Assignment 12

1. Let M_n denote the sequence of sample means form an iid random process X_n :

$$M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- (a) Is M_n a Markov process?
- (b) If the answer to part a is yes, find the following state transition pdf: $f_{M_n}(X|M_{n-1} = y)$.
- 2. (a) Show that the following autoregressive process is a Markov process:

$$Y_n = rY_{n-1} + X_n \qquad Y_0 = 0$$

where X_n is an iid process.

- (b) Find the transition pdf if X_n is an iid Gaussian sequence.
- 3. Let X_n be an iid random process. Show that X_n is a Markov process and give its one-step transition probability matrix.
- 4. A very popular barbershop is always full. The shop has two barbers and three chairs for waiting, and as soon as a customer completes his service and leaves the shop, another enters the shop. Assume the mean service time is m.
 - (a) Use Little's formula to relate the arrival rate and the mean time spent in the shop.
 - (b) Use Little's formula to relate the arrival rate and the mean time spent in service.
 - (c) Use the above formulas to find an expression for the mean time spent in the system in terms of the mean service time.
- 5. A communication network receives messages from R sources with mean arrival rates $\lambda_1, \ldots, \lambda_R$. On the average there are $E[N_i]$ messages from source i in the network.
 - (a) Use the Little's formula to find the average time $E[T_i]$ spent by type i customers in the network.

- (b) Let λ denote the total arrival rate into the network. Use Little's formula to find an expression for the mean time E[T] spent by customers (of all types) in the network in terms of the $E[N_i]$.
- (c) Combine the results of part a and part b to obtain an expression for E[T] in terms of $E[T_i]$. Derive the same expression using A(t) the arrival processes for each type.
- 6. (a) Find $P[N \ge n]$ for an M/M/1 system.
 - (b) What is the maximum allowable arrival rate in a system with service rate μ , if we require that $P[N \ge 10] = 10^{-3}$?
- 7. Consider an M/M/1 queueing system in which each customer arrival brings in a profit of \$5 but in which each unit time of delay costs the system \$1. Find the range of arrival rates for which the system makes a net profit.