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We	have	almost	finished	talking	about	video	compression	and	then	
next	thing	to	talk	about	would	be	coding	and	modulation	and	other	
techniques	required	for	making	compressed	video	ready	for	transmission.	
In	order	to	be	able	to	measure	the	effectiveness	of	a	given	transmission	
strategy,	we	need	to	have	a	set	of	yardsticks	or	in	more	scientific	terms	
some	bounds	that	could	be	used	to	gauge	the	performance	of	this	or	that	
coding	and	modulation	scheme.	The	science	that	provides	us	with	bounds	
on	the	performance	of	transmission	strategies	is	Information	Theory.	This	
field	was	established	in	1948	with	the	ground	breaking	paper	A	
Mathematical	Theory	of	Communication	by	Claude	E.	Shannon.	Other	
works	by	Shannon	such	as	 Communication	Theory	of	Secrecy	Systems	is	a	
paper	published	in 1949	and	Coding	theorems	for	a	discrete	source	with	a	
fidelity	criterion	in	1959	paved	the	road	to	the	modern	the	digital	
information	age.	Results	developed	by	Shannon	and	later	refined	and/or	
generalized	by	many	researchers	in	the	area	of	information	theory	
provide	limits	on	not	only	the	transmission	rates	feasible	over	different
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physical	channels,	but	also	the	limit	on	how	much	a	source	such	voice,	
audio,	video	can	be	compressed	given	the	level	of	distortion	that	one	can	
tolerate.	So,	in	a	course	like	this	where	we	tackle	both	audio/video	
compression	and	data	transmission	a	basic	understanding	of	information	
theory	is	a	must.	Of	course,	given	the	amount	of	things	that	we	have	to	
cover,	we	cannot	spend	much	on	this	topic.	Therefore,	I	try	first	to	present	
an	intuitive	definition	of	some	basic	concepts	in	information	theory	such	
as	the	entropy and	mutual	information	and	then	give	some	results	of	
information	theory	 useful	in	this	course	without	proof.	I	will	try	to	clarify	
these	results	with	reference	to	examples	related	to	our	course.
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In	a	formal	information	theory	course,	one	first	defines	some	of	the	
entities	used	in	information	theory	such	as	mutual	information	and	
entropy	using	abstract	mathematical	formulas	involving	probabilistic	
description	of	the	source	and	channel	and	then	their	physical	meaning	is	
demonstrated.	In	this	note,	I	start	by	stating	these	entities	as	symbols	and	
then	discuss	their	intuitive	meaning,	derive	certain	relationships	between	
them	based	on	“common	sense”	and	finally	express	them	in	terms	of	
probabilistic	parameters.	The	latter	being	mainly	necessary	for	
computational	purposes.
In	most	terms	entropy	is	defined	first	and	then	the	mutual	information.	I	
find	mutual	information	more	intuitively	explainable,	particularly	in	
communications.	So,	I	start	with	the	concept	of	mutual	information.		The	
mutual	information	quantifies	the	amount	of	information	an	event	ሺa	
processሻ	provides	about	another	event	ሺprocessሻ.	Take	a	process	X	with	
events	ݔ ∈ ܺ.	For	example	X	can	represent	the	weather	in	a	specific	
season	and	ݔ ∈ ܺ can	be	“cold”,	“hot”,	“very	cold”,	“cool”,	etc.	
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Another	process	Y	can	model	the	trend	clothing	purchase	by	people.	So	
ݕ ∈ ܻ	can	be	“coat”,	“jacket”,	“pants”,	“shorts”,	etc.	The	joint	information	
between	an	outcome	ݔ ∈ ܺ and	ݕ ∈ ܻ is	denoted	by	Iሺx;	yሻ	and	is	the	
amount	of	information	the	knowledge	of	y	gives	about	x.	For	example,	
knowing	that	the	people	buy	more	coats	than	any	other	type	of	apparel	
points	to	the	possibility	that	the	weather	is	cold	and	vice	versa,	i.e.,	the	
weather	is	going	to	be	cold	,	the	vendors	will	stock	coats	instead	of	other	
clothing	items.	The	amount	of	information	x	gives	about	y	ሺor	y	gives	
about	xሻ,	i.e.,	Iሺx;	yሻ	should	logically	depend	on	how	much	y	depends	on	x.	
The	extreme	case	is	when	x	and	y	are	independent.	In	such	a	case	it	is	
natural	to	expect	that	ܫ ;ݔ ݕ ൌ 0.
Just	a	brief	mention	of	probability	here:	when	two	events	are	independent	
their	joint	probability	mass	ሺor	densityሻ	function	can	be	written	as	
݌ ,ݔ ݕ ൌ ݌ ݔ ݌	independent	not	are	there	when	But	ሻ.ݕሺ݌ ,ݔ ݕ ൌ
݌ ݔ ݌ ݕ ݔ or	݌ሺݕሻ݌ ݔ ݕ . So,	in	a	sense	mutual	information	is	a	
quantification	of	how	much	pሺx,	yሻ	is	different	from	pሺxሻpሺyሻ.
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What	usually	is	considered	as	the	mutual	information	is	the	average	of	Iሺx;	
yሻ	over	all	possible	values	of	ݔ ∈ ܺ and	ݕ ∈ ܻ:

ܫ ܺ; 	ܻ ൌ ௫,௬ܧ ;ݔሺܫ ሻݕ
And	is	called	the	ሾaverageሿ	mutual	information	and	is	a	measure	of	the	
average	amount	of	information	that	observing	the	process	X	provides	
about	Y	and	vice	versa.	

Now	let’s	consider	IሺX;	Xሻ,	i.e.	the	amount	of	information	the	
observation	of	X	gives	about	X!?

IሺX;	Xሻ	is	all	you	need	to	know	ሺor	like	to	know	or	can	knowሻ	about	X.	
Having	seen	X,	there	is	no	uncertainty	about	X.	So,	IሺX;	Xሻ	is	the	
uncertainty that	we	have	about	X	prior	to	observing	it	or	the	amount	of	
information	contained	in	X.	It	is	give	a	special	symbol	HሺXሻ	nd is	called	the	
entropy	of	X.
In	order	to	be	useful,	we	expect	that	the	mutual	information	between	two	
processes	be	non‐negative	

;ሺܺܫ ܻሻ ൒ 0
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This	is	to	say	that	knowing	something	at	worst	can	be	useless.	

Conditional	Mutual	Information:	ܫ ܺ; ܻ ܼ is	the	mutual	information	
between	X	and	given	Z,	i.e.,	the	average	amount	of	information	X	provides	
about	Y	given	that	we	have	already	observed	Z.

Conditional	Entropy: ܪ ܺ ܻ is	the	uncertainty	about	X	given	that	we	have	
observed	Y.

IሺX;	Yሻ	is	the	information	Y	gives	about	X.	So,	it	is	natural	to	expect	it	to	be	
the	difference	between	the	uncertainty	that	we	have	about	X	before	and	
after	observing	Y,	i.e.,

ܫ ܺ; ܻ ൌ ܪ ܺ െ ܪ ܺ ܻ
and	since	ܫ ܺ; ܻ ൌ ;ሺܻܫ ܺሻ,	we	can	write	

ܫ ܺ; ܻ ൌ ܪ ܻ െ ܪ ܻ ܺ .
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Entropy	cannot	increase	with	conditioning.
ܫ ܺ; ܻ ൌ ܪ ܺ െ ܪ ܺ ܻ ൒ 0.

So,
ܪ ܺ ܻ ൑ .ሺܺሻܪ

Now,	let’s	consider	a	channel	with	input	X	and	output	Y,

ሺܺሻܪ is	the	uncertainty	that	we	have	about	the	input	a	priori	and	
ܪ ܺ ܻ 	is	the	uncertainty	about	the	input	after	observing	the	received	
signal	Y.	So,	the	quantity	ܪ ܺ െ ܪ ܺ ܻ is	the	amount	of	information	
carried	through	the	channel	bout	the	input.	That	is,	ܴ ൌ ܪ ܺ െ ܪ ܺ ܻ ൌ
;ሺܺܫ ܻሻ is	the	rate	of	information	through	the	channel	for	a	given	input	X.

ChannelX Y
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So,	if	for	a	given	channel,	we	find	the	maximum	of	RൌIሺX;Yሻ,	we	have	
found	the	capacity	of	the	channel,	i.e.,	the	highest	rate	at	which	
communications	is	possible	over	the	channel:

ܥ ൌ ܫ	௣ሺ௫ሻݔܽ݉ ܺ; ܻ .
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Entropy	for	a	discrete	source:
Assume	that	a	source	takes	values	ݔ ∈ ܺ	with	probabilities	 ሻݔሺ݌ . Then	the	
entropy	is	defined	as	

ܪ ܺ ൌ ∑ ݌ ݔ ݃݋݈ ଵ
௣ሺ௫ሻ௫ ൌെ∑ ݌ ݔ log	ሺ݌ ݔ ሻ௫ .

The	unit	of	HሺXሻ	depends	on	the	base	of	the	logarithm.	For	base	two	logarithm,	
HሺXሻ	is	in	bits.	HሺXሻ	is	maximized	when	the	probabilities	of	all	events	are	the	
same,	i.e.,	HሺXሻ൑ ଶ௠݃݋݈ where	m	is	the	number	of	outcomes	of	X.
The	conditional	entropy is,

ܪ ܺ ܻ ൌ෍݌ ݕ ܪ ܺ ܻ ൌ ݕ
௬

ൌ െ෍݌ሺݕሻ෍݌ ݔ ݕ ݃݋݈ ݌ ݔ ݕ
௫௬

ൌ െ෍෍݌ ,ݔ ݕ ݃݋݈ ݌ ݔ ݕ
௬௫
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Similarly,
ܪ ܻ ܺ ൌ െ∑ ∑ ݌ ,ݔ ݕ ݃݋݈ ݌ ݕ ௬௫ݔ .

Mutual	Information	is:
ܫ ܺ; ܻ ൌ ܪ ܺ െ ܪ ܺ ܻ

ൌ െ෍݌ ݔ ݃݋݈ ݌ ݔ
௫

൅෍෍݌ ,ݔ ݕ log	 ݌ ݔ ݕ
௬௫

ൌ෍෍݌ ,ݔ ݕ ݃݋݈
௬

ሻݕ|ݔሺ݌
ሻݔሺ݌

௫

ൌ ∑ ∑ ݌ ,ݔ ݕ log	 ௣ሺ௫,௬ሻ
௣ ௫ ௣ሺ௬ሻ௬௫ .
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The	entropy	is	the	least	number	of	bits	required	to	describe	the	outcome	
of	a	process.	For	a	source	it	means	the	minimum	number	of	bits	required	
to	encode	the	output	of	the	source.
To	see	this	let’s	consider	a	binary	source	X	that	generates	two	outputs,	say	
“zero”	and	“one”.	Let	the	probability	of	getting	a	one	is	p.	The	probability	
of	having	zero	is,	obviously,	1‐p.	The	entropy	of	this	source	is:

ܪ ܺ ൌ െ݃݋݈݌ଶሺpሻെ 1 െ ݌ ଶ݃݋݈ 1 െ ݌ .
Since,	the	above	quantity	depends	on	the	probability	and	not	much	on	the	
name	of	the	variable,	it	is	usually	denoted	as	Hሺpሻ.
Now	assume	that	we	observe	݊ outputs	of	the	source.	If	݊	is	large	enough,	
we	get	a	sequence	with	roughly	݊݌ ones	and	݊ሺ1 െ ሻ݌ zeros.	Probability	of	
such	a	sequence	is	݌௡௣ሺ1 െ 	be	will	sequences	the	of	most	Since	ሻ௡ሺଵି௣ሻ.݌
of	this	type	ሺthey	are	called	typical	sequencesሻ,	if	we	can	encode	only	
these	sequences,	we	get	a	vanishingly	small	probability	of	observing	a	
sequence	that	we	cannot	encode.	Let	the	number	of	typical	sequences	be	
்ܰ.
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It	is	clear	that,	
௡௣ሺ1݌்ܰ െ ሻ௡ሺଵି௣ሻ൏݌ 1.

or,
்ܰ ൏ ௡௣ሺ1ି݌ െ .ሻି௡ሺଵି௣ሻ݌

So,	we	need,
݇ ൌ ்ܰ݃݋݈ ൏ ݊ െ݃݋݈݌ ݌ െ 1 െ ݌ log	ሺ1 െ ሻ݌ ൌ െ݊ܪ ݌ .

So,	the	compression	rate		is	bounded	as,
௞
௡
> ሻ݌ሺܪ .

The	Huffman	coding	technique	we	discussed	in	previous	lectures	is	a	way	
to	attain	compression	close	to	entropy.	
Exercise	4.1:	Consider	a	source	with	letters	A,	B,	…,	G	with	probabilities	
ሼ3/8,	3/16,	3/16,	1/8,	1/16,	1/32,	1/32ሽ.	Find	the	entropy.	Compare	with	
the	mean	length	of	the	Huffman	code	for	this	source.
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We	discussed	only	about	discrete	sources	and	channels.	Here,	without	
going	into	details,	we	present	some	results	about	one	of	the	important	
continuous	channels.	
An	Additive	White	Gaussian	Noise	Channel	ሺAWGNሻ	is	a	channel	where	
the	input	X	is	corrupted	with	a	noise	Z	that	consists	of	independent,	
identically	distributed	samples	of	a	Gaussian	process.	AWGN	models	any	
noise	source	that	combines	the	effects	of	a	large	number	of	events.	
Thermal	noise	in	electronic	circuits	that	is	the	result	of	movement	of	a	
huge	number	of		particles	is	an	example.	
Capacity	of	an	AWGN	channel	with	signal	power	P	and	noise	power	N	and	
bandwidth	W	is	given	as,

ܥ ൌ ݃݋݈ܹ 1 ൅ ௉
ே

bps.
Most	often,	the	capacity	is	normalized	with	frequency	and	is	presented	in	
bits/Hz.	
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According	to	Shannon’s	channel	coding	theorem,	we	can	transmit	error	
free	as	long	as	our	transmission	rate	is	less	than	C.	He	showed	that	
theoretically,	we	can	get	as	close	as	we	wish	to	this	limit.	Only	recently,	
practice	has	proven	him	right.	On	the	other	hand,	he	proved	that	we	can	
not	exceed	this	rate	and	expect	low	error	rate.
Now	let’s	see	how	we	can	relate	this	result	to	what	we	achieve	using	a	
given	transmission	strategy	ሺcoding	and	modulation	techniques	we	useሻ
First	note	the	ܲ is	the	power,	i.e.,	energy	per	second.	So,	if	we	transmit	at	
the	rate	RൌC,	our	energy	per	bit	is	

௕ܧ ൌ
௉
஼
ൌ ௉

ோ
.

Also,	the	noise	density	will	be,
଴ܰ ൌ

ே
ௐ
.

So,	we	can	write	the	capacity	as,
ܴ ൌ ݃݋݈ܹ 1 ൅ ோ

ௐ
ா್
ேబ

.
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The	ratio	ߟ ൌ ோ
ௐ
is	the	bandwidth	efficiency	in	bits/second/Hz.	

We	can	write	the	above	equation	as	ߟ ൌ log 1 ൅ 	ߟ ா್
ேబ

or,
ா್
ேబ
ൌ ଶആିଵ

ఎ
.
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Exercise	4.2:	Assume	that	the	bandwidth	available	to	you	is	2	MHz. For	a	
carrier	to	noise	ratio	of	௉

ே
ൌ ܤ݀	15 determine	the	maximum	bit	rate	

possible?	Compare	with	what	you	get	with	M‐PSK	modulation	with	roll‐off	
factor	0.1.	Consider	transmission	with	a	bit	error	rate	of	10ିହ as	error‐
free.


