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Vector Random Variables
A vector r.v. is a function where is
the sample space of a random experiment.

Example: randomly pick up a student name from a
list. all student names on the list . Let be a
given outcome, e.g. Tom

height of student
weight of student
age of student

are r.v.s.

Let then is a vector r.v.
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Events
Each event involving 1 2 has a
corresponding region in

Example: 1 2 is a two-dimensional r.v.

1 2

1 2

2
1

2
2
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Pairs of Random Variables
Pairs of discrete random variables

Joint probability mass function

PX ;Y (xj ; yk ) = P X = xj Y = yk = P X = xj ; Y = yk

Obviously

Marginal Probability Mass Function

PX (xj ) = P X = xj = P X = xj ; Y = anything =
1

k= 1

PX ;Y (xj ; yk )

Similarly 1
= 1
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Pairs of Random Variables
The joint CDF of and (for both discrete and
continuous r.v.s)

-

6

x

(x,y)

y
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Pairs of Random Variables
Properties of the joint CDF:

1. 1 1 2 2 , if 1 2 1 2

2.

3.

4. anything

Marginal cdf
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Pairs of Random Variables
The joint pdf of two jointly continuous r.v.s.

2

Obviously,

1

�1

1

�1

and

�1 �1

0 0 0 0
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Pairs of Random Variables
The probability

In general,

Example:

-

6

x

y

1

1

0

� A

1

0 0

0 0 0 0
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Pairs of Random Variables
Marginal pdf:

�1

1

�1

0 0 0 0

1

�1

0 0

1

�1

0 0
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Pairs of Random Variables
Example:

f X ;Y (x; y) =
1 if 0 x 1; 0 y 1

0 otherwise.

Find FX ;Y (x; y)

1) x 0 or y 0; FX ;Y (x; y) = 0

2) 0 x 1; and 0 y 1

FX ;Y (x; y) =
x

0

y

0
1 dy0dx0 = xy

3) 0 x 1; and y > 1

FX ;Y (x; y) =
x

0

1

0
1 dy0dx0 = x

4) x > 1 and 0 y < 1

FX ;Y (x; y) = y

5) x > 1 and y > 1

FX ;Y (x; y) = 1
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Independence
for all and

(discrete r.v.s)
or for all and
or for all and

Example:
a)

otherwise -

6

b)

otherwise -

6
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Conditional Probability
If X is discrete,

FY (y x) =
P Y y; X = x

P X = x
for P X = x > 0

f Y (y x) =
d
dy
FY (y x)

If X is continuous, P X = x = 0

FY (y x) = lim
h! 0

FY (y x < X x + h) = lim
h! 0

P Y y; x < X x + h
P x < X x + h

= lim
h! 0

y
�1

x+ h
x f X ;Y (x0; y0)dx0dy0

x+ h
x f X (x0)dx0

= lim
h! 0

y
�1 f X ;Y (x; y

0)dy0 h

f X (x) h
=

y
�1 f X ;Y (x; y

0)dy0

f X (x)

f Y (y x) =
d
dy
FY (y x) =

f X ;Y (x; y)
f X (x)
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Conditional Probability
If , independent,

Similarly,

So,

Bayes Rule:
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Conditional Probability
Example: A r.v. is uniformly selected in and
then is selected uniformly in Find

Solution:

for and is elsewhere.

-

6

x1

y

0

1

1

�1
1

for and elsewhere.
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Conditional Probability
Example:

- - -
x 0; 1

Detector

Channel

f Y (y x) Y R X̂

(volts), we assume 0

(volts), 1 0

Decide if
Decide if

This is called the Maximum a posterior probability
(MAP) detection.
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Conditional Probability
Binary communication over Additive White Gaussian
Noise (AWGN) channel

� (y+ A )2

2�2

� (y� A )2

2�2

Apply the MAP detection, we need to find
and . Note here is discrete,

is continuous.
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Conditional Probability
Use the similar approach (considering x < X x + h, and let

h 0), we have

P X = 0 y =
P X = 0 f Y (y 0)

f Y (y)

P X = 1 y =
P X = 1 f Y (y 0)

f Y (y)

Decide X̂ = 0, if

P X = 0 y P X = 1 y y
�2

2A
ln
p0
p1

Decide X̂ = 1, if

P X = 0 y < P X = 1 y y >
�2

2A
ln
p0
p1

When p0 = p1 = 1
2 : Decide X̂ = 0, if y 0

Decide X̂ = 1, if y > 0
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Conditional Probability
Prob of error:
considering the special case 0 1

1
2

0 1

0 1
1

0

� (y+ A )2

2�2

Similarly,

)
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Conditional Expectation
The conditional expectation

E[Y x] =
1

�1
yf Y (y x)dy

In discrete case,

E [Y x] =
yi

yi PY (yi x)

An important fact:

E [Y ] = E[E [Y X ]]

Proof:

E [E [Y X ]] =
1

�1
E [Y x]f X (x)dx =

1

�1

1

�1
yf Y (y x)f X (x)dydx

=
1

�1

1

�1
yf X ;Y (x; y)dydx = E[Y ]

In general:

E [h(Y)] = E [E [h(Y ) X ]]
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Multiple Random Variables
Joint cdf

1 ��� n 1 1 1 1

Joint pdf

1 ��� n 1
1

1 ��� n 1

If discrete, joint pmf
1 ��� n 1 1 1

Marginal pdf

i

1

�1

1

�1
all 1���n except i

1 1
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Independence
1 are independent iff

1 ��� n 1 1 1 n

for all 1

If we use pdf,

1 ��� n 1 1 1 n

for all 1
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Functions of Several r.v.s
One function of several r.v.s

1

Let 1 s.t. then

2 z

1 ��� n 1 1
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Functions of Several r.v.s
Example: , find and in terms of

x

y

y=z-x

1

�1

�

�1
1

�1

If and are independent

1

�1
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Functions of Several r.v.s
Example: let . Find the pdf of if and
are independent and both exponentially distributed
with mean one.

Can use the similar approach as previous example,
but complicated. Fix , then and

. So

1

�1

1

�1
1

�1

1

�1
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Functions of Several r.v.s
Since are indep. exponentially distributed

1

0

1

0

� �

2 for
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Transformation of Random Vectors
Transformation of Random Vectors

1 1 1 2 2 1 1

The joint CDF of is

1��� n 1 1 1

: k ( )� k

1��� n 1 1
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pdf of Linear Transformations
If , where is a invertible matrix.

1��� n 1

1��� n 1

= � 1

�1

is the absolute value of the determinant of .

e.g if , then
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pdf of General Transformations
1 1 2 2 where

1

We assume that the set of equations:
1 1

has a unique solution given by
1 1

The joint pdf of is given by

1��� n 1
1��� n 1

1

1��� n 1 1

where 1 is called the Jacobian of the
transformation.
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pdf of General Transformations
The Jacobian of the transformation

1

1

1

1

n

n

1

n

n

and

1

1
1

1

n

n

1

n

n

1 = ( )

Linear transformation is a special case of
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pdf of General Transformations
Example: let and be zero-mean unit-variance
independent Gaussian r.vs. Find the joint pdf of
and defined by:

2 2 1
2

\

This is a transformation from Cartesian to Polar
coordinates. The inverse transformation is:

x

y

v

w
x

y
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pdf of General Transformations
The Jacobian

2 2

Since and are zero-mean unit-variance
independent Gaussian r.v.s,

� x 2

2 � y2

2 � x 2+ y 2

2

The joint pdf of is then
� ( v 2 cos2 w + v 2 sin2 w )

2 � v2

2

for and
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pdf of General Transformations
The marginal pdf of and

1

�1

2

0

� v2

2 � v2

2

for . This is called the Rayleigh Distribution.
1

�1

1

0

� v2

2

for

Since

are independent.
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Expected Value of Functions of r.v.s
Let 1 2 then

1

�1

1

�1
1 1��� n 1 1

For discrete case,

all possible

1 1��� n 1

Example: 1 2

1 2
1

�1

1

�1
1 1��� n 1 1

1
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Expected Value of Functions of r.v.s
Example: 1 2

1

�1

1

�1
1 1��� n 1 1

If 1 2 are indep.
1 2 1 2

The -th moment of two r.v.s is
1

�1

1

�1
If , it is called the correlation.

1

�1

1

�1
If , we call are orthogonal.
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Expected Value of Functions of r.v.s
The -th central moment of is

when

When , it is called the covariance of

The correlation coefficient of and is defined as

where and .
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Expected Value of Functions of r.v.s
The correlation coefficient
Proof:

2

If , are said to be uncorrelated.

If are independent,

Hence, are uncorrelated.

The converse is not always true. It is true in the case
of Gaussian r.v.s ( will be discussed later)
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Expected Value of Functions of r.v.s
Example: is uniform in
Let and
and are not independent, since 2 2 .

However

2

0

We can also show . So

are uncorrelated but not independent.
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Joint Characteristic Function
Joint Characteristic Function

1��� n 1
( 1 1+ ���+ n n )

For two variables

1 2
( 1 + 2 )

Marginal characteristic function

If are independent

1 2
1 + 2

1 2
1 2
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Joint Characteristic Function
If

( + )

If , and are independent
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Jointly Gaussian Random Variables
Consider a vector of random variables

1 2 . Each with mean for
and the covariance matrix

1 1 2 1
...

...
...

1

Let 1 be the mean vector and

1 where denotes transpose. Then
1 2 are said to be the jointly Gaussian if

their joint pdf is:

n
2

1
2

�1

where is the determinant of .
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Jointly Gaussian Random Variables

For , let 1
2, then 1p

2

(x � m )2

2�2

For , denote the r.v.s by and . Let

m =
mX

mY

K =
�2X �X Y �X �Y

�X Y �X �Y �2Y
Then K = �2X �

2
Y (1 �2X Y )

K �1 =
1

�2X �
2
Y (1 �2X Y )

�2Y �X Y �X �Y

�X Y �X �Y �2X
and

f X ;Y (x; y) =
1

2��X �Y 1 �2X Y
exp

1
2(1 �2X Y )

(
x mx

�x
)2

2�X Y (
x mx

�x
)(
y my

�y
) + (

y my

�y
)2
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Jointly Gaussian Random Variables
The marginal pdf of X :

f X (x) =
1

2��x
e
� ( x � m x )

2

2�2x

The marginal pdf of Y :

f Y (y) =
1

2��y
e
�

( y � m y )
2

2�2y

If �X Y = 0 X ; Y are independent.

The conditional pdf.

f X jY (x y) =
f X ;Y (x; y)
f Y (y)

=
exp 1

2(1��2X Y )�
2
X
x �X Y

�X
�Y
(y my ) mx

2

2��2X (1 �2X Y )

N (�X Y
�X
�Y
(y my ) + mx

+

E [X jY ]

; �2X (1 �2X Y )

+

V ar (X jY )

)
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Linear Transformation of Gaussian r.v.s
Let X N (m;K ), Y = AX then

Y N (m̂; C), where m̂ = Am and C = AK AT

proof:

f Y (y) =
f X (A�1y)

A
=

1

(2�)
n
2 A K

1
2

exp
1
2
(A�1y m)T K �1(A�1y m)

Note that A�1y m = A�1(y Am) = A�1(y m̂), so

(A�1y m)T K �1(A�1y m) = (y m̂)T (A�1)T K �1A�1(y m̂)

= (y m̂)T C�1(y m̂)

and A K
1
2 = A 2 K

1
2 = AK AT

1
2 = C

1
2

f Y (y) =
1

(2�)
n
2 C

1
2

exp
1
2
(y m̂)T C�1(y m̂) N (m̂; C)
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Linear Transformation of Gaussian r.v.s
Since K is symmetric, it is always possible to find a matrix A s.t.

� = AK AT is diagonal. � =

�1 0

�2
. . .

0 �n
so

f Y (y) =
1

(2�)
n
2 �

1
2

e�
1
2 (y�m̂ )

T �� 1 (y�m̂ )

=
1

2��1
e�

( y 1 � m̂ 1 )
2

2�1
1

2��n
e�

( y n � m̂ n )
2

2�n

That is, we can transform X into n independent Gaussian r.v.s

Y1 Yn with means m̂i and variance �i .
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Mean Square Estimation
We use to estimate , write as . The
cost associated with the estimation error is

Y X

e.g.
2

2

The mean square error
2

Case 1: if
2 2 2

�

The mean square error: 2
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Mean Square Estimation
Case 2: if , then 2

� � �

This is called the MMSE linear estimation.

The mean square error:
2 2 2

If , , error 2 , reduces to case 1.

If , Y

X
, and error
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Mean Square Estimation
Case 3: is a general function of .

2 2 2

1

�1

2

For any , choose to minimize E[(Y g(x))2 X = x]
�

This is called the MMSE estimation.

Example: , joint Gaussian.

The MMSE estimation is linear for Gaussian.
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Mean Square Estimation
Example: uniform , 2. We have

3

So, the MMSE linear estimation:

and the error is 2 .
The MMSE estimation:

� 2 2

So 2 and the error is .
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