Chapter 7 Sums of Random Variables and Long-Term Averages

ENCS6161 - Probability and Stochastic Processes Concordia University

• Let
$$X_1, \dots, X_n$$
 be r.v.s and $S_n = X_1 + \dots + X_n$, then
 $E[S_n] = E[X_1] + \dots + E[X_n]$
 $Var[S_n] = Var[X_1 + \dots + X_n]$
 $= E\left[\sum_{i=1}^n (X_i - \mu_{X_i}) \sum_{j=1}^n (X_j - \mu_{X_j})\right]$
 $= \sum_{i=1}^n Var[X_i] + \sum_{\substack{i=1 \ i \neq j}}^n \sum_{j=1}^n Cov(X_i, X_j)$

• If
$$Z = X + Y$$
 $(n = 2)$,
 $Var[Z] = Var[X] + Var[Y] + 2Cov(X, Y)$

ENCS6161 - p.1/14

• Example: Sum of n i.i.d r.v.s with mean μ and variance σ^2 .

$$E[S_n] = E[X_1] + \dots + E[X_n] = n\mu$$
$$Var[S_n] = nVar[X_i] = n\sigma^2$$

pdf of sums of independent random variables X_1, \cdots, X_n indep r.v.s and $S_n = X_1 + \cdots + X_n$, then $\Phi_{S_n}(w) = E[e^{jwS_n}] = E[e^{jw(X_1 + \dots + X_n)}]$ $= \Phi_{X_1}(w) \cdots \Phi_{X_n}(w)$ and

$$f_{S_n}(s) = \mathcal{F}^{-1} \left\{ \Phi_{X_1}(w) \cdots \Phi_{X_n}(w) \right\}$$

ENCS6161 - p.2/14

• Example: $X_1 \cdots X_n$ indep and $X_i \sim N(m_i, \sigma_i^2)$. What is the pdf of $S_n = X_1 + \cdots + X_n$? For a Guassian r.v. $X \sim N(\mu, \sigma^2) \Rightarrow \Phi_X(w) = e^{jw\mu - \frac{w^2\sigma^2}{2}}$ (prove it by yourself) So $\Phi_{S_n}(w) = \prod_{i=1}^n e^{jwm_i - \frac{w^2\sigma_i^2}{2}} = e^{jw(m_1 + \cdots + m_n) - w^2(\sigma_1^2 + \cdots + \sigma_n^2)/2}}$) $S_n \sim N(m_1 + \cdots + m_n, \sigma_1^2 + \cdots + \sigma_n^2)$ What if X_1, \cdots, X_n are not indep?? (hint: use $\underline{Y} = A\underline{X}$)

ENCS6161 - p.3/14

● pdf of i.i.d r.v.s

$$\Phi_{S_n}(w) = (\Phi_X(w))^n$$

• Example: Find the pdf of the sum of n i.i.d exponential r.v.s with parameter λ .

$$\Phi_X(w) = \frac{\lambda}{\lambda - jw} \text{ (see table 3.2 on page 101)}$$

$$\Rightarrow \quad \Phi_{S_n}(w) = \left(\frac{\lambda}{\lambda - jw}\right)^n$$

$$\Rightarrow \quad f_{S_n}(s) = \frac{\lambda e^{-\lambda s} (\lambda s)^{n-1}}{(n-1)!}, \ s > 0$$

This is the so called m-Erlang r.v.

ENCS6161 - p.4/14

 When dealing with non-negative integer-valued r.v.s, we use the probability generating function:

$$G_N(z) = E[z^N] = \sum_n z^n P_N(n)$$
$$P_N(n) = \frac{1}{n!} \frac{d^n}{dz^n} G_N(z) \Big|_{z=0}$$

• For $N = X_1 + \dots + X_n$ where X_i are independent. $G_N(z) = E[z^{X_1 + \dots + X_n}]$ $= E[z^{X_1}] \cdots E[z^{X_n}]$ $= G_{X_1}(z) \cdots G_{X_n}(z)$

ENCS6161 - p.5/14

- Example: Find the pdf of the sum of *n* independent Bernoulli r.v.s with $p_0 = 1 - p = q$ and $p_1 = p$. $G_X(z) = E[z^X] = q + pz$ $\Rightarrow G_N(z) = (q + pz)^n$ $\Rightarrow P_N(k) = {n \choose k} p^k q^{n-k}, \ k = 0, 1 \cdots n$
 - (See Table 3.1)
 - \Rightarrow N ~ Binomial(n, p)

ENCS6161 - p.6/14

The Sample Mean

Let X be a r.v. with mean and variance ². X₁; ··· ; X_n denote n independent, repeated measurement of X. That is, X_i's are i.i.d r.v.s with the same pdf as X. The sample mean is defined as

$$M_n = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

The mean and variance of the sample mean are

$$E[M_n] = E[\frac{1}{n}\sum_{i=1}^{n}X_i] = \frac{1}{n}\sum_{i=1}^{n}E[X_i] =$$

$$Var[M_n] = E[(M_n - 1)^2] = E\left[\left(\frac{S_n - E(S_n)}{n}\right)^2\right]$$

$$= \frac{1}{n^2}E[(S_n - E(S_n)^2)] = \frac{1}{n^2}Var[S_n] = \frac{2}{n}$$

ENCS6161	– n	7/14	1

The Laws of Large Numbers

- From chebyshev inequality for any $\varepsilon > 0$ $P\{|M_n - \mu| \ge \varepsilon\} \le \frac{Var[M_n]}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}$ **So** $P\{|M_n - \mu| < \varepsilon\} > 1 - \frac{\sigma^2}{n\varepsilon^2}$
- The weak law of large numbers:

$$\lim_{n \to \infty} P\left\{ |M_n - \mu| < \varepsilon \right\} = 1$$

for any $\varepsilon > 0$.

The strong law of large numbers:

$$P\left\{\lim_{n\to\infty}M_n=\mu
ight\}=1$$

The proof is beyond the level of this course.

ENCS6161 - p.8/14

The Central Limit Theorem

• Let X_1, \dots, X_n be i.i.d r.v.s with μ, σ^2 and $S_n = X_1 + \dots + X_n$. Let

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

then as $n \to \infty$, the distribution of Z_n tends to standard Gaussian.

$$\lim_{n \to \infty} P[Z_n \le z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-\frac{x^2}{2}} dx$$
$$= 1 - Q(z) = \Phi(z)$$

ENCS6161 - p.9/14

The Central Limit Theorem

• Proof:

$$\Phi_{Z_{n}}(w) = E[e^{jwZ_{n}}] = E\left[e^{\frac{jw}{\sigma}\sum_{i=1}^{n}(X_{i}-\mu)}\right]$$
$$= E\left[\prod_{i=1}^{n} e^{\frac{jw(X_{i}-\mu)}{\sigma}}\right] = \prod_{i=1}^{n} E\left[e^{\frac{jw(X_{i}-\mu)}{\sigma}}\right] \text{ (* indep)}$$
$$= \left\{E\left[e^{\frac{jw(X_{i}-\mu)}{\sigma}}\right]\right\}^{n} \text{ (* i.i.d)}$$
$$(\text{to be continued})$$

ENCS6161 - p.10/14

The Central Limit Theorem

• Proof: (continues)

$$E\left[e^{\frac{jw(X_{i}-\mu)}{\sigma^{p}\overline{n}}}\right] = E\left[1 + \frac{jw}{\sigma\sqrt{n}}(X-\mu) + \frac{(jw)^{2}}{2!n\sigma^{2}}(X-\mu)^{2} + R(w)\right]$$

= $1 + \frac{jw}{\sigma\sqrt{n}}\underbrace{E[X-\mu]}_{=0} - \frac{w^{2}}{2n\sigma^{2}}\underbrace{E[(X-\mu)^{2}]}_{=\sigma^{2}} + E[R(w)]$
= $1 - \frac{w^{2}}{2n} + E[R(w)]$

E[R(w)] becomes negligible compared to $\frac{w^2}{2n}$ when $n \to \infty$, therefore

$$\lim_{n\to\infty} \Phi_{Z_n}(w) = \lim_{n\to\infty} \left(1 - \frac{w^2}{2n}\right)^n = e^{-\frac{w^2}{2}}$$
So, when $n \to \infty$, $Z_n \sim N(0, 1)$

ENCS6161 - p.11/14

Convergence of Sequence of R.V.s

- X_1, \dots, X_n are r.v.s, how to define the convergence of of r.v.s? Recall: a r.v. is a function: $S \to R$. So $X_1(w), X_2(w), \dots$ are functions.
- If $X_n(w) \to X(w)$ for all w, sure convergence
- If $P \{w | X_n(w) \to X(w)\} = 1$, almost sure convergence, $X_n \to X$ a.s. (or w.p. 1)
- If $E[(X_n(w) X(w))^2] \to 0$ as $n \to \infty$ mean square convergence, $X_n \to X$ m.s.
- If $\forall \varepsilon > 0$, $P\{|X_n(w) X(w)| > \varepsilon\} \to 0$, convergence in probability.

ENCS6161 - p.12/14

Convergence of Sequence of R.V.s

- a.s. convergence ⇒ convergence in probability m.s. convergence ⇒ convergence in probability But almost sure <≠> mean square.
- Convergence in distribution $\overline{X_n}$ has cdf $F_n(x)$ and X has cdf F(x). If $F_n(x) \to F(x)$ for all x where F(x) is continuous. We call X_n converge to X in <u>distribution</u>.
- Convergence in prob. \Rightarrow convergence in distribution.

ENCS6161 - p.13/14

Convergence of Sequence of R.V.s

• Note: weak LLN: convergence in prob. $M_n \rightarrow \mu$ in prob. strong LLN: almost sure $M_n \rightarrow \mu \ a.s.$ CLT: convergence in distribution $Z_n \rightarrow Z \sim N(0, 1)$ in dist. • In fact $M_n \rightarrow \mu \ m.s.$ since

 $E[(M_n-\mu)^2] = Var[M_n] = \frac{\sigma^2}{n} \to 0$, as $n \to \infty$

ENCS6161 - p.14/14