Chapter 9 Random Processes

ENCS6161 - Probability and Stochastic Processes

Concordia University

Definition of a Random Process

- Assume the we have a random experiment with outcomes w belonging to the sample set S. To each $w \in S$, we assign a time function X(t, w), $t \in I$, where I is a time index set: discrete or continuous. X(t, w) is called a random process.
- If w is fixed, X(t, w) is a deterministic time function, and is called a realization, a sample path, or a sample function of the random process.
- If $t = t_0$ is fixed, $X(t_0, w)$ as a function of w, is a random variable.
- A random process is also called a stochastic process.

ENCS6161 - p.1/47

Definition of a Random Process

• Example: A random experiment has two outcomes $w \in \{0, 1\}$. If we assign:

 $X(t,0) = A\cos t$

 $X(t,1) = A\sin t$

where A is a constant. Then X(t, w) is a random process.

• Usually we drop w and write the random process as X(t).

ENCS6161 - p.2/47

• Joint distribution of time samples

Let X_1, \dots, X_n be the samples of X(t, w) obtained at t_1, \dots, t_n , i.e. $X_i = X(t_i, w)$, then we can use the joint CDF

 $F_{X_1 X_n}(x_1, \dots, x_n) = P[X_1 \le x_1, \dots, X_n \le x_n]$ or the joint pdf $f_{X_1 X_n}(x_1, \dots, x_n)$ to describe a random process partially.

• Mean function:

$$m_{\mathbf{X}}(t) = E[X(t)] = \begin{bmatrix} \mathbf{Z} \\ \mathbf{1} \end{bmatrix} x f_{\mathbf{X}(t)}(x) dx$$

• Autocorrelation function $\mathbf{z} = \mathbf{z}$

$$R_{\mathbf{X}}(t_{1}, t_{2}) = E[X(t_{1})X(t_{2})] = \begin{bmatrix} \mathbf{Z} & \mathbf{1} & \mathbf{Z} & \mathbf{1} \\ \mathbf{R}_{\mathbf{X}}(t_{1}, t_{2}) = E[X(t_{1})X(t_{2})] = \begin{bmatrix} \mathbf{X}(t_{1})X(t_{2}) & \mathbf{X}(t_{1})X(t_{2}) \\ \mathbf{1} & \mathbf{1} \end{bmatrix}$$

ENCS6161 - p.3/47

Autocovariance function

$$C_{\mathbf{X}}(t_{1}, t_{2}) = E[(X(t_{1}) - m_{\mathbf{X}}(t_{1}))(X(t_{2}) - m_{\mathbf{X}}(t_{2}))]$$

= $R_{\mathbf{X}}(t_{1}, t_{2}) - m_{\mathbf{X}}(t_{1})m_{\mathbf{X}}(t_{2})$

a special case:

$$C_{\mathbf{X}}(t,t) = E[(X(t) - m_{\mathbf{X}}(t))^{2}] = Var[X(t)]$$

The correlation coefficient

$$\rho_{\mathbf{X}}(t_{1}, t_{2}) = \mathbf{p} \frac{C_{\mathbf{X}}(t_{1}, t_{2})}{C_{\mathbf{X}}(t_{1}, t_{1})C_{\mathbf{X}}(t_{2}, t_{2})}$$

 Mean and autocorrelation functions provide a partial description of a random process. Only in certain cases (Gaussian), they can provide a fully description.

ENCS6161 - p.4/47

• Example: $X(t) = A\cos(2\pi t)$, where A is a random variable.

$$m_{\mathbf{X}}(t) = E[A\cos(2\pi t)] = E[A]\cos(2\pi t)$$

$$R_{\mathbf{X}}(t_{1}, t_{2}) = E[A\cos(2\pi t_{1}) \cdot A\cos(2\pi t_{2})]$$

$$= E[A^{2}]\cos(2\pi t_{1})\cos(2\pi t_{2})$$

$$C_{\mathbf{X}}(t_{1}, t_{2}) = R_{\mathbf{X}}(t_{1}, t_{2}) - m_{\mathbf{X}}(t_{1})m_{\mathbf{X}}(t_{2})$$

$$= (E[A^{2}] - E[A]^{2})\cos(2\pi t_{1})\cos(2\pi t_{2})$$

$$= Var(A)\cos(2\pi t_{1})\cos(2\pi t_{2})$$

ENCS6161 - p.5/47

• Example:
$$X(t) = A\cos(wt + \Theta)$$
, where Θ is uniform in
 $\overline{[0, 2\pi]}$, A and w are constants.
 $m_{\mathbf{X}}(t) = E[A\cos(wt + \Theta)]$
 $= \frac{1}{2\pi} \int_{0}^{Z} A\cos(wt + \theta)d\theta = 0$
 $C_{\mathbf{X}}(t_1, t_2) = R_{\mathbf{X}}(t_1, t_2) = A^2 E[\cos(wt_1 + \Theta)\cos(wt_2 + \Theta)]$
 $= \frac{A^2}{2\pi} \int_{0}^{Z} \frac{\cos w(t_1 - t_2) + \cos[w(t_1 + t_2) + \theta]}{2} d\theta$
 $= \frac{A^2}{2}\cos w(t_1 - t_2)$

ENCS6161 - p.6/47

Gaussian Random Processes

 A random process X(t) is a Gaussian random process if for any n, the samples taken at t₁, t₂, ··· , t_n are jointly Gaussian, i.e. if

$$X_1 = X(t_1), \cdots, X_{\mathsf{n}} = X(t_{\mathsf{n}})$$

then

ENCS6161 - p.7/47

Multiple Random Processes

To specify joint random processes X(t) and Y(t), we need to have the pdf of all samples of X(t) and Y(t) such as X(t₁), ..., X(t_i), Y(t₁), ..., Y(t_j) for all i and j and all choices of t₁, ..., t_i, t₁, ..., t_j.

The processes X(t) and Y(t) are indepedent if the random vectors (X(t₁), ..., X(t_i)) and (Y(t₁), ..., Y(t_j)) are independent for all i, j and t₁, ..., t_i, t₁, ..., t_j.

ENCS6161 - p.8/47

Multiple Random Processes

• The cross-correlation $R_{X;Y}(t_1, t_2)$ is defined as $R_{X;Y}(t_1, t_2) = E[X(t_1)Y(t_2)]$ Two processes are orthogonal if $R_{X;Y}(t_1, t_2) = 0$ for all t_1 and t_2 • The cross-covariance $C_{X;Y}(t_1, t_2) = E[(X(t_1) - m_X(t_1))(Y(t_2) - m_Y(t_2))]$ $= R_{X;Y}(t_1, t_2) - m_X(t_1)m_Y(t_2)$ X(t) and Y(t) are uncorrelated if

 $C_{X;Y}(t_1, t_2) = 0$ for all t_1 and t_2

ENCS6161 - p.9/47

Multiple Random Processes

• Example: $X(t) = \cos(wt + \Theta)$ and $Y(t) = \sin(wt + \Theta)$, where Θ is uniform in $[0, 2\pi]$ and w is a constant. $m_{\mathbf{X}}(t) = m_{\mathbf{Y}}(t) = 0$ $C_{\mathbf{X};\mathbf{Y}}(t_1, t_2) = R_{\mathbf{X};\mathbf{Y}}(t_1, t_2)$ $= E[\cos(wt_1 + \Theta)\sin(wt_2 + \Theta)]$ $= E -\frac{1}{2}\sin w(t_1 - t_2) + \frac{1}{2}\sin(w(t_1 + t_2) + 2\Theta)$ $= -\frac{1}{2}\sin w(t_1 - t_2)$

ENCS6161 - p.10/47

Discrete-Time Random Processes

• i.i.d random processes:
$$X_{n} \sim f_{X}(x_{n})$$
 then

$$F_{X_{1}} \times_{n} (x_{1}, \cdots, x_{n}) = F_{X}(x_{1}) \cdots F_{X}(x_{n})$$

$$m_{X}(n) = E[X_{n}] = m \quad \text{for all } n$$

$$C_{X}(n_{1}, n_{2}) = E[(X_{n_{1}} - m)(X_{n_{2}} - m)]$$

$$= E[X_{n_{1}} - m]E[X_{n_{2}} - m] = 0 \text{ if } n_{1} \neq n_{2}$$

$$C_{X}(n, n) = E[(X_{n} - m)^{2}] = \sigma^{2}$$

$$\Rightarrow \quad C_{X}(n_{1}, n_{2}) = \sigma^{2}\delta_{n_{1};n_{2}}$$

$$R_{X}(n_{1}, n_{2}) = \sigma^{2}\delta_{n_{1};n_{2}} + m^{2}$$

ENCS6161 - p.11/47

Discrete-Time Random Processes

• Example: let X_n be a sequence of i.i.d. Bernoulli r.v.s. with $P(X_i = 1) = p$.

$$m_{\mathbf{X}}(n) = p$$

$$Var(X_{\mathbf{n}}) = p(1-p)$$

$$C_{\mathbf{X}}(n_{1}, n_{2}) = p(1-p)\delta_{\mathbf{n}_{1};\mathbf{n}_{2}}$$

$$R_{\mathbf{X}}(n_{1}, n_{2}) = p(1-p)\delta_{\mathbf{n}_{1};\mathbf{n}_{2}} + p^{2}$$

• Example:

$$Y_{n} = 2X_{n} - 1, \text{ where } X_{n} \text{ are i.i.d. Bernoulli r.v.s}$$
$$Y_{n} = \begin{array}{c} 1 & \text{with } p \\ -1 & \text{with } (1-p) \\ \Rightarrow m_{Y}(n) = 2p - 1, \quad Var(Y_{n}) = 4p(1-p) \end{array}$$

ENCS6161 - p.12/47

Random Walk

- Let $S_n = Y_1 + \cdots + Y_n$, where Y_n are i.i.d. r.v.s. with $P\{Y_n = 1\} = p$ and $P\{Y_n = -1\} = 1 p$. This is a one-dimensional <u>random walk.</u>
- If there are k positive jumps (+1's) in n trials (n walks), then there are n k negative jumps (-1's).
 So S_n = k × 1 + (n k) × (-1) = 2k n and

$$P\{S_{\mathsf{n}} = 2k - n\} = \frac{n}{k} p^{\mathsf{k}} (1-p)^{\mathsf{n} - \mathsf{k}}, \quad k = 0, 1, \cdots, n$$

ENCS6161 - p.13/47

Independent increment

Let $I_1 = (n_0, n_1]$ and $I_2 = (n_2, n_3]$. If $n_1 \le n_2$, I_2 and I_2 do not overlap. Then the increments on the two intervals are

$$S_{n_1} - S_{n_0} = Y_{n_0+1} + \dots + Y_{n_1}$$

$$S_{n_3} - S_{n_2} = Y_{n_2+1} + \dots + Y_{n_3}$$

Since they have no Y_n 's in common (no overlapping) and Y_n 's are independent.

 $\Rightarrow S_{n_1} - S_{n_0}$ and $S_{n_3} - S_{n_2}$ are independent. This property is called independent increment.

ENCS6161 - p.14/47

Stationary increment

Furthermore, if I_1 and I_2 have the same length, i.e $n_1 - n_0 = n_3 - n_2 = m$, then the increments $S_{n_1} - S_{n_0}$ and $S_{n_3} - S_{n_2}$ have the same distribution since they both are the sum of m i.i.d r.v.s

This means that the increments over interval of the same length have the same distribution. The process S_n is said to have stationary increment.

ENCS6161 - p.15/47

• These two properties can be used to find the joint pmf of S_n at $n_1; \dots; n_k$ $P[S_{n_1} = s_1; S_{n_2} = s_2; \dots; S_{n_k} = s_k]$ $= P[S_{n_1} = s_1; S_{n_2} - S_{n_1} = s_2 - s_1; \dots; S_{n_k} - S_{n_{k-1}} = s_k - s_{k-1}]$ $= P[S_{n_1} = s_1]P[S_{n_2} - S_{n_1} = s_2 - s_1] \dots P[S_{n_k} - S_{n_{k-1}} = s_k - s_{k-1}]$ (from independent increment) $= P[S_{n_1} = s_1]P[S_{n_2 - n_1} = s_2 - s_1] \dots P[S_{n_k - n_{k-1}} = s_k - s_{k-1}]$ (from stationary increment)

ENCS6161 - p.16/47

• If
$$Y_{n}$$
 are continuous valued r.v.s.
 $f_{S_{n_{1}}} S_{n_{k}}(s_{1}, \cdots s_{k})$
 $= f_{S_{n_{1}}}(s_{1})f_{S_{n_{2}-n_{1}}}(s_{2}-s_{1})\cdots f_{S_{n_{k}-n_{k-1}}}(s_{k}-s_{k-1})$
e.g., if $Y_{n} \sim N(0, \sigma^{2})$ then
 $f_{S_{n_{1}};S_{n_{2}}}(s_{1}, s_{2}) = f_{S_{n_{1}}}(s_{1})f_{S_{n_{2}-n_{1}}}(s_{2}-s_{1})$
 $= \frac{1}{\sqrt{2\pi n_{1}\sigma}}e^{-\frac{s_{1}^{2}}{2n_{1}-2}} \cdot \frac{p}{2\pi(n_{2}-n_{1})\sigma}e^{-\frac{(s_{2}-s_{1})^{2}}{2(n_{2}-n_{1})-2}}$

ENCS6161 - p.17/47

Sum of i.i.d Processes

• If X₁; X₂; ...; X_n are i.i.d and S_n = X₁ + X₂ + ...; + X_n, we call S_n the sum process of i.i.d, e.g. random walk is a sum process. $m_{S}(n) = E[S_{n}] = nE[X] = nm$ $Var[S_{n}] = nVar[X] = n^{-2}$ Autocovariance $C_{S}(n; k) = E[(S_{n} - E[S_{n}])(S_{k} - E[S_{k}])]$ $= E[(S_{n} - nm)(S_{k} - km)] = E \frac{4}{2} \frac{X^{n}}{(X_{i} - m)} \frac{X^{k}}{j=0} (X_{j} - m)^{5}$ $= \frac{X^{n}}{i=1} \frac{X^{k}}{j=0} E[(X_{i} - m)(X_{j} - m)] = \frac{X^{n}}{i=1} \frac{X^{k}}{j=0} C_{X}(i; j)$ $= \frac{X^{n}}{i=1} \frac{X^{k}}{j=0} \frac{2}{ij} = min(n; k)^{-2}$

ENCS6161 - p.18/47

Sum of i.i.d Processes

• Example: For random Walk

$$E[S_n] = nm = n(2p - 1)$$
$$Var[S_n] = n\sigma^2 = 4np(1-p)$$
$$C_s(n,k) = \min(n,k)4p(1-p)$$

ENCS6161 - p.19/47

Continuos Time Random Processes

• Poisson Process: a good model for arrival process N(t): Number of arrivals in [0, t]

 λ : arrival rate (average # of arrivals per time unit) We divide [0, t] into n subintervals, each with duration $\delta = \frac{t}{n}$

Assume:

- The probability of more than one arrival in a subinterval is negligible.
- Whether or not an event (arrival) occurs in a subinterval is *independent* of arrivals in other subintervals.

So the arrivals in each subinterval are *Bernoulli* and they are *independent*.

ENCS6161 - p.20/47

Poisson Process

• Let $p = Prob\{1 \text{ arrival}\}$. Then the average number of arrivals in [0, t] is

 $np = \lambda t \quad \Rightarrow \quad p = \frac{\lambda t}{n}$ The total arrivals in $[0, t] \sim \text{Bionomial}(n, p)$ $P[N(t) = k] = -\frac{n}{k} p^{\mathbf{k}} (1-p)^{\mathbf{k}} \rightarrow \frac{(\lambda t)^{\mathbf{k}}}{k!} e^{--\mathbf{t}}$

when $n \to \infty$.

 Stationary increment? Yes Independent increment? Yes

ENCS6161 - p.21/47

Poisson Process

ENCS6161 - p.22/47

Random Telegraph Signal

Read on your own

ENCS6161 - p.23/47

• Suppose that the symmetric random walk $(p = \frac{1}{2})$ takes steps of magnitude of *h* every δ seconds. At time *t*, we have $n = \frac{t}{2}$ jumps.

$$X(t) = h(D_1 + D_2 + \dots + D_n) = hS_n$$

where D_i are *i.i.d* random variables taking ± 1 with equal probability.

 $E[X (t)] = hE[S_{\mathsf{n}}] = 0$ $Var[X (t)] = h^{2}nVar[D_{\mathsf{i}}] = h^{2}n$

ENCS6161 - p.24/47

• If we let $h = \sqrt{\alpha \delta}$, where α is a constant and $\delta \to 0$ and let the limit of X(t) be X(t), then X(t) is a continuous-time random process and we have:

$$E[X(t)] = 0$$

$$Var[X(t)] = \lim_{t \to 0} h^2 n = \lim_{t \to 0} (\sqrt{\alpha\delta})^2 \frac{t}{\delta} = \alpha t$$

 X(t) is called the Wiener process. It is used to model Brownian motion, the motion of particles suspended in a fluid that move under the rapid and random impact of neighbooring particles.

ENCS6161 - p.25/47

• Note that since $\delta = \frac{t}{n}$,

$$X(t) = hS_{\mathsf{n}} = \sqrt{\alpha\delta}S_{\mathsf{n}} = \frac{S_{\mathsf{n}}}{\sqrt{n}}\sqrt{\alpha t}$$

When $\delta \to 0$, $n \to \infty$ and since $\mu_{\rm D} = 0$, $\sigma_{\rm D} = 1$, from CLT, we have

$$\frac{S_{\mathsf{n}}}{\sqrt{n}} = \frac{S_{\mathsf{n}} - n\mu_{\mathsf{D}}}{\sigma_{\mathsf{D}}\sqrt{n}} \sim N(0, 1)$$

So the distribution of X(t) follows $X(t) \sim N(0, \alpha t)$

i.e.

$$f_{\mathbf{X}(\mathbf{t})}(x) = \frac{1}{\sqrt{2\pi\alpha t}} e^{\frac{\mathbf{x}^2}{2-\mathbf{t}}}$$

ENCS6161 - p.26/47

Since Wiener process is a limit of random walk, it inherits the properties such as independent and stationary increments. So the joint pdf of X(t) at t₁, t₂, ..., t_k (t₁ < t₂ < ... < t_k) will be

$$f_{\mathbf{X}(\mathbf{t}_{1});\mathbf{X}(\mathbf{t}_{2}); ; \mathbf{X}(\mathbf{t}_{k})}(x_{1}, x_{2}, \cdots, x_{k}) = f_{\mathbf{X}(\mathbf{t}_{1})}(x_{1})f_{\mathbf{X}(\mathbf{t}_{2} - \mathbf{t}_{1})}(x_{2} - x_{1}) \cdots f_{\mathbf{X}(\mathbf{t}_{k} - \mathbf{t}_{k-1})}(x_{k} - x_{k-1}) \\ = \frac{\exp\{-\frac{1}{2}[\frac{\mathbf{x}_{1}^{2}}{\mathbf{t}_{1}} + \cdots + \frac{(\mathbf{x}_{k} - \mathbf{x}_{k-1})^{2}}{(\mathbf{t}_{k} - \mathbf{t}_{k-1})}]\}}{[2\pi\alpha)^{\mathbf{k}}t_{1}(t_{2} - t_{1}) \cdots (t_{k} - t_{k-1})}$$

ENCS6161 - p.27/47

• mean function: $m_{\mathbf{X}}(t) = E[X(t)] = 0$ auto-covariance: $C_{\mathbf{X}}(t_1, t_2) = \alpha \min(t_1, t_2)$ Proof:

$$X(t) = hS_{\mathsf{n}}$$

$$C_{\mathsf{X}}(t_1, t_2) = h^2 C_{\mathsf{S}}(n_1, n_2) \quad (\text{where } n_1 = \frac{t_1}{\delta}, n_2 = \frac{t_2}{\delta})$$

$$= (\sqrt{\alpha\delta})^2 \min(n_1, n_2)\sigma_{\mathsf{D}}^2$$

$$(\text{keep in mind that: } \sigma_{\mathsf{D}}^2 = 1)$$

$$= \alpha \min(n_1\delta, n_2\delta) = \alpha \min(t_1, t_2)$$

ENCS6161 - p.28/47

Stationary Random Processes

• *X*(*t*) is *stationary* if the joint distribution of any set of samples does not depend on the placement of the time origin.

 $F_{X(t_1);X(t_2);;X(t_k)}(x_1, x_2, \cdots, x_k)$

 $= F_{\mathbf{X}(\mathbf{t}_{1}+ \cdot); \mathbf{X}(\mathbf{t}_{2}+ \cdot); \quad ; \mathbf{X}(\mathbf{t}_{k}+ \cdot)}(x_{1}, x_{2}, \cdots, x_{k})$ for all time shift τ , all k, and all choices of $t_{1}, t_{2}, \cdots, t_{k}$.

• X(t) and Y(t) are *joint stationary* if the joint distribution of $X(t_1), X(t_2), \dots, X(t_k)$ and $Y(t_1^0), Y(t_2^0), \dots, Y(t_j^0)$ do not depend on the placement of the time origin for all k, j and all choices of t_1, t_2, \dots, t_k and $t_1^0, t_2^0, \dots, t_j^0$.

ENCS6161 - p.29/47

Stationary Random Processes

• First-Order Stationary $F_{X(t)}(x) = F_{X(t+)}(x) = F_{X}(x), \text{ for all } t, \tau$ $\Rightarrow m_{X}(t) = E[X(t)] = m, \text{ for all } t$ $VarX(t) = E[(X(t) - m)^{2}] = \sigma^{2}, \text{ for all } t$

Second-Order Stationary

 $F_{X(t_1)X(t_2)}(x_1, x_2) = F_{X(0)X(t_2 t_1)}(x_1, x_2), \text{ for all } t_1, t_2$ $\Rightarrow R_X(t_1, t_2) = R_X(t_1 - t_2), \text{ for all } t_1, t_2$ $C_X(t_1, t_2) = C_X(t_1 - t_2), \text{ for all } t_1, t_2$ The auto-correlation and auto-covariance depend only on the time difference.

ENCS6161 - p.30/47

Stationary Random Processes

Example:

• An i.i.d random process is stationary.

$$F_{X(t_1);X(t_2); ;X(t_k)}(x_1, x_2, \cdots, x_k)$$

$$= F_X(x_1)F_X(x_2)\cdots F_X(x_k)$$

$$= F_{X(t_1+);X(t_2+); ;X(t_k+)}(x_1, x_2, \cdots, x_k)$$
• sum of i i d random process $S_n = X_1 + X_2 + \cdots + X_n$

• sum of i.i.d random process $S_n = X_1 + X_2 + \cdots + X_n$ We know $m_S(n) = nm$ and $Var[S_n] = n\sigma^2$ \Rightarrow not stationary.

ENCS6161 - p.31/47

Wide-Sense Stationary (WSS)

• X(t) is WSS if:

 $m_{\mathbf{X}}(t) = m, \text{ for all } t$ $C_{\mathbf{X}}(t_1, t_2) = C_{\mathbf{X}}(t_1 - t_2), \text{ for all } t_1, t_2$

Let $\tau = t_1 - t_2$, then $C_X(t_1, t_2) = C_X(\tau)$.

Wide-Sense Stationary (WSS)

 Example: Let X_n consists of two interleaved sequences of independent r.v.s. For *n* even: X_n ∈ {+1, −1} with p = ¹/₂
 For *n* odd: X_n ∈ {¹/₃, −3} with p = ⁹/₁₀ and ¹/₁₀ resp. Obviously, X_n is not stationary, since its pmf varies with *n*. However,

 $m_{\mathbf{X}}(n) = \begin{array}{ll} 0 & \text{for all } n \\ C_{\mathbf{X}}(i,j) = \begin{array}{ll} E[X_i]E[X_j] = 0, & i \neq j \\ E[X_i^2] = 1, & i = j \end{array}$ $= \delta_{i;j}$ $\Rightarrow X_n \text{ is WSS.}$ So stationary \Rightarrow WSS, WSS ; stationary.

ENCS6161 - p.33/47

Autocorrelation of WSS processes

- $R_{\mathbf{X}}(0) = E[X^2(t)]$, for all t. $R_{\mathbf{X}}(0)$: average power of the process.
- $R_{\mathbf{X}}(\tau)$ is an even function. $R_{\mathbf{X}}(\tau) = E[X(t+\tau)X(t)] = E[X(t)X(t+\tau)] = R_{\mathbf{X}}(-\tau)$
- $R_{\mathbf{X}}(\tau)$ is a measure of the rate of change of a r.p. $P\{|X(t+\tau) - X(t)| > \varepsilon\} = P\{(X(t+\tau) - X(t))^2 > \varepsilon^2\}$ $\leq \frac{E[(X(t+\tau) - X(t))^2]}{\varepsilon^2}$ (Markov Inequality) $= \frac{2[R_{\mathbf{X}}(0) - R_{\mathbf{X}}(\tau)]}{\varepsilon^2}$

If $R_{X}(\tau)$ is flat $\Rightarrow [R_{X}(0) - R_{X}(\tau)]$ is small \Rightarrow the probability of having a large change in X(t) in τ seconds is small.

ENCS6161 - p.34/47

Autocorrelation of WSS processes

•
$$|R_{\mathbf{X}}(\tau)| \le R_{\mathbf{X}}(0)$$

Proof: $E[(X(t + \tau) \pm X(t))^2] = 2[R_{\mathbf{X}}(0) \pm R_{\mathbf{X}}(\tau)] \ge 0$
 $\Rightarrow |R_{\mathbf{X}}(\tau)| \le R_{\mathbf{X}}(0)$

• If $R_X(0) = R_X(d)$, then $R_X(t)$ is periodic with period d, and X(t) is *mean square periodic*, i.e.,

 $E[(X(t+d) - X(t))^2] = 0$ Proof: read textbook (pg.360). Use the inequality $E[XY]^2 \le E[X^2]E[Y^2] \text{ (from } |\rho| \le 1, \text{ sec.4.7)}$

• If X(t) = m + N(t), where N(t) is a zero-mean process s.t. $R_{N}(\tau) \to 0$, as $\tau \to \infty$, then $R_{X}(\tau) = E[(m+N(t+\tau))(m+N(t))] = m^{2}+R_{N}(t) \to m^{2}$ as $\tau \to \infty$.

ENCS6161 - p.35/47

Autocorrelation of WSS processes

- R_X(τ) can have three types of components: (1) a component that → 0, as τ → ∞, (2) a periodic component, and (3) a component that due to a non zero mean.
- Example: $R_{\mathbf{X}}(\tau) = e^{-2} \mathbf{j} \mathbf{j}, R_{\mathbf{Y}}(\tau) = \frac{\mathbf{a}^2}{2} \cos 2\pi f_0 \tau$ If Z(t) = X(t) + Y(t) + m and assume X, Y are independent with zero mean, then

 $R_{\mathsf{Z}}(\tau) = R_{\mathsf{X}}(\tau) + R_{\mathsf{Y}}(\tau) + m^2$

ENCS6161 - p.36/47

WSS Gausian Random Process

 If a Gaussian r.p. is WSS, then it is stationary (Strict Sense Stationary)
 Proof⁻

ENCS6161 - p.37/47

Cyclo Stationary Random Process

Read on your own.

ENCS6161 - p.38/47

- Recall that for $X_1, X_2, \dots, X_n, \dots$ $X_n \to X$ in m.s. (mean square) if $E[(X_n - X)^2] \to 0$, as $n \to \infty$
- Cauchy Criterion If $E[(X_n - X_m)^2] \to 0$ as $n \to \infty$ and $m \to \infty$, then $\{X_n\}$ converges in m.s.

ENCS6161 - p.39/47

- Condition for mean square continuity $E[(X(t)-X(t_0))^2] = R_X(t,t)-R_X(t_0,t)-R_X(t,t_0)+R_X(t_0,t_0)$ If $R_X(t_1,t_2)$ is continuous (both in t_1,t_2), at point (t_0,t_0) , then $E[(X(t)-X(t_0))^2] \rightarrow 0$. So X(t) is continuous at t_0 in m.s. if $R_X(t_1,t_2)$ is continuous at (t_0,t_0)
- If X(t) is WSS, then:

 $E[(X(t_0 + \tau) - X(t_0))^2] = 2(R_X(0) - R_X(\tau))$ So X(t) is continuous at t_0 , if $R_X(\tau)$ is continuous at $\tau = 0$

ENCS6161 - p.40/47

• If X(t) is continuous at t_0 in m.s., then $\lim_{t \to 0} m_X(t) = m_X(t_0)$ Proof:

$$Var[X(t) - X(t_0)] \ge 0$$

$$\Rightarrow E[X(t) - X(t_0)]^2 \le E[(X(t) - X(t_0))^2] \to 0$$

$$\Rightarrow (m_{\mathbf{X}}(t) - m_{\mathbf{X}}(t_0))^2 \to 0$$

$$\Rightarrow m_{\mathbf{X}}(t) \to m_{\mathbf{X}}(t_0)$$

ENCS6161 - p.41/47

• Example: Wiener Process:

 $R_{\mathbf{X}}(t_1, t_2) = \alpha \min(t_1, t_2)$

 $R_{X}(t_{1}, t_{2})$ is continuous at $(t_{0}, t_{0}) \Rightarrow X(t)$ is continuous at t_{0} in m.s.

Example: Poisson Process:

 $C_{\mathsf{N}}(t_1, t_2) = \lambda \min(t_1, t_2)$

 $R_{N}(t_{1}, t_{2}) = \lambda \min(t_{1}, t_{2}) + \lambda^{2} t_{1} t_{2}$

N(t) is continuous at t_0 in m.s.

Note that for any sample poisson process, there are infinite number of discontinuities, but N(t) is continuous at any t_0 in m.s.

ENCS6161 - p.42/47

Mean Square Derivative

• The mean square derivative $X^{0}(t)$ of the r.p. X(t) is defined as:

$$X^{0}(t) = \lim_{t \to 0} \frac{X(t + \varepsilon) - X(t)}{\varepsilon}$$

provided that

$$\lim_{\mathbf{T} \to \mathbf{0}} E \qquad \frac{X(t+\varepsilon) - X(t)}{\varepsilon} - X^{\mathbf{0}}(t) \qquad = 0$$

- The mean square derivative of X(t) at t exists if $\frac{@}{@_1@_2}R_X(t_1,t_2)$ exists at point (t,t). Proof: read on your own.
- For a Gaussian random process X(t), $X^{0}(t)$ is also Gaussian

ENCS6161 - p.43/47

Mean Square Derivative

• Mean, cross-correlation, and auto-correlation of $X^{0}(t)$

$$m_{\mathbf{X}} \circ (t) = \frac{a}{dt} m_{\mathbf{X}} (t)$$

$$R_{\mathbf{X}} \mathbf{X} \circ (t_1, t_2) = \frac{\partial}{\partial t_2} R_{\mathbf{X}} (t_1, t_2)$$

$$R_{\mathbf{X}}^{\mathbf{0}} (t_1, t_2) = \frac{\partial^2}{\partial t_1 \partial t_2} R_{\mathbf{X}} (t_1, t_2)$$

Л

• When
$$X(t)$$
 is WSS,
 $m_{\mathbf{X}} \circ (t) = 0$
 $R_{\mathbf{X}} \times \circ (\tau) = \frac{\partial}{\partial t_2} R_{\mathbf{X}} (t_1 - t_2) = -\frac{d}{d\tau} R_{\mathbf{X}} (\tau)$
 $R_{\mathbf{X}} \circ (\tau) = \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} R_{\mathbf{X}} (t_1 - t_2) = -\frac{d^2}{d\tau^2} R_{\mathbf{X}} (\tau)$

ENCS6161 - p.44/47

Mean Square Derivative

Example: Wiener Process

 $R_{\mathbf{X}}(t_1, t_2) = \alpha \min(t_1, t_2) \Rightarrow \frac{\partial}{\partial t_2} R_{\mathbf{X}}(t_1, t_2) = \alpha u(t_1 - t_2)$

 $u(\cdot)$ is the step function and is discontinuous at $t_1 = t_2$. If we use the delta function,

$$R_{\mathbf{X}} \circ (t_1, t_2) = \frac{\partial}{\partial t_1} \alpha u(t_1, t_2) = \alpha \delta(t_1 - t_2)$$

Note $X^{0}(t)$ is not physically feasible since $E[X^{0}(t)^{2}] = \alpha \delta(0) = \infty$, i.e., the signal has infinite power. When $t_{1} \neq t_{2}$, $R_{X} \circ (t_{1}, t_{2}) = 0 \Rightarrow X^{0}(t_{1}), X^{0}(t_{2})$ uncorrelated (note $m_{X} \circ (t) = 0$ for all t) \Rightarrow independent since $X^{0}(t)$ is a Gaussian process.

• $X^{0}(t)$ is the so called White Gaussian Noise.

ENCS6161 - p.45/47

Mean Square Integrals

- The mean square integral of X(t) form t_0 to t: $\begin{array}{l}Y(t) = \begin{array}{c}\mathsf{R}_t \\ \mathsf{t}_0\end{array} X(t^0) dt^0 \text{ exists if the integral} \\ \mathsf{R}_t \\ \mathsf{R}_t \\ \mathsf{t}_0 \end{array} R_{\mathsf{X}}(u,v) du dv \text{ exists.} \end{array}$
- The mean and autocorrelation of Y(t)

$$m_{\mathbf{Y}}(t) = m_{\mathbf{X}}(t^{\mathbf{0}})dt^{\mathbf{0}}$$
$$Z^{\mathbf{t}_{0}}_{\mathbf{t}_{1}} Z_{\mathbf{t}_{2}}$$
$$R_{\mathbf{Y}}(t_{1}, t_{2}) = R_{\mathbf{X}}(u, v)dudv$$

ENCS6161 - p.46/47

Ergodic Theorems

 Time Averages of Random Processes and Ergodic Theorems.

Read on your own.

ENCS6161 - p.47/47