Assignment 9

1. A random process is defined by

$$Y(t) = G(t - T)$$

where g(t) is the rectangular pulse of following figure, and T is a uniformly distributed random variable in the interval (0,1).

- (a) Find the pmf of Y(t).
- (b) Find $m_Y(t)$ and $C_Y(t_1, t_2)$.

2. The random process H(t) is defined as the "hard-limited" version of X(t):

$$H(t) = \begin{cases} +1 & \text{if } X(t) \ge 0 \\ -1 & \text{if } X(t) < 0. \end{cases}$$

- (a) Find the pdf, mean, and autocovariance of H(t) if X(t) is the sinusoid with a random amplitude presented in Example 9.2 in the text book.
- (b) Find the pdf, mean, and autocovariance of H(t) if X(t) is the sinusoid with random phase presented in Example 9.9 in the text book.
- (c) Find a general expression for the mean of H(t) in terms of the cdf of X(t)

3. Let X_n consist of an iid sequence of Poisson random variables with mean α .

1

- (a) Find the pmf of the sum process S_n .
- (b) Find the joint pmf of S_n and S_{n+k} .

- 4. Customers deposit \$1 in a vending machine according to a Poisson process with rate λ . The machine issues an item with probability p. Find the pmf for the number of items dispensed in time t.
- 5. Packets arrive at a multiplexer at two ports according to independent Poisson processes of rates $\lambda_1 = 1$ and $\lambda_2 = 2$ packets/second, respectively.
 - (a) Find the probability that a message arrives first on line 2.
 - (b) Find the pdf for the time until a message arrives on the either line.
 - (c) Find the pmf for N(t), the total number of messages that arrive in an interval of length t.
 - (d) Generalize the result of part c for the "merging" of k independent Poisson processes of rates $\lambda_1, \ldots, \lambda_k$, respectively:

$$N(t) = N_1(t) + \dots + N_k(t).$$

6. Let X(t) be a zero-mean Gaussian random process with autocovariance function given by

$$C_X(t_1, t_2) = 4e^{-2|t_1 - t_2|}.$$

7. Find the joint pdf of X(t) and X(t+s).