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Definition of a Random Process
Assume the we have a random experiment with
outcomes belonging to the sample set . To each

, we assign a time function , , where
is a time index set: discrete or continuous.

is called a random process.

If is fixed, is a deterministic time function,
and is called a realization, a sample path, or a
sample function of the random process.

If is fixed, as a function of , is a
random variable.

A random process is also called a stochastic process.
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Definition of a Random Process
Example: A random experment has two outcomes

. If we assign:

where is a constant. Then is a random
process.

Usually we drop and write the random process as
.
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Specifying a Random Process
Joint distribution of time samples
Let n be the samples of obtained at

n, i.e. i i , then we can use the joint
CDF

X 1���X n n n n

or the joint pdf X 1���X n n to describe a
random process partially.

Mean function:

X

Z 1

�1
X t

Autocorrelation function

X

Z 1

�1

Z 1

�1
X t1 X t2
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Specifying a Random Process
Autocovariance function

X X X

X X X
a special case:

X X

The correlation coefficient

X
Xp

X X

Mean and autocorrelation functions provide a partial
description of a random process. Only in certain
cases (Gaussian), they can provide a fully
description.
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Specifying a Random Process
Example: , where is a random
variable.

X

X

X X X X
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Specifying a Random Process
Example: , where is uniform in

, and are constants.
X

Z �

X X
Z �
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Gaussian Random Processes
A random process is a Gaussian random
process if for any , the samples taken at n
are jointly Gaussian, i.e. if

n n
then

X 1���X n n

� 1
2 x�m

T K � 1 x�m

n= =

where X X n
T and2

6
4

X X n

X n X n n

3

7
5
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Multiple Random Processes
To specify joint random processes and , we
need to have the pdf of all samples of and
such as i j for all and
and all choices of i j .

The processes and are indepedent if the
random vectors i and

j are independent for all and

i j .
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Multiple Random Processes
The cross-correlation X ;Y is defined as

X ;Y

Two processes are orthogonal if
X ;Y for all and

The cross-covariance
X ;Y X Y

X ;Y X Y

and are uncorrelated if
X ;Y for all and

ENCS6161 – p.9/47



Multiple Random Processes
Example: and ,
where is uniform in and is a constant.

X Y

X ;Y X ;Y

� �
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Discrete-Time Random Processes
i.i.d random processes: n X n then

X 1���X n n X X n

X n for all

X n1 n2

n1 n2 if

X n

X n1;n2

X n1;n2
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Discrete-Time Random Processes
Example: let n be a sequence of i.i.d. Bernoulli
r.v.s. with i

X

n

X n1;n2

X n1;n2

Example:

n n , where n are i.i.d. Bernoulli r.v.s

n

(

Y n
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Random Walk
Let n n where n are i.i.d. r.v.s. with

n and n . This is a
one-dimensional random walk.

If there are positive jumps ( ’s) in trials (
walks), then there are negative jumps ( ’s).
So n and

n

� �
k n�k
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Properties of Random Walk
Independent increment
Let and . If , and
do not overlap. Then the increments on the two
intervals are

n1 n0 n0 n1

n3 n2 n2 n3
Since they have no n’s in common (no overlapping)
and n’s are independent.

n1 n0 and n3 n2 are independent.
This property is called independent increment.
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Properties of Random Walk
Stationary increment
Furthermore, if and have the same length, i.e

then the increments n1 n0
and n3 n2 have the same distribution since they
both are the sum of i.i.d r.v.s
This means that the increments over interval of the
same length have the same distribution. The process
n is said to have stationary increment.
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Properties of Random Walk
These two properties can be used to find the joint pmf of Sn
at n1; ; nk
P[Sn1 = s1; Sn2 = s2; ; Snk = sk]

= P[Sn1 = s1; Sn2 Sn1 = s2 s1; ; Snk Snk� 1 = sk sk� 1]

= P[Sn1 = s1]P[Sn2 Sn1 = s2 s1] P[Snk Snk� 1 = sk sk� 1]

(from independent increment)

= P[Sn1 = s1]P[Sn2� n1 = s2 s1] P[Snk � nk� 1 = sk sk� 1]

(from stationary increment)
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Properties of Random Walk
If n are continuous valued r.v.s.

Sn 1���Sn k k

Sn 1 Sn 2� n 1 Sn k � n k� 1 k k�

e.g., if n then
Sn 1 ;Sn 2 Sn 1 Sn 2� n 1

�
s21

2n 1�
2 p � (s2� s1 )

2

2( n 2� n 1 )�
2
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Sum of i.i.d Processes
If X 1; X 2; :::; X n are i.i.d and Sn = X 1 + X 2 + ::: + X n , we call Sn
the sum process of i.i.d, e.g. random walk is a sum process.

mS(n) = E[Sn ] = nE[X ] = nm

Var [Sn ] = nVar [X ] = n�2

Autocovariance

CS(n; k) = E [(Sn E [Sn ])(Sk E [Sk ])]

= E[(Sn nm)(Sk km)] = E

2

4
nX

i = 1

(X i m)
kX

j = 0

(X j m)

3

5

=
nX

i = 1

kX

j = 0

E [(X i m)(X j m)] =
nX

i = 1

kX

j = 0

CX (i ; j )

=
nX

i = 1

kX

j = 0

�2�i j = min(n; k)�
2
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Sum of i.i.d Processes
Example: For random Walk

n

n

S
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Continuos Time Random Processes
Poisson Process: a good model for arrival process

Number of arrivals in
arrival rate (average # of arrivals per time unit)

We divide into subintervals, each with duration
t
n

Assume:
The probability of more than one arrival in a
subinterval is negligible.
Whether or not an event (arrival) occurs in a
subinterval is independent of arrivals in other
subintervals.

So the arrivals in each subinterval are Bernoulli and
they are independent.

ENCS6161 – p.20/47



Poisson Process
Let arrival . Then the average number of
arrivals in is

The total arrivals in Bionomial
� �

k k
k
��t

when .

Stationary increment? Yes
Independent increment? Yes
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Poisson Process
Inter-arrival Time: Let be the inter-arrival time.

no arrivals in seconds
��t

��t

T
��t for

So the inter-arrival time is exponential with mean �.
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Random Telegraph Signal
Read on your own
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Wiener Process
Suppose that the symmetric random walk ( )
takes steps of magnitude of every seconds. At
time , we have t

� jumps.

� n n

where i are i.i.d random variables taking with
equal probability.

� n

� i
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Wiener Process
If we let , where is a constant and
and let the limit of � be , then is a
continuous-time random process and we have:

�! �!

is called the Wiener process. It is used to model
Brownian motion, the motion of particles suspended
in a fluid that move under the rapid and random
impact of neighbooring particles.
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Wiener Process
Note that since t

n ,

� n n
n

When , and since D , D , from
CLT, we have

n n D

D
So the distribution of follows

i.e.

X t
� x 2

2�t
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Wiener Process
Since Wiener process is a limit of random walk, it
inherits the properties such as independent and
stationary increments. So the joint pdf of at

k ( k) will be

X t1 ;X t2 ;���;X tk k

X t1 X t2�t1 X tk �tk� 1 k k�

x21
�t1

xk �xk� 1 2

� tk �tk� 1p
k

k k�
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Wiener Process
mean funtion: X
auto-covariance: X
Proof:

� n

X � S where

D

keep in mind that: D
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Stationary Random Processes
is stationary if the joint distribution of any set of

samples does not depend on the placement of the
time origin.

X t1 ;X t2 ;���;X tk k

X t1 � ;X t2 � ;���;X tk � k

for all time shift , all , and all choices of k.

and are joint stationary if the joint
distribution of k and

0 0 0
j do not depend on the

placement of the time origin for all and all choices
of k and 0 0 0

j .
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Stationary Random Processes
First-Order Stationary

X t X t � X for all

X for all

for all

Second-Order Stationary
X t1 X t2 X X t2�t1 for all

X X for all

X X for all
The auto-correlation and auto-covariance depend
only on the time difference.
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Stationary Random Processes
Example:

An i.i.d random process is stationary.
X t1 ;X t2 ;���;X tk k

X X X k

X t1 � ;X t2 � ;���;X tk � k

sum of i.i.d random process n n

We know S and n
not stationary.
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Wide-Sense Stationary (WSS)
is WSS if:

X for all

X X for all

Let , then X X .
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Wide-Sense Stationary (WSS)
Example: Let n consists of two interleaved
sequences of independent r.v.s.
For even: n with
For odd: n with and resp.
Obviously, n is not stationary, since its pmf varies
with However,

X for all

X

(
i j

i

i ;j

n is WSS.
So stationary WSS, WSS ; stationary.
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Autocorrelation of WSS processes
X , for all
X : average power of the process.

X is an even function.
X X

X is a measure of the rate of change of a r.p.

(Markov Inequality)

X X

If X is flat X X is small the
probability of having a large change in in
seconds is small.
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Autocorrelation of WSS processes
X X

Proof: X X

X X

If X X then X is periodic with period
, and is mean square periodic, i.e.,

Proof: read textbook (pg.360). Use the inequality
(from , sec.4.7)

If , where is a zero-mean
process s.t. N , as then

X N
as .
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Autocorrelation of WSS processes
X can have three types of components: (1) a
component that as (2) a periodic
component, and (3) a component that due to a non
zero mean.

Example: X
� �j�j

Y
a2

If and assume are
independent with zero mean, then

Z X Y

ENCS6161 – p.36/47



WSS Gausian Random Process
If a Gaussian r.p. is WSS, then it is stationary (Strict
Sense Stationary)
Proof:

X

T �

n
2

1
2

2

6
4

X
...

X n

3

7
5

2

6
4

X X n
...

...
...

X n X n n

3

7
5

If is WSS, then X X

X i j X i j So X does not depend on
the choice of the time origin Strict Sense
Stationary.
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Cyclo Stationary Random Process
Read on your own.
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Continuity of Random Process
Recall that for n

n in m.s. (mean square) if n ,
as

Cauchy Criterion
If n m as and then

n converges in m.s.

Mean Square Continuity
The r.p. is continuous at in m.s. if

as
We wrtie it as: t! t0 (limit in the
mean)
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Continuity of Random Process
Condition for mean square continuity

X X X X
If X is continuous (both in ), at point

then So is
continuous at in m.s. if X is continuous at

If is WSS, then:

X X
So is continuous at , if X is continuous at

ENCS6161 – p.40/47



Continuity of Random Process
If is continuous at in m.s., then

t! t0
X X

Proof:

X X

X X
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Continuity of Random Process
Example: Wiener Process:

X

X is continous at is continuous
at in m.s.

Example: Poisson Process:
N

N
is continuous at in m.s.

Note that for any sample poisson process, there are
infinite number of discontinuities, but is
continuous at any in m.s.
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Mean Square Derivative
The mean square derivative 0 of the r.p. is
defined as:

0 l.i.m.
" !

provided that

" !

" �
0
� #

The mean square derivative of at exists if
@2

@t1@t2 X exists at point .
Proof: read on your own.

For a Gaussian random process , 0 is also
Gaussian
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Mean Square Derivative
Mean, cross-correlation, and auto-correlation of 0

X 0 X

X X 0 X

0
X X

When is WSS,
X 0

X X 0 X X

X 0

�

X

�

X
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Mean Square Derivative
Example: Wiener Process

X X

is the step function and is discontinuous at
If we use the delta function,

X 0

Note 0 is not physically feasible since
0 i.e., the signal has infinite

power. When , X 0
0 0

uncorrelated (note X 0 for all t) independent
since 0 is a Gaussian process.
0 is the so called White Gaussian Noise.
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Mean Square Integrals
The mean square integral of form to :

Rt
t0

0 0exists if the integral
Rt
t0

Rt
t0 X exists.

The mean and autocorrelation of

Y

Z t

t0
X

0 0

Y

Z t1

t0

Z t2

t0
X
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Ergodic Theorems
Time Averages of Random Processes and Ergodic
Theorems.

Read on your own.
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