Chapter 12
 Introduction to Queueing Theory
 ENCS6161 - Probability and Stochastic Processes
 Concordia University

Elements of a Queueing System

e A queueing system is defined by $a / b / m / k$, where
e a : type of arrival process.

$$
a=M \quad \text { Poisson Process }
$$

e b : service time distribution.

$$
b= \begin{cases}M & \text { exponential } \\ D & \text { deterministic } \\ G & \text { general }\end{cases}
$$

a m : number of servers
e k : max number of customers allowed in the system

Little's Formula

Little's Formula

e Little's Formula: $E[N]=\lambda E[T]$, where
e $E[N]$: average number of customers in the system
e λ : arrival rate
a $E[T]$: average time that a customer stays in the system
e Little's Formula is very general. The system here could be the whole queueing system, the waiting buffer, or the seervice system, etc.
e Read the proof on your own.

$M / M / 1$ or $M / M / 1 / 1$ Queue

e Let $N(t)$ be the number of customers.
e Poisson arrival. In a small period δ, probability of one arrival is

$$
\begin{aligned}
& P[A(\delta)=1]=\frac{\lambda \delta}{1!} e=\lambda \delta+o(\delta) \\
& P[A(\delta) \quad 2]=o(\delta) \\
& \text {) } \quad p_{\mathrm{n} ; \mathrm{n}+1}(\delta)=P[A(\delta)=1]=\lambda \delta+o(\delta) \\
& \\
& r_{\mathrm{n} ; \mathrm{n}+1}=\lambda \\
& \\
& r_{\mathrm{n} ; \mathrm{n}+2}=0, r_{\mathrm{n} ; \mathrm{n}+3}=0,
\end{aligned}
$$

$$
M / M / 1 \text { or } M / M / 1 / 1 \quad \text { Queue }
$$

e Exponential service time. So the probability that there is one departure in a small period δ is

$$
\begin{aligned}
& P[\tau<\delta]=1 \quad e \quad=\mu \delta+o(\delta) \\
& p_{\mathrm{n} ; \mathrm{n} 1}(\delta)=\mu \delta+o(\delta) \\
& r_{\mathrm{n} ; \mathrm{n} 1}=\mu \quad(n \quad 1) \\
& r_{\mathrm{n} ; \mathrm{n}} 2=0, r_{\mathrm{n} ; \mathrm{n}} \quad 3=0
\end{aligned}
$$

e State transition diagram

$M / M / 1$ or $M / M / 1 / 1$ Queue

e Global Balance Equations are

$$
\lambda P_{\mathrm{j}} \quad 1=\mu P_{\mathrm{j}} \quad \text { for all } j=1,2,
$$

$$
\text {) } \quad P_{\mathrm{j}}=\frac{\lambda}{\mu} P_{\mathrm{j}} 1
$$

Let $\rho=-$, then

$$
\begin{aligned}
& P_{\mathrm{j}}=\rho P_{\mathrm{j}} \quad 1=\rho^{2} P_{\mathrm{j}} \quad 2=\quad=\rho^{\mathrm{j}} P_{0} \\
& \text { Since } \sum_{\mathrm{j}} P_{\mathrm{j}}=1 \quad \sum_{\mathrm{j}} \rho^{j} P_{0}=1 \\
& \text { i.e. } \left.\quad \frac{1}{1 \rho \rho} P_{0}=1 \quad\right) \quad P_{0}=1 \quad \rho \\
& P_{\mathrm{j}}=\left(\begin{array}{ll}
1 & \rho
\end{array}\right) \rho^{\mathrm{j}} \quad j=0,1,2,
\end{aligned}
$$

Note: we need $\rho=-<1$ for stability.

$M / M / 1$ or $M / M / 1 / 1$ Queue

e The expected number of customers

$$
E[N]=\sum_{\mathrm{j}} j P_{\mathrm{j}}=\sum_{\mathrm{j}} j\left(\begin{array}{ll}
1 & \rho
\end{array}\right) \rho^{\mathrm{j}}=\frac{\rho}{1 \quad \rho}
$$

From Little's Formula

$$
E[T]=\frac{E[N]}{\lambda}=\frac{\rho}{\lambda(1 \quad \rho)}=\frac{1}{\mu \quad \lambda}
$$

Expected waiting time in the queue is

$$
E[W]=E[T] \quad E[\tau]=\frac{1}{\mu \quad \lambda} \quad \frac{1}{\mu}=\frac{\lambda}{\mu(\mu \quad \lambda)}
$$

Expected number in the queue is

$$
E\left[N_{\mathrm{q}}\right]=\lambda E[W]=\frac{\rho^{2}}{1 \quad \rho}
$$

Server utilization is $1 \quad P_{0}=1 \quad(1 \quad \rho)=\rho=-$

$M / M / 1 / K$ Queue

e Similarly to $M / M / 1$ queue, we have

$$
\begin{aligned}
& \left.\lambda P_{\mathrm{j}} \quad 1=\mu P_{\mathrm{j}}\right) \quad P_{\mathrm{j}}=\rho P_{\mathrm{j}} \quad 1 \text { for } j=1,2, \quad, K \\
& \text { so } \quad P_{\mathrm{j}}=\rho^{\mathrm{j}} P_{0}, \quad j=0,1,2, \quad, K \\
& \text { From } \left.\sum_{\mathrm{j}=0}^{\mathrm{K}} P_{\mathrm{j}}=1 \quad\right) \quad P_{0}=\frac{1 \quad \rho}{1} \rho^{\mathrm{K}+1} \\
& \quad) \quad P_{\mathrm{j}}=\frac{(1 \quad \rho) \rho^{\mathrm{j}}}{1 \quad \rho^{\mathrm{K}+1}}
\end{aligned}
$$

$M / M / 1 / K$ Queue
e Blocking Probability: prob. of rejecting a customer

$$
\left.P[N=K]=P_{\mathrm{K}}=\frac{(1}{} \quad \rho\right) \rho^{\mathrm{K}} .
$$

$M / M / c / c$ Queue

$$
\lambda P_{\mathrm{j}} \quad 1=j \mu P_{\mathrm{j}} \quad j=1,2, \quad, c
$$

$$
\text {) } \quad P_{\mathrm{j}}=\frac{1}{j}\left(\frac{\lambda}{\mu}\right) P_{\mathrm{j}} \quad 1 \quad \text { let } \alpha=\frac{\lambda}{\mu}
$$

Then $\quad P_{\mathrm{j}}=\frac{\alpha^{j}}{j!} P_{0} \quad j=1,2, \quad, c$

$$
\left.\sum_{j=0}^{c} P_{j}=\sum_{j=0}^{c} \frac{\alpha^{j}}{j!} P_{0}=1 \quad\right) \quad P_{0}=\frac{1}{\sum_{j=0}^{c} \frac{j}{j!}}
$$

$M / M / c / c$ Queue
e The blocking probability

$$
\begin{aligned}
P_{\mathrm{B}} & =P[N=c]=P_{\mathrm{C}} \\
& =\frac{\frac{\mathrm{c}}{\mathrm{c!}}}{1+\alpha+\frac{2}{2!}+\quad+\frac{\mathrm{c}}{\mathrm{c}!}}
\end{aligned}
$$

$M / M / c / c$ Queue

e Example: A company has 4 telephone lines with arrival rate of one call every two minutes. The average duration of a call is 4 minutes. What is the P_{B} ?

$$
\begin{aligned}
& \left.\lambda=\frac{1}{2}, \mu=\frac{1}{4} \quad\right) \quad \alpha=\frac{\lambda}{\mu}=2 \\
& P_{\mathrm{B}}=\frac{\frac{2^{4}}{4!}}{1+2+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\frac{2^{4}}{4!}}=0.095 \text { or } 9.5 \%
\end{aligned}
$$

