A Brief Review of Probability and Stochastic Processes

M.R. Soleymani

In this note, some basic concepts from the theory of probability and stochas-
tic processes are reviewed. The goal is to give a more formal definition of some
the concepts you have already encountered in other courses. This note plus
Chapter 2 of the text [1] should be sufficient for following the rest of the course.
Those of you who wish to get better understanding of these concepts, possibly,
for conducting your graduate research, are encouraged to consult specialized
books such as [2] and [3].

Length, area, volume as well as probability are examples of a measure. A
measure is a set function, i.e., an assignment of a number u(A4) to each set A
in a certain class of sets. The class of sets on which the measure p is defined
has to have some structure. Let 2 be a set whose points w €  correspond
to the possible outcomes of a certain random experiment. Certain subsets of
Q are called events and are assigned probabilities. Roughly speaking, A is an
event if the question “does w € A7’ has a definite yes or no answer after the
experiment is performed. Now, if we can answer the question “does w € A?” we
should be able to answer the question “does w € A¢?”. Also, if we can determine
whether or not w € 4;, i =1, ..., n, then we should be able to answer whether
w belongs to |J_; A; (similarly (), 4;) or not. So, it is not unreasonable to
expect that the class of events be closed under complementation nd finite union
and finite intersection. And since the answer to the question “does w € Q7”7 is
always yes, it natural to expect that the entire space Q! be an event.

After this intuitive reasoning, we are in a position to introduce a few abstract
concepts.

Definition 1: Let F be a collection of subsets of a set 2. Then F is called a
field (or an algebra) iff Q € F and F is closed under complementation and finite
union, i.e.,

i)yQeF.

ii) If A € F then A° € F.

iii) If A; € F,i=1, ..., nthen J_, A; € F.
It is easy to show that F is also closed under intersection. Let Ay,..., A, € F,
then,

ﬁAi: (0A1> eF.
i=1 i=1

If F is closed under countable union, i.e., if (iii) is replaced with
iV) If Al,AQ, ... € f, then, Uzoil A, € .7'-,
then F is called a o — field (or a o — algebra).

Definition 2: The class of Borel sets of Q denoted by B(f2) or simply B, is
defined as the smallest o—field of subsets of Q) .

Example 1: If Q = R!, i.e., the set of real numbers, then any set containing all
open (or equivalently closed) intervals on R! and all their finite and countable



unions is a o—field. The smallest o—field, i.e., the class of Borel sets (called

the Borel field) , B(R') or By is the intersection of all such oc—fields. In other

words, any interval or any union (finite or countable) of intervals is a Borel set

in the real line.

Example 2: Denote by R the space consisting of all infinite sequences

(x1, T3, ...) of real numbers. In R, an n-dimensional rectangle is defined as
{.Z'EROO;.Z’]_ 611, ey, Ty eIn};

where I, ..., I, are intervals on R'. The Borel field, B, is the smallest o—field
of subsets of R* containing all finite dimensional rectangles. B, is formed by
intersecting of all sets containing all the finite dimensional rectangles and their
corresponding (finite and infinite) unions.

Now, we are in possession of the tools needed for defining the probability
space, random variables and random processes.

Definition 3: A probability space consists of a triplet (2, F, P) where:

i) Q is called a sample space and is a set of points w called sample points.

ii) F is a o—field of subsets of Q2. These subsets are called events.

iii) P(.) is a probability measure on F .

Random wvariables are formed by assigning real numbers to the outcomes
of a random experiment. As such, a random variable X is a function X (w) :
Q) — R!. We usually, want to know the probability of events involving X. For
example, we may want to know the probability that X belongs to a set of real
numbers B. So, we are looking for P {w : X (w) € B}. For this to make sense,
{w: X(w) € B} has to be an event, i.e., it has to belong to the o—field F .
More formally, random variables are defined as follows.

Definition 4: A function X (w) defined on Q is called a random variable if for
every Borel set B € By in the real line R', the set {w: X(w) € B}isin F . It
is said that X (w) is a measurable function on (Q, F).

From the fact that F is a o —field, it is easy to conclude that if {w : X(w) € I'}
is in F for all intervals I, then X must be a random variable. That is, it is suf-
ficient to be able to assign probabilities to all intervals.

Definition 5: The distribution function of a random variable X is the function
Fx : R' — [0,1] given by

Fx(z)=P{w: X(w) <z}, Vz € R".

The subscript is omitted when there is no risk of confusion and the distribution
function is denoted as F(z).

Definition 6: A countable stochastic (random) process is a sequence of random
variables X7, X5, ... defined over a common probability space (2, F, P).
Definition 7: Given a random process {X,} on (2, F, P), the n-dimensional
distribution function, F,, : R™ — [0,1] is defined as,

EF,(z1,...,2,) =P (X1 <21, ..., X5, < ).

Definition 8: A random process {X,,} is stationary if for every k, the process
Xg+1, Xg+1, --- has the same distribution as X;, Xo, ..., i.e., for any B € B,



P ((Xg+1, Xgy2, -..) € B) =P ((X4, X», ...) € B),
or, equivalently,
P(Xpq1 <21, -0y Xpgn <) = P(X1 <1, ..., Xy < ),

that is,

Fxii1,o Xugn (@1, ..y ) = Fx, . x, (%1, ..., Tn).

Exercise 1: Show that a random process {X,} is stationary if the process
X5, X3, ... has the same distribution as Xj, Xo, ...

Consider a probability space (Q, F, P). Let T be a transformation of Q
into itself. The transformation T is called measurable if the inverse image of
any set in F is again in F . That is, if for any set A € F, we have T™1A =
{w: Twe A} € F.

Definition 9: A measurable transformation 7' defined on Q — Q is measure
preserving if P(T~1A) = P(A), VA€ F.

As an example, consider the shift transformation, S : R® — R* defined
on (R®, Bs) by S(z1, x2, ...) = (z2, 3, ...). It is easy to show that the shift
transformation S is measurable. Using the shift transformation, we can give
another definition of stationarity:

Definition 10: A random process {X,} defined on the probability space
(R, B, P) is stationary if the shift transformation S is measure preserving,
i.e., if P(S7!B) = P(B), VB € By.

From this point on, we focus our attention on the shift transformation T = S.
By doing so, we limit our coverage of ergodicity to stationary processes.
Definition 11: A set B is called invariant if T—'B = B. That is, transforma-
tion of any point w € B, denoted T~ 'w is in B.

Definition 12: A stationary random process {X,} is ergodic if every invariant
set has probability zero or one.

in ENCS6161, you have learned the concept of mean ergodicity. That is ,
you have seen that for certain processes, called mean ergodic processes, the time
average equals the expected value. Using the above definition of ergodicity, we
can introduce a stronger version of this phenomenon.

Ergodic Theorem: For any ergodic stochastic process on (Q2, F, P) and any
function g(w),

Jim = 3" g(Th) = Blg)],
k=1

for almost all w.
As an example, for any set A € F, take g(w) = Xa(w), where X4(w) is the
characteristic function set A defined as,



1 weA
XA(w)Z
0 w¢ A

Then, according to ergodic theorem,

L 1E k

Jim ~ 1;1 Xa(TFw) = P(A).
This means that, for almost any w, the asymptotic portion of points in A is

exactly equal to P(A).

Exercise 2: From the ergodic theorem given above, conclude ergodicity in the

mean.

Definition 12 and the ergodic theorem relate the empirical and axiomatic
aspects of the theory of probability. Definition 12 constrains the structure of
an ergodic process. In a very intuitive sense, it says that in an ergodic process,
each sample function X (w) contains almost all the possible sequences (modes)
of the process. That is, no sample function gets stuck in a finite number of
modes and become repetitive. If we look at the structure of a process from a
state space point of view, all states of an ergodic process are reachable from
any other state while the state space of a non-ergodic process can be split into
parts of positive probability that are not accessible to one another. According
to ergodic theorem, the structure of an ergodic process can be used in order to
find the probability of any sequence by observing almost any sample function.
In other words, if we make N observations on n samples of an ergodic process
X1, X5, ... then the probability that these samples denoted by vector X" take
values from a set B is equal to the asymptotic value of the relative frequency of
this event, i.e.,

. Na(B)
1 n
N N

= P(B),

where N, (B) is the number of times when the event {X"™ € B} has occurred.
In order to clarify the concepts discussed above, we end this note with the
following simple exercise.
Exercise 3: Take a random source generation binary sequences, i.e., ) =
{0,1}*°. Assume that the source has three modes. In the first mode, the
source repeats the 3-bit sequence 110, i.e., its output is 110110110.... In the
second mode, the source repeats the sequence 001. Finally, in the third mode
the source generates zeros and ones with probability 0.5. The probability of
occurrence of the three modes is 1/6, 1/6 and 2/3, respectively. Show that this
process (source) is not ergodic. Is the process ergodic in the mean?
Exercise 4: Consider a random source generation binary sequences. Assume
that the source has two modes with probabilities p and 1 — p. In the first
mode, the source repeats the source output alternates between 0 and 1 i.e., its



output is 010101010101 . ... In the other mode, it generates zeros and ones with
probabilities ¢ and 1 — ¢, respectively. What is the condition for the source to
be ergodic? What is the condition for the source to be ergodic in the mean?
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