Assignment 11

- 1. (a) Find the autocorrelation function corresponding to the power spectral density shown in the following figure.
 - (b) Find the total average power.
 - (c) Plot the power in the range $|f| > f_0$ as a function of $f_0 > 0$.

- 2. Show that
 - (a) $R_{X,Y}(\tau) = R_{Y,X}(-\tau)$.
 - (b) $S_{X,Y}(f) = S_{Y,X}^*(f)$.
- 3. Let $R_X(k) = 4(\alpha)^{|k|} + 16(\beta)^{|k|}, \alpha < 1, \beta < 1$.
 - (a) Find $S_X(f)$.
 - (b) Plot $S_X(f)$ for $\alpha = \beta = 0.5$ and $\alpha = 0.75 = 3\beta$ and comment on the effect of value of α/β .
- 4. Let $D_n = X_n X_{n-d}$, where d is an integer constant and X_n is a zero-mean, WSS random process.
 - (a) Find $R_D(k)$ and $S_D(f)$ in terms of $R_X(k)$ and $S_X(f)$. What is the impact of d?
 - (b) Find $E[D_n^2]$.

5. Let X(t) be a differentiable WSS random process, and define

$$Y(t) = \frac{d}{dt}X(t)$$

Find an expression for $S_Y(f)$ and $R_Y(\tau)$. Hint: For this system, $H(f) = j2\pi f$.

6. Let Y(t) be a short-term integration of X(t):

$$Y(t) = \frac{1}{T} \int_{t-T}^{t} X(t')dt'.$$

- (a) Find the impulse response h(t) and the transfer function H(f).
- (b) Find $S_Y(f)$ in terms of $S_X(f)$.

7. In problem 6, Let $R_X(\tau) = (1 - |\tau|/T)$ for $|\tau| < T$ and zero elsewhere.

- (a) Find $S_Y(f)$.
- (b) Find $R_Y(\tau)$.
- (c) Find $E[Y^2(t)]$.

8. The input into a filter is zero-mean white noise with noise power density $N_0/2$. The filter has transfer function

$$H(f) = \frac{1}{1 + j2\pi f}$$

- (a) Find $S_{Y,X}(f)$ and $R_{Y,X(\tau)}$.
- (b) Find $S_Y(f)$ and $R_Y(\tau)$.
- (c) What is the average power of the output?
- 9. (a) A WSS Gaussian random process X(t) is applied to two linear systems as shown in the following figure. Find an expression for the joint pdf of $Y(t_1)$ and $W(t_2)$.
 - (b) Evaluate part a if X(t) is white Gaussian noise.

2