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Markov Processes L

e A Random Process is a Markov Process if the future
of the process given the present is independent of
the past, i.e., if t] <to < -+ <t <tpyq1, then

PX(tgy1) = g1 X () = g, -, X (01) = 71]
= PlX(tg+1) = wp1| X () = @4

if X(t) is discreete-valued or

Ix ) @1 | X (tg) = 2g, -, X(81) = 21)
= fX(tkH)(karl’X(tk) = ZCk;)

if X (¢) is continuous-valued.
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Markov Processes L

e Example: S, = X1+ Xo+ -+ X,
= Sn—i—l = Sp + Xn—l—l
P[Sn—i—l = 3n+1’Sn = Sp," 751 = 31]

— P[Sn—l—l — Sn—l—l’Sn — Sn]
So S, is a Markov process.

e Example: The Poisson process is a continuous-time
Markov process.
P[N (k1) = jIN(tg) =4, , N(t1) = x1]
= P[j—ieventsint,, 4 — tg]
= P[N(tgt+1) = JIN (k) = 1]
e An integer-valued Markov process is called Markov

Chain.
L
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Discrete-time Markov Chain L

e X, is a discrete-time Markov chain starts at n =0
with
Pi(0) = P[Xg=14], i=0,1,2,---
Then from the Markov property,
P Xy =in, -, Xo = i
— P[Xn — Z.n’X—nDl — Z.nDl] Tt P[Xl — Z'1|AXVO — Z()]P[X() — iO]
where P[X}.1 = ip11| X = ig] is called the one-step
state transition probability.

e If P X1 = j|Xg = i] = py; for all k, X, is said to have
homogeneous transition probabilities.
P[XTL — /l:TL7 o 7X0 — ZO] — P’io(o)pio,il " Pig 1,0n
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Discrete-time Markov Chain L

e The process is completely specified by the initial pmf
P;,(0) and the transition matrix
2 3
poo Por Po2 -
P :9 P10 P11 P12

where for each row:
X
Dij =
J
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Discrete-time Markov Chain L

e Example: Two-state Markov Chain for speach activity
(on-off sourge)

0 silence (off)

1 with speach activity (on)

State Transition Diagram

two states:
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Discrete-time Markov Chain

e The n-Step Transition Probabilities
pij(n), PlXppn=jlXk =1 n>0
Let P(n) be the n-step transition probability matrix,

l.e. 2 3

P(n):g pro(n) pu(n) pia(n) - 5

Then P(n) = P™, where P is the one-step transition
probability matrix.

1
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The State Probabilities

e Letp(n)={F; (gz()} be the state prob. at time n then
Pj(n) == P[Xn = j‘XnDl == i]P[XnDl = Z]

Xi
= pilin=1)
1

.e. p(n) = p(n—1)P.

e By recursion:

p(n) =p(n —1)P =p(n —2)P*> = - = p(0)P"

|
S|

1



Steady State Probabilities L

e In many cases, when n — oo, the Markov chain goes
to steady state, in which the state probabilities do not
change with n anymore, i.e.,

p(n) — m, asn —

m is called the Stationary State pmf.

e If the steady state exists, then when n is large, we
have

(note:
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Steady State Probabilities

e Example: Find the steady state pmf of the on-off
source.

P =, 4
= fmom] Y Y =[]
o, T = |7, T
0,711 6 1—6 0,711
together with 7y +m =1
= Ty = & =
O_OH—B 1_a+6
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Continuous-Time Markov Chains ¥

e If P[X(s+1t)=j]X(s) =1 =pi(t), t > 0forall s, then
the continuous-time Markov chain X (¢) has
homogeneous transition prob.

e The transition rate of X (¢) entering state j from i is
defined as (
limg) g pJT@ LF ]

pij(0)01

0
T Pig (D=0 = limy) 1=
Lo~y — 1=

Note: (

pij(0) = s

1 0=
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Continuous-Time Markov Chains ¥

e From =)
Pi(t+oh=""; Pi(t)pij(0)
Pi(t) = ; Pi(t)pi;(0)
We can show that: X
Pj(t + ) = Pi(t) _ P‘<t)pzj(5) — pij(0)
5 o 0
Let § — 0, we have: X
Plt)=  P(t)ry

1

This is called Chapman-Kolmogorov equations.



Steady State Probabilities

e In the steady-state, P;(t) doesn’t change with ¢, so
0

and hence from Chapman-Kolmogorov equations

X
Pir;j =0 forallj

)

These are called the Global Balancee Equations.
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