## Assignment 10

- 1. Let Y(t) = X(t+d) X(t), where X(t) is a Gaussian random process.
  - (a) Find the mean and autocovariance of Y(t).
  - (b) Find the pdf of Y(t).
  - (c) Find the joint pdf of Y(t) and Y(t+s).
  - (d) Show that Y(t) is a Gaussian random process.
- 2. Let X(t) be a zero-mean Gaussian random process with autocovariance function given by  $C_X(t_1, t_2)$ . If X(t) is the input to a "square law detector," then the output is

$$Y(t) = X(t)^2$$

Find the mean and autocovariance of the output Y(t).

- 3. Let  $Y(t) = X^2(t)$ , where X(t) is the Wiener process.
  - (a) Find the pdf of Y(t).
  - (b) Find the conditional pdf of  $Y(t_2)$  given  $Y(t_1)$ .
- 4. Let Z(t) = X(t) aX(t-s), where X(t) is the Wiener process.
  - (a) Find the pdf of Z(t).
  - (b) Find  $m_Z(t)$  and  $C_Z(t_1, t_2)$ .
- 5. Let X(t) be defined by

$$X(t) = A\cos\omega t + B\sin\omega t,$$

Where A and B are iid random variables.

- (a) Under what conditions is X(t) wide-sense stationary?
- (b) Show that X(t) is not stationary. hint: Consider  $E[X^3(t)]$ .

6. Let X(t) and Y(t) be independent, wide-sense stationary random processes with zero means and the same covariance function  $C_X(\tau)$ . Let Z(t) be defined by

$$Z(t) = 3X(t) - 5Y(t)$$

- (a) Determine whether Z(t) is also wide-sense stationary.
- (b) Determine the pdf of Z(t) if X(t) and Y(t) are also jointly Gaussian zero-mean random processes with  $C_X(\tau) = 4e^{-|\tau|}$ .
- (c) Find the joint pdf of  $Z(t_1)$  and  $Z(t_2)$  in part b.
- (d) Find the cross-covariance between Z(t) and X(t). Are Z(t) and X(t) jointly stationary random processes?
- (e) Find the joint pdf of  $Z(t_1)$  and  $X(t_2)$  in part b. Hint: Use auxilliary variables.