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Definition of a Random Process 1

e Assume the we have a random experiment with
outcomes w belonging to the sample set S. To each
w € S, we assign a time function X (¢,w), t € I, where
I is a time index set: discrete or continuous. X (¢, w)
is called a random process.

e Ifwis fixed, X(¢,w) is a deterministic time function,
and is called a realization, a sample path, or a
sample function of the random process.

e Ift=+tgis fixed, X(tp,w) as a function of w, is a
random variable.

e A random process is also called a stochastic process.
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Definition of a Random Process 1

e Example: A random experment has two outcomes
w € {0,1}. If we assign:
X(t,0) = Acost
X(t,1) = Asint
where A is a constant. Then X (¢,w) is a random
process.

e Usually we drop w and write the random process as
X (t).
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Specifying a Random Process L

e Joint distribution of time samples
Let X1, -, X, be the samples of X (¢, w) obtained at

t1,- - ,tn, 1.e. Xj = X(tj,w), then we can use the joint
CDF
By ox, (21, ,2n) = P[X1 <@xp,-++ , Xn < 2]

or the joint pdf fx.ux,. (1, -+ ,2n) to describe a

random process partially.
e Mean function: Z .

mx () = E[X(t)] = X (t)(x)dx

o Autocorrelation function Z,Z,

Rx (t1,t2) = E[X (11) X (t2)] = TYIX (t)X (t2) (T y)dxdy

a1 01
E
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Specifying a Random Process L

e Autocovariance function
Cx (t1,t2) = E[(X(t1) —mx (t1))(X (t2) —mx (t2))]
= Rx(t1,t2) — mx (t1)mx (t2)
a special case:
Cx (t,t) = E[(X(t) — mx (t))?] = Var[X ()]

e The correlation coefficient
. Ox(ty,19)
P

Cx (t1,11)Cx (t2, t2)

e Mean and autocorrelation functions provide a partial
description of a random process. Only in certain
cases (Gaussian), they can provide a fully
description.

px (t1,t2) =

=
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Specifying a Random Process

e Example: X (t) = Acos(2nt), where A is a random

variable.
mx (t) = FE
Rx (tl,tz) = F
= F
Cx (t1,t2) =

(A cos(2rt)| = E|A] cos(2mt)
(A cos(2mty) - Acos(2mta)]

(A?%] cos(2rt1) cos(2mts)

Rx (t1,t2) — mx (t1)mx (t2)

= (E[A?% — E[A]?) cos(2nt1) cos(2mts)
— VaT(A) COS(27Tt1) COS(27Tt2)



Specifying a Random Process L

e Example: X (t) = Acos(wt + ©), where © is uniform in

0,27], A and w are constants.
myx (t) = E[Azcos(wt + 0)]
1 <20
= — Acos(wt +6)dd =0
2T 0
Cx (t1,t2) = Rx %1, ty) = A?E|cos(wty + ©) cos(wty + O)]

B A_2 2 cosw(ty — ta) 4 cos[w(ty + ta) + 6] 50
2 2

A2
= 5 cos w(ty — to)
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Gaussian Random Processes

e A random process X (¢) is a Gaussian random

process if for any n, the samples taken at ¢, ¢2, - - -

are jointly Gaussian, i.e. if
X1 = X(tl),--- , Xp = X(tn>

then
o2 (x0m)TK T (xIm)
fX1D]DXn($1>"' 7ajn> - (27r)n=2‘K‘1=2
where m = [my (t1),--- ,mx (tn)]" and 3

Cx (t1,t1) -+ COx(t1,tn)
K-9 .
OX (tl’htl) OX (tn,tn>
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Multiple Random Processes L

e To specify joint random processes X (¢) and Y (¢), we
need to have the pdf of all samples of X (¢) and Y (¢)

such as X (t1),---, X(4),Y(t1),---,Y(4) for all i and
j and all choices of t1, -+ ,ti,t1,- -+ , 1.

e The processes X (t) and Y (¢) are indepedent if the
random vectors (X (¢1),---, X(¢)) and
(Y(t1),---,Y()) are independent for all 4, ; and
t1, - i b1, 7,5]?_
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Multiple Random Processes L

e The cross-correlation Rx.y (t1,t2) is defined as
Ry (t1,t2) = E[X(t1)Y (t2)]
Two processes are orthogonal if
Rx .y (t1,t2) = 0 for all t; and 2

e The cross-covariance
Cxcy (t1,t2) = E[(X(61) —mx (1)) (Y (t2) — my (£2))]

= Rx;v(t1,t2) —mx (t1)my (t2)
X(t) and Y (¢) are uncorrelated if
Cx Y (tl, tg) = ( for all t; and 5
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Multiple Random Processes L

e Example: X (t) = cos(wt + ©) and Y (t) = sin(wt + 0),
where © is uniform in [0, 27r] and w is a constant.
mx (t) = my(t) =
COx:y (t1,t2) = Rx v (t1,62)
= [cos(wt1 + O) sin(wty 4+ O)] .
= FE —% sinw(t; — t2) + %sin(w(tl +t2) + 20)

1
= -3 sinw(t; — t2)



Discrete-Time Random Processes

e i.i.d random processes: X, ~ fx (zn) then

Fx,ax, (zl,- -+ ,zn) = Fx (z1) -+ Fx (2n)
mx (n) = FE[Xp|=m foralln

E[(Xn; —m)(Xn, —m)]
= FE[Xn, —m|E[Xn, —m|]=0if n; #ne
Cx (n,n) = E[(Xn—m)?]=0°

Cx (nla n2) — 02501;”2

2
El
—_
S
)

I

Rx (n1,n2) = U25n1;n2 +m?



Discrete-Time Random Processes

e Example: let X, be a sequence of i.i.d. Bernoulli
r.v.s. with P(X; = 1) =p.

mx (n) = p
Var(Xn) = p(l1-p)
Cx (n1,m2) = p(1—p)onsin,
Rx (77/1,77&) = p<1 _p)5n1;n2 —|—p2
e Example:
Yn =2X, — 1, wher(e Xy are i.i.d. Bernoullir.v.s

1 with p
—1 with (1 —p)
= my(n)=2p—1, Var(Yn) =4p(1 —p)

Yn:
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Random Walk

e LetS, =Y +---+Y,, where Y, are i.i.d. r.v.s. with
P{Ypo=1}=pand P{Y, =—-1}=1—p. Thisis a
one-dimensional random walk.

a If there are k positive jumps (+1's) in n trials (n
walks), then there are n — k negative jumps (—1's).
S0 Sy =k x 1+ (n=k)x (-1)=2k—nand

n

pk(l_p)nmk7 k:()ala )

n
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Properties of Random Walk L

e Independent increment
Let I; = (ng,nl] and I, = (ng,ng]. I n1 < n9, Iy and I
do not overlap. Then the increments on the two
intervals are
Sny —Sng = Yno41 + -+ Yn,
Sﬂs - Snz = Y41+ -+ Y,
Since they have no Y;,’s in common (no overlapping)
and Y,’s are independent.
= Sn, — Sp, and Sp, — Sp, are independent.
This property is called independent increment.
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Properties of Random Walk L

e Stationary increment

Furthermore, if I; and I, have the same length, i.e

n1 — ng = n3 — ne = m, then the increments S,, — Sp,
and S,, — Sn, have the same distribution since they
both are the sum of m i.i.d r.v.s

This means that the increments over interval of the
same length have the same distribution. The process
Sy is said to have stationary increment.
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Properties of Random Walk L

@ These two properties can be used to find the joint pmf of S,
atnq;---;ng
P[Sn; = $1;Sn, = S2;- -+ ;Sn, = Sk

= P[Snh, = 81;Sn, —Sn; = s2—81; -+ ;Snk _Snkm = Sk — Sk11]
= P[Sn; = s1]P[Sn, — Sny = s2 —s1]- - P[Sny — Sny i = Sk — Skl

(from independent increment)

P[Sh, = $1]P[Sn,ny = 32—31]"'P[Snankf1 = Sk — Ski1]

(from stationary increment)
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Properties of Random Walk L

e If Y, are continuous valued r.v.s.
fon, 80, (51,7 k)

= fsu, (51)fs0, 0, (52 = 51) " fs, n, , (Sk — Skii1)
e.g., if Yo ~ N(0,0?) then

f8n,:8,, (51, 82) = fs,. (51)fs,, n, (52 — 51)

2

51 (s20151)2
— 1 6D2n1,2 . D 1 €D2(n2un1)u2

V2mnyo " 27(ne — ny)o
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Sum of 1.1.d Processes L

@ IfXq; Xg; i Xyareiidand S, = X4+ Xo+ i+ X, we call S,
the sum process of i.i.d, e.g. random walk is a sum process.
ms(n) = E[Sp]=nE[X]= nm
Var[S,] = nVar[X]= n?
Autocovariance
Cs(n;k) = E[(Sn — E[Sa])(Sk — E[gk])] 3
X Xk
= E[Sy —nm)(S —km)]=E4 (X;—m) (X; —m)d
i=1 j=0
XX XX o
= E[(Xi —m)(Xj —m)]= Cx (i5])
i=1j=0 i=1j=0

XX
= 20 = min(n; k)7

I i=1j=0
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Sum of 1.1.d Processes

e Example: For random Walk
E[Sn] = nm=n(2p—1)
Var[Sn] = no*=4np(l — p)
Cs(n, k) = min(n, k)4p(1 —p)



Continuos Time Random Processes ¥

e Poisson Process: a good model for arrival process
N(t) : Number of arrivals in [0, t]
A : arrival rate (average # of arrivals per time unit)
We divide [0, t] into n subintervals, each with duration

=1

e Assume:

a The probability of more than one arrival in a
subinterval is negligible.

o Whether or not an event (arrival) occurs in a
subinterval is independent of arrivals in other
subintervals.

So the arrivals in each subinterval are Bernoulli and

they are independent.

=
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Poisson Process L

e Letp = Prob{1 arrival}. Then the average number of
arrivals in [0, ] is

At
np=X = p= o
The total arrivals in [% t]DN Bionomial(n, p)
noog O At
PIN(t)=k= | p(1-p) = e

when n — oo.

e Stationary increment? Yes
Independent increment? Yes
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Poisson Process

e Inter-arrival Time: Let T be the inter-arrival time.
P{T >t} = P{no arrivals in t seconds}

— P{N(t) =0} ="
=2 P{T<t}=1-—¢"
fr(t)=xe't fort >0

So the inter-arrival time is exponential with mean .

[]
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Random Telegraph Signal

e Read on your own



Wiener Process

e Suppose that the symmetric random walk (p = %)
takes steps of magnitude of h every § seconds. At
time ¢ , we have n = L jumps.

X(t)=h(D1+ Do+ -+ Dn) = hSh

where D; are i.i.d random variables taking 41 with
equal probability.

E[X(t)] = hE[Sh] = 0

Var[X (t)] = h*nVar[D;] = h*n
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Wiener Process L

e Ifwelet h = vad, where o is a constantand § — 0
and let the limit of X (¢) be X(t), then X (¢) is a
continuous-time random process and we have:

E[X(t)] =0

= ot

t
X ()] = lim h*n = lim(Vad)?~
Var|X(t)] = lim 7" = lim (Vad)
e X(t) is called the Wiener process. It is used to model
Brownian motion, the motion of particles suspended
in a fluid that move under the rapid and random
impact of neighbooring particles.
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Wiener Process "1
o Note that since § = £,

Sn
Xi(t) = hSﬂ_\/_Sn—\/f\/i

When § — 0, n — oo and since up =0, op = 1, from
CLT, we have
Sn Sh — nUD
— = ~ N(0,1
NI (0,1)
So the distribution of X(¢) follows
X(t) ~ N(0,at)

l.e.
1 x2

e 20t
V2mat

fx (@) =

ENCS6161 — p.26/47



Wiener Process L

e Since Wiener process is a limit of random walk, it
inherits the properties such as independent and
stationary increments. So the joint pdf of X (¢) at
ti,to, -tk (B < to < --- < tg) will be

IX ()X (t2):mx (to) (T1, T2, k)
Ix ) () X (oot (T2 = 21) - X bt ) (Tk — Tkoi1)

x5 (Xk Xk 1)?

1
neXp{_i[D_h T T D(tthkm)]}
H

(2ma)Kty(ty —t1) -+ - (tk — k1)
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Wiener Process L

e mean funtion: mx (t) = E|X(t)] =0
auto-covariance: Cx (t1,t2) = amin(ty, t2)
Proof:

Xi(t) = hSn
Ox (t1,ts) = h*Cs(ni,n2) (wheren; = %1,@ = 2)

= (Vad)?min(ni, ny)od
(keep in mind that: 03 = 1)

= amin(n1d,n20) = amin(ty, t2)
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Stationary Random Processes L

e X(t) is stationary if the joint distribution of any set of
samples does not depend on the placement of the
time origin.

EXC(t4):X (t2):mX (1) (T15 T2, -+ 5 Tk)
= FX(t1+D);X(t2+D);DJDJX(tk+m)(931:$2»'" , Tk )
for all time shift 7, all &, and all choices of t1,ts, - - - , ik.

e X(t) and Y (t) are joint stationary if the joint
distribution of X (1), X (t2), -+, X(tx) and
Y(19), Y (#9), - ,Y(t) do not depend on the
placement of the time origin for all £, j and all choices
of t1,tg, - ,tx and 9,13, -+, #7.
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Stationary Random Processes L

e First-Order Stationary
Fx (t)(ZU) = Fx (t+0) (ZC) = Fx (x), for all t, T
= mx (t) = E[X(t)]=m, forallt
VarX(t) = E[(X(t) —m)?] = o2, forallt
e Second-Order Stationary
Fx (t1)X (tz)(xl, x9) = Fx (0)X (tth1)($1, xe), forallty,ty
= Rx (t1,t2) = Rx (t1 —t2), forallty,ts

Cx (tl, tQ) = Cx (tl — tg), for all ¢1, t9
The auto-correlation and auto-covariance depend
only on the time difference.
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Stationary Random Processes L

Example:
e An i.i.d random process is stationary.
EX (t):X (t2):mX (1) (T15 T2, -+ 5 Tk )
= Fx(z1)Fx (22) - Fx ()
= IX (ty+0):X (ta40): X (t+0) (T, T2, -+, k)

e sum of i.i.d random process Sp, = X1 + Xo +--- + X}
We know mg(n) = nm and Var[Sp] = no?
= not stationary.
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Wide-Sense Stationary (WSS) L
o X(t)is WSS if:

mx (t) = m, forallt
Cx (tl,tg) = (Cx (tl — t2), for all t1,to

Let 7 = t; — t9, then Cx (tl,tg) = Cx (7‘)



Wide-Sense Stationary (WSS) L

e Example: Let X, consists of two interleaved
sequences of independent r.v.s.

For n even: X, € {+1,—1} with p = 3

For n odd: X, € {3, -3} with p = 2% and  resp.
Obviously, X is not stationary, since its pmf varies
with n. However,

mx (n) = ? for all n
. E[Xi]E[Xj]:O, 1 #£ ]
R T A
= ij
= X, is WSS.

So stationary = WSS, WSS ; stationary.
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Autocorrelation of WSS processes L

) = E[X?(t)], for all ¢.
). average power of the process.
e Ry (1) is an even function.
(1) = EIX(t+7)X(1)] = E[X(t)X(t+7)] = Bx (=7)
)

P{X(t+7) = X(t)] > e} = P{(X(t+7)— X(t)* > *}
E[(X(t+7) — X(1)’]
=2

2|Rx (0) — Rx (7)]

g2
If Rx (1) is flat = [Rx (0) — Rx (7)] is small = the
probability of having a large change in X(¢) in 7
seconds is small.

(Markov Inequality)




Autocorrelation of WSS processes L

e |Rx (7)| < Rx (0)

Proof: E[(X(t +7)+ X(t))?] = 2[Rx (0) £ Rx (1)] > 0
= |Rx (1) < Rx (0)

e If Rx (0) = Rx (d), then Rx (t) is periodic with period

d, and X (t) is mean square periodic, i.e.,
E[(X(t+d) — X(t))*] =0

Proof: read textbook (pg.360). Use the inequality
E[XY]? < E[X?E[Y?] (from |p| < 1, sec.4.7)

e If X(t) =m+ N(t), where N(t) is a zero-mean
process s.t. Ry (7) — 0, as 7 — oo, then
Rx (1) = E[(m+N(t+7))(m+N(t))] = m*+Rn (t) — m?
as 7 — oQ.

=



Autocorrelation of WSS processes L

e Rx (7) can have three types of components: (1) a
component that — 0, as 7 — oo, (2) a periodic
component, and (3) a component that due to a non

Zero mean.

e Example: Ry (1) = 29 Ry (1) = 3—22 cos 27 foT

If Z(t) = X(t) + Y (t) +m and assume X,Y are
independent with zero mean, then

Rz(T):Rx(T)+Ry(T)+m2

ENCS6161
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WSS Gausian Random Process 1

e If a Gaussian r.p. is WSS, then it is stationary (Strict
Sense Stationary)

Proof: 1 S
_exp{—3(@—m) K '(z-m)}
, (2m)% |K ;
mx (tl) Cx (tl,tl) e O (tl,tn)
m :Q g K = : : :
mx (tn) Cx (tn7t1> - O (tnytn)
If X(¢) is WSS, then mx (t1) = mx (t2) = -+ = m,

Cx (ti,tj) = Cx (ti —tj). So fx (z) does not depend on
the choice of the time origin = Strict Sense
Stationary.
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Cyclo Stationary Random Process L

e Read on your own.



Continuity of Random Process L

e Recall that for X1, Xo, -+, Xu,---
Xn — X in m.s. (mean square) if E[(X, — X)?] — 0,
as n — oo

e Cauchy Criterion
If E[(Xn — Xm)?] — 0as n — oo and m — oo, then
{Xn} converges in m.s.

e Mean Square Continuity
The r.p. X(t) is continuous at ¢ =ty in m.s. if

E[(X(t)— X(t))*] — 0, ast— tg

We wrtie it as: Lim.y1 t, X (t) = X(tg) (limit in the
mean)

=
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Continuity of Random Process L

e Condition for mean square continuity
E[(X(t)=X(to))?] = Rx (t,t)—Rx (to, t)—Rx (t, o)+ Rx (to, o)
If Ry (t1,t2) is continuous (both in ¢1,t2), at point
(to, o), then E[(X (t) — X (t0))?] — 0. So X (¢) is
continuous at ¢y in m.s. if Ry (t¢1,%2) is continuous at
(0, to)
e If X(¢)is WSS, then:
E[(X(to+7) — X(t0))*] = 2(Rx (0) — Rx (7))
So X (t) is continuous at ¢, if Rx (7) is continuous at
T=0



Continuity of Random Process

e If X(t) is continuous at ¢y in m.s., then
Jim mx (#) = mx (to)

Proof:
Var|X(t) — X(tg)] >0

= E[X(t) — X(to)]? < BI(X(t) — X(t))*] = 0
(mx (t) —mx (to))* — 0
mx (t) — mx (o)

4l



Continuity of Random Process L

e Example: Wiener Process:
Rx (t1,t2) = amin(t,t2)
Rx (t1,t2) is continous at (¢, t9) = X (¢) is continuous
at tp in m.s.

e Example: Poisson Process:
CN (tl, tg) = )\mil’l(tl, tg)
RN (tl, tg) =, min(tl, tg) + )\Qtltg
N(t) is continuous at ¢y in m.s.
Note that for any sample poisson process, there are
infinite number of discontinuities, but N (%) is
continuous at any ty in m.s.
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Mean Square Derivative

e The mean square derivative X{t) of the r.p. X (¢t) is

defined as:
X(t+e)— X(t)

X9t = Lim.
"0 €
rovided that,
i S X X(t o

e The mean square derivative of X (t) at ¢ exists if
@@@Rx (t1,t2) exists at point (¢, ).
Proof: read on your own.

e For a Gaussian random process X (), Xqt) is also
Gaussian
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Mean Square Derivative L

e Mean, cross-correlation, and auto-correlation of XYt)

d
mxo(t> = amx (t)
0
Ry xo(t1,t2) = a—RX(t17t2>
12
0 0”
Ry (t1,t2) = 0.9, 1 (t1,12)
e When X (t) is WSS,
mxo(t) = 0
Bxxolr) = 0 Ry (t— 1) = — B (7)
X XO(T — at2X 1 2) — dTXT
5 5
Rxolr) = 2 Dpgiti—t) =L rer)
0 — _ N — —_—
L X AT ot1 Oty XA 2 dr2 X AT
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Mean Square Derivative L

e Example: Wiener Process
: 0
Rx (tl,tg) = ozmln(tl, tQ) = ﬁ—thX (tl,tg) = Ozu(tl — tQ)
u(-) is the step function and is discontinuous at
t1 = to. If we use the delta function,

0
Rx o(tl, tg) = a—tl()zu(tl, tg) = Oz(S(tl — tg)

Note XY¢) is not physically feasible since

E[XYt)?] = a6(0) = oo, i.e., the signal has infinite
power. When t; # to, Rx o(tl, tg) =0= Xo<t1>, Xo(t2>
uncorrelated (note mxo(t) = 0 for all t) = independent
since XYt) is a Gaussian process.

e XY¢t) is the so called White Gaussian Noise.

=
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Mean Square Integrals

Q

The mean square integral of X (¢) form ¢t to t:

Y(t) = tto X (t%dt%exists if the integral

R; t p o
to 1, Bx (u,v)dudv exists.

The mean and autocorrglation of Y (¢)
t

my (t) = o (t9at®
0
Ly 2Ly,

Ry (t1,t2) = Rx (u,v)dudv
to to
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Ergodic Theorems L

e Time Averages of Random Processes and Ergodic
Theorems.

Read on your own.
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