f_0}{W}\right)^2\right) = \frac{1}{\sqrt{2}}$$

or

$$\exp\left(\log 2\left(\frac{f_0}{\overline{W}}\right)^2\right) = 2$$

Taking the logarithm of both sides, we readily find that

$$f_0 = W$$

The 3-dB bandwidth (cut-off frequency) of the filter used to shape GMSK signals is therefore W.

(b) The response of the filter to a rectangular pulse of unit amplitude and duration T centered on the origin is given by

$$g(t) = \int_{-T/2}^{T/2} h(t-\tau)d\tau$$

$$= \int_{-T/2}^{T/2} \frac{\sqrt{\pi}}{\alpha} \exp\left[-\frac{\pi^2(t-\tau)^2}{\alpha^2}\right] d\tau$$

$$Let k = \frac{\pi(t-\tau)}{\alpha}, \text{ and}$$

$$dk = -\frac{\pi}{\alpha} d\tau$$
(3)

Hence, we may reqrite Eq. (3) as

$$g(t) = -\int_{k_{\perp}}^{k_{2}} \frac{\sqrt{\pi}}{\alpha} \exp(-k^{2}) \frac{\alpha}{\pi} dk$$
 (4)

where $k_1 = \frac{\pi(t + T/2)}{\alpha}$ and

$$k_2 = \frac{\pi(t - T/2)}{\alpha}$$

Equation (4) is finally rewritten as

$$g(t) = -\frac{1}{2} \left\{ \frac{2}{\sqrt{\pi}} \int_{0}^{k_{2}} \exp(-k^{2}) dk + \frac{2}{\sqrt{\pi}} \int_{k_{1}}^{0} \exp(-k^{2}) dk \right\}$$
$$= -\frac{1}{2} erf(k_{2}) + \frac{1}{2} erf(k_{1})$$

Real part

Problem 3

 $\mathbf{d}_{\mathbf{k}}$

0

1

Transmitted

1

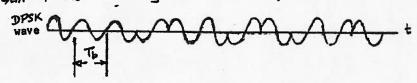
1

phase 0 0 0 π 0 0 π 0 π 0 π 0 π 0 The Waveform of the DPSK signal is thus as follows:

1

1

1



(b) Let z = output of the integrator in the in-phase channel

 $\mathbf{x}_{\mathbf{Q}}$ = output of the integrator in the quadrature channel

 $x_{I}' =$ one-bit delayed version of x_{I}

 x_Q' = one-bit delayed version of x_Q

 l_{I} = in-phase channel output

= x_Ix_I'

l_Q = quadrature channel output

 $= x_Q x_Q$

 $y = l_I + l_Q$

Transmitted phase											
(radians)	0	0	,0	π	0	0	π	0	π	π	0
Polarity of x _I	+	+	+	•	+	+		+	•		+
Polarity of xi		+	+	+	÷	+	+	•	+	-	•
Polarity of $l_{\rm I}$		+	+			+		•		+	•
Polarity of xQ		1.	i	+	•		+		+	+	
Polarity of xQ		·	•	÷	+			+		+	+
Polarity of l _Q		+	+			+				+	٠
Polarity of y		+	+	•		+	•			+	ŀ
Reconstructed											
data stream		1	1	0	0	1	0	0	0	1	0

Problem 4

(a) For a coherent PSK system, the average probability of error is

$$P_{e} = \frac{1}{2} \operatorname{erfc}[\sqrt{(E_{b}/N_{0})_{1}}]$$

$$= \frac{1}{2} \frac{\exp[-(E_{b}/N_{0})_{1}]}{\sqrt{\pi}\sqrt{(E_{b}/N_{0})_{1}}}$$
(1)

For a DPSK system, we have

$$P_{e} = \frac{1}{2} \exp[-(E_{b}/N_{0})_{2}]$$
 (2)

Let

$$\left(\frac{E_b}{N_0}\right)_2 = \left(\frac{E_b}{N_0}\right)_1 + \delta$$

Then, we may use Eqs. (1) and (2) to obtain

$$\sqrt{\pi} \sqrt{(E_b/N_0)_1} = \exp \delta$$

We are given that

$$\left(\frac{E_b}{N_0}\right)_1 = 7.2$$

Hence,

$$\delta = \ln[\sqrt{7.2\pi}]$$

Therefore,

10
$$\log_{10}(\frac{E_b}{N_0})_1 = 10 \log_{10} 7.2 = 8.57 \text{ dB}$$

10
$$\log_{10}(\frac{E_b}{N_0})_2 = 10 \log_{10}(7.2 + 1.56)$$

$$= 9.42 dB$$

The separation between the two (E_b/N_0) ratios is therefore 9.42 - 8.57 = 0.85 dB.

. (b) For a coherent PSK system, we have

$$P_{e} = \frac{1}{2} \operatorname{erfo}[\sqrt{(E_{b}/N_{0})_{1}}]$$

$$= \frac{1}{2} \frac{\exp[-(E_{b}/N_{0})_{1}]}{\sqrt{\pi} \sqrt{(E_{b}/N_{0})_{1}}}$$
(3)

For a QPSK system, we have

$$P_{e} = \operatorname{erfo}[\sqrt{(E_{b}/N_{0})_{2}}]$$

$$= \frac{\exp[-(E_{b}/N_{0})_{2}]}{\sqrt{\pi}\sqrt{(E_{b}/N_{0})_{2}}}$$
(4)

Here again, let

$$\left(\frac{E_b}{N_0}\right)_2 = \left(\frac{E_b}{N_0}\right)_1 + \delta$$

Then we may use Eqs. (3) and (4) to obtain

$$\frac{1}{2} = \frac{\exp(-\delta)}{\sqrt{1 + \delta/(E_{\rm h}/N_{\rm o})_1}} \tag{5}$$

Taking logarithms of both sides:

$$-2n 2 = -6 - 0.5 \ln[1 + 6/(E_b/N_0)_1]$$

$$= -6 - 0.5 \frac{\delta}{(E_b/N_0)_1}$$

Solving for 6:

$$\delta = \frac{2n 2}{1 + 0.5/(E_b/N_0)_1}$$

= 0.65

Therefore,

10
$$\log_{10}(\frac{E_b}{N_0})_1 = 10 \log_{10}(7.2) = 8.57 \text{ dB}$$

10
$$\log_{10}(\frac{E_b}{N_0})_2 = 10 \log_{10}(7.2 + .65)$$

= 8.95 dB.

The separation between the two (E_b/N_0) ratios is 8.95 - 8.57 = 0.38 dB.

(c) For a coherent binary FSK system, we have

$$P_{e} = \frac{1}{2} \operatorname{erfc}[\sqrt{(E_{b}/2N_{0})_{1}}]$$

$$= \frac{1}{2} \frac{\exp(-\frac{1}{2} \frac{E_b}{N_0})}{\sqrt{\pi} \sqrt{(E_b/2N_0)_1}}$$
 (6)

For a noncoherent binary FSK-system, we have

$$P_e = \frac{1}{2} \exp\left(-\frac{1}{2}(\frac{E_b}{N_0})_2\right)$$
 (7)

Hence,

$$\sqrt{\frac{\pi(\frac{E_b}{N_0})}{2(\frac{N_0}{N_0})}}_1 = \exp(\frac{\delta}{2})$$
 (8)

We are given that $(E_b/N_0)_1 = 13.5$. Therefore,

$$\delta = 2n(\frac{13.5 \pi}{2})$$
= 3.055

We thus find that

$$10 \log_{10}(\frac{E_b}{N_0})_1 = 10 \log_{10}(13.5)$$

$$= 11.3 \text{ dB}$$

$$10 \log_{10}(\frac{E_b}{N_0})_2 = 10 \log_{10}(13.5 + 3.055)$$

Hence, the separation between the two (E_b/N_0) ratios is 12.2 - 11.3 = 0.9 dB. (d) For a coherent binary FSK system, we have

$$P_e = \frac{1}{2} \operatorname{erfo}[\sqrt{(E_b/2N_0)_1}]$$

$$= \frac{1}{2} \frac{\exp(-\frac{1}{2}(\frac{E_b}{N_0}))}{\sqrt{\pi} \sqrt{(E_b/2N_0)_1}}$$
 (9)

For a MSK system, we have

$$P_{e} = \frac{1}{2} \operatorname{erfc}[\sqrt{(E_{b}/2N_{0})_{2}}]$$
 (10)

$$= \frac{\exp\left[-\frac{1}{2}\left(\frac{E_{b}}{N_{0}}\right)_{2}\right]}{\sqrt{\pi}\sqrt{\left(E_{b}/2N_{0}\right)_{2}}}$$
(10)

Hence, using Eqs. (9) and (10), we

$$2 - \frac{1}{2} \ln[1 + \frac{\delta}{(E_b/N_0)}] = \frac{1}{2} \delta$$
 (11)

Noting that

$$\frac{\delta}{(E_b/N_0)_1} \ll 1$$

we may approximate Eq. (11) to obtain

$$\ln 2 - \frac{1}{2} \left[\frac{\delta}{(E_b/N_0)_1} \right] = \frac{1}{2} \delta$$
 (11)

Solving for 6, we obtain

$$6 = \frac{2 \ln 2}{1 + \frac{1}{(E_b/N_0)_1}}$$

$$= \frac{2 \times 0.693}{1 + \frac{1}{13.5}}$$

$$= 1.29$$

We thus find that

$$\log_{10}(\frac{E_b}{N_0})_1 = 10 \log_{10}(13.5) = 10 \times 1.13 = 11.3 \text{ dB}$$

$$10 \log_{10}(\frac{E_b}{N_0})_2 = 10 \log_{10}(13.5 + 1.29) = 11.7 \text{ dB}$$

Therefore, the separation between the two (E_b/N_0) ratios is 11.7 - 11.3 = 0.4 dB.

Problem

The average power for any modulation scheme is

$$P = \frac{E_b}{T_b} .$$

This can be demonstrated for the three types given by integrating their power spectral densities from $-\infty$ to ∞ ,

$$P = \int_{-\infty}^{\infty} S(f) df$$

$$= \frac{1}{4} \int_{-\infty}^{\infty} [S_{B}(f - f_{C}) + S_{B}(f + f_{C})] df$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} S_{B}(f) df.$$

The baseband power spectral densities for each of the modulation techniques are:

$$S_{B}(f) = \frac{PSK}{2E_{b} sinc^{2}(fT_{b})} = \frac{4E_{b} sinc^{2}(2fT_{b})}{4E_{b} sinc^{2}(2fT_{b})} = \frac{32E_{b}}{\pi^{2}} \frac{\left[cos(2\pi fT_{b})\right]^{2}}{16f^{2}T_{b}^{2} - 1}$$

Since $\int_{-\infty}^{\infty} a \, \operatorname{sinc}(ax) dx = 1$, $P = \frac{E_b}{T_b}$ is easily derived for PSK and QPSK. For MSK we have