Chapter 5, 6 Multiple Random Variables
 ENCS6161 - Probability and Stochastic Processes
 Concordia University

Vector Random Variables

e A vector r.v. X is a function $X: S \rightarrow R^{n}$, where S is the sample space of a random experiment.
e Example: randomly pick up a student name from a list. $S=\{$ all student names on the list $\}$. Let ω be a given outcome, e.g. Tom
$\left.\begin{array}{ll}H(\omega): & \text { height of student } \omega \\ W(\omega): & \text { weight of student } \omega \\ A(\omega): & \text { age of student } \omega\end{array}\right\} H, W, A$ are r.v.s.

Let $X=(H, W, A)$, then X is a vector r.v.

Events

e Each event involving $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ has a corresponding region in R^{n}.
e Example: $X=\left(X_{1}, X_{2}\right)$ is a two-dimensional r.v.

$$
\begin{gathered}
A=\left\{X_{1}+X_{2} \leq 10\right\} \\
B=\left\{\min \left(X_{1}, X_{2}\right) \leq 5\right\} \\
C=\left\{X_{1}^{2}+X_{2}^{2} \leq 100\right\}
\end{gathered}
$$

Pairs of Random Variables

e Pairs of discrete random variables
e Joint probability mass function

$$
P_{X ; Y}\left(x_{j} ; y_{k}\right)=P\left\{X=x_{j} \bigcap Y=y_{k}\right\}=P\left\{X=x_{j} ; Y=y_{k}\right\}
$$

Obviously $\sum_{j} \sum_{k} P_{X, Y}\left(x_{j}, y_{k}\right)=1$.
e Marginal Probability Mass Function

$$
P_{X}\left(x_{j}\right)=P\left\{X=x_{j}\right\}=P\left\{X=x_{j} ; Y=\text { anything }\right\}=\sum_{k=1}^{1} P_{x ; y}\left(x_{j} ; y_{k}\right)
$$

Similarly $P_{Y}\left(y_{k}\right)=\sum_{j=1}^{1} P_{X, Y}\left(x_{j}, y_{k}\right)$.

Pairs of Random Variables

e The joint CDF of X and Y (for both discrete and continuous r.v.s)

$$
F_{X, Y}(x, y)=P\{X \leq x, Y \leq y\}
$$

Pairs of Random Variables

e Properties of the joint CDF:

1. $F_{X, Y}\left(x_{1}, y_{1}\right) \leq F_{X, Y}\left(x_{2}, y_{2}\right)$, if $x_{1} \leq x_{2}, y_{1} \leq y_{2}$.
2. $F_{X, Y}(-\infty, y)=F_{X, Y}(x,-\infty)=0$
3. $F_{X, Y}(\infty, \infty)=1$
4. $F_{X}(x)=P\{X \leq x\}=P\{X \leq x, Y=$ anything $\}$
$=P\{X \leq x, Y \leq \infty\}=F_{X, Y}(X, \infty)$
$F_{Y}(y)=F_{X, Y}(\infty, y)$
$F_{X}(x), F_{Y}(y)$: Marginal cdf

Pairs of Random Variables

e The joint pdf of two jointly continuous r.v.s.

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)
$$

Obviously,

$$
\int_{1}^{1} \int_{1}^{1} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1
$$

and

$$
F_{X, Y}(x, y)=\int_{1}^{x} \int_{1}^{y} f_{X, Y}\left(x^{0}, y^{0}\right) \mathrm{d} y^{0} \mathrm{~d} x^{0}
$$

Pairs of Random Variables

e The probability

$$
P\{a \leq X \leq b, c \leq Y \leq d\}=\int_{a}^{b} \int_{c}^{d} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$ In general,

$$
P\{(X, Y) \in A\}=\iint_{A} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

e Example:

$$
\int_{0}^{1} \int_{0}^{x} f_{X, Y}\left(x^{0}, y^{0}\right) \mathrm{d} y^{0} \mathrm{~d} x^{0}
$$

Pairs of Random Variables

e Marginal pdf:

$$
\begin{aligned}
f_{X}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} F_{X}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} F_{X, Y}(x, \infty) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\int_{1}^{x} \int_{1}^{1} f_{X, Y}\left(x^{0}, y^{0}\right) \mathrm{d} y^{0} \mathrm{~d} x^{0}\right) \\
& =\int_{1}^{1} f_{X, Y}\left(x, y^{0}\right) \mathrm{d} y^{0} \\
f_{Y}(y) & =\int_{1}^{1} f_{X, Y}\left(x^{0}, y\right) \mathrm{d} x^{0}
\end{aligned}
$$

Pairs of Random Variables

e Example:

$$
f_{X ; Y}(x ; y)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 ; 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $\mathrm{F}_{\mathrm{X} ; \mathrm{Y}}(\mathrm{x} ; \mathrm{y})$

1) $x \leq 0$ or $y \leq 0 ; F_{X ; Y}(x ; y)=0$
2) $0 \leq x \leq 1$; and $0 \leq y \leq 1$

$$
F_{X ; Y}(x ; y)=\int_{0}^{x} \int_{0}^{y} 1 d y^{0} d x^{0}=x y
$$

3) $0 \leq x \leq 1$; and $y>1$

$$
F_{X ; Y}(x ; y)=\int_{0}^{x} \int_{0}^{1} 1 d y^{0} d x^{0}=x
$$

4) $x>1$ and $0 \leq y<1$

$$
F_{X ; Y}(x ; y)=y
$$

5) $x>1$ and $y>1$

$$
F_{X ; Y}(x ; y)=1
$$

Independence

e $P_{X, Y}\left(x_{j}, y_{k}\right)=P_{X}\left(x_{j}\right) P_{Y}\left(y_{k}\right)$, for all x_{j} and y_{k} (discrete r.v.s) or $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all x and y or $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all x and y
e Example:
a)
b)

$$
f_{X, Y}= \begin{cases}1 & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
f_{X, Y}= \begin{cases}1 & 0 \leq x \leq \sqrt{2}, 0 \leq y \leq x \\ 0 & \text { otherwise }\end{cases}
$$

ENCS6161 - p. 10/47

Conditional Probability
e If X is discrete,

$$
\begin{aligned}
& F_{Y}(y \mid x)=\frac{P\{Y \leq y ; X=x\}}{P\{X=x\}} \text { for } P\{X=x\}>0 \\
& f_{Y}(y \mid x)=\frac{d}{d y} F_{Y}(y \mid x)
\end{aligned}
$$

e. If X is continuous, $\mathrm{P}\{\mathrm{X}=\mathrm{x}\}=0$

$$
\begin{aligned}
F_{Y}(y \mid x) & =\lim _{h!} F_{Y}(y \mid x<X \leq x+h)=\lim _{h!} \frac{P\{Y \leq y ; x<X \leq x+h\}}{P\{x<X \leq x+h\}} \\
& =\lim _{h!0} \frac{\int^{y}{ }_{1} \int_{X}^{x+h} f_{X ; Y}\left(x^{0} ; y^{0}\right) d x^{0} d y^{0}}{\int_{x}^{x+h} f_{X}\left(x^{0}\right) d x^{0}} \\
& =\lim _{h!0} \frac{\int_{1}^{y}{ }_{1} f_{X ; Y}\left(x ; y^{0}\right) d y^{0} \cdot h}{f_{X}(x) \cdot h}=\frac{\int_{1}^{y} f_{X ; Y}\left(x ; y^{0}\right) d y^{0}}{f_{X}(x)} \\
f_{Y}(y \mid x) & =\frac{d}{d y} F_{Y}(y \mid x)=\frac{f_{X ; Y}(x ; y)}{f_{X}(x)}
\end{aligned}
$$

Conditional Probability

e If X, Y independent,

$$
f_{Y}(y \mid x)=f_{Y}(y)
$$

e Similarly,

$$
f_{X}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

So,

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y \mid x)=f_{Y}(y) \cdot f_{X}(x \mid y)
$$

e Bayes Rule:

$$
f_{X}(x \mid y)=\frac{f_{X}(x) \cdot f_{Y}(y \mid x)}{f_{Y}(y)}
$$

Conditional Probability

e Example: A r.v. X is uniformly selected in $[0,1]$, and then Y is selected uniformly in $[0, x]$. Find $f_{Y}(y)$
e Solution:

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y \mid x)=1 \cdot \frac{1}{x}=\frac{1}{x}
$$

for $0 \leq x \leq 1,0 \leq y \leq x$ and is 0 elsewhere.

$$
\begin{aligned}
f_{Y}(y) & =\int_{1}^{1} f_{X, Y}(x, y) \mathrm{d} x \\
& =\int_{y}^{1} \frac{1}{x} \mathrm{~d} x=-\ln y
\end{aligned}
$$

for $0 \leq y \leq 1$ and $f_{Y}(y)=0$ elsewhere.

Conditional Probability

e Example:

e Decide $\hat{X}=0$, if $P\{X=0 \mid y\} \geq P\{X=1 \mid y\}$
Decide $\hat{X}=1$, if $P\{X=0 \mid y\}<P\{X=1 \mid y\}$
e This is called the Maximum a posterior probability (MAP) detection.

Conditional Probability

e Binary communication over Additive White Gaussian Noise (AWGN) channel

$$
\begin{aligned}
& f_{Y}(y \mid 0)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{(v+\mathrm{A})^{2}}{22}} \\
& f_{Y}(y \mid 1)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{(v \mathrm{~A})^{2}}{22}}
\end{aligned}
$$

e Apply the MAP detection, we need to find $P\{X=0 \mid y\}$ and $P\{X=1 \mid y\}$. Note here X is discrete, Y is continuous.

Conditional Probability
e Use the similar approach (considering $x<X \leq x+h$, and let $\mathrm{h} \rightarrow 0$), we have

$$
\begin{aligned}
& P\{X=0 \mid y\}=\frac{P\{X=0\} f_{Y}(y \mid 0)}{f_{Y}(y)} \\
& P\{X=1 \mid y\}=\frac{P\{X=1\} f_{Y}(y \mid 0)}{f_{Y}(y)}
\end{aligned}
$$

e Decide $\hat{X}=0$, if

$$
P\{X=0 \mid y\} \geq P\{X=1 \mid y\} \Rightarrow y \leq \frac{2}{2 A} \ln \frac{p_{0}}{p_{1}}
$$

Decide $\hat{X}=1$, if

$$
P\{X=0 \mid y\}<P\{X=1 \mid y\} \Rightarrow y>\frac{2}{2 A} \ln \frac{p_{0}}{p_{1}}
$$

e When $\mathrm{p}_{0}=\mathrm{p}_{1}=\frac{1}{2}: \quad$ Decide $\hat{X}=0$, if $\mathrm{y} \leq 0$
Decide $\hat{X}=1$, if $y>0$

Conditional Probability

e Prob of error:
considering the special case $p_{0}=p_{1}=\frac{1}{2}$

$$
\begin{aligned}
P_{\varepsilon} & =P_{0} P\{\hat{X}=1 \mid X=0\}+P_{1} P\{\hat{X}=0 \mid X=1\} \\
& =P_{0} P\{Y>0 \mid X=0\}+P_{1} P\{Y \leq 0 \mid X=1\} \\
P\{Y & >0 \mid X=0\}=\frac{1}{\sqrt{2 \pi} \sigma} \int_{0}^{1} e^{\frac{(Y+A)^{2}}{22}} \mathrm{~d} y=Q\left(\frac{A}{\sigma}\right)
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
P\{Y \leq 0 \mid X=1\}=Q\left(\frac{A}{\sigma}\right) \\
) P_{\varepsilon}=Q\left(\frac{A}{\sigma}\right) \\
A \uparrow, P_{\varepsilon} \downarrow \quad \sigma \uparrow, P_{\varepsilon} \uparrow
\end{gathered}
$$

Conditional Expectation

e The conditional expectation

$$
E[Y \mid x]=\int_{1}^{1} y f_{Y}(y \mid x) d y
$$

In discrete case,

$$
E[Y \mid x]=\sum_{y_{i}} y_{i} P_{Y}\left(y_{i} \mid x\right)
$$

e An important fact:

$$
\mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{E}[\mathrm{Y} \mid \mathrm{X}]]
$$

Proof:

$$
\begin{aligned}
E[E[Y \mid X]] & =\int_{1}^{1} E[Y \mid x] f_{X}(x) d x=\int_{1}^{1} \int_{1}^{1} y f_{Y}(y \mid x) f_{X}(x) d y d x \\
& =\int_{1}^{1} \int_{1}^{1} y f_{X ; Y}(x ; y) d y d x=E[Y]
\end{aligned}
$$

In general:

$$
E[h(Y)]=E[E[h(Y) \mid X]]
$$

Multiple Random Variables

e Joint cdf

$$
F_{X_{1}, \quad X_{\mathrm{n}}}\left(x_{1}, \cdots x_{n}\right)=P\left[X_{1} \leq x_{1}, \cdots, X_{1} \leq x_{n}\right]
$$

e Joint pdf

$$
f_{X_{1}}, \quad X_{n}\left(x_{1}, \cdots x_{n}\right)=\frac{\partial^{n}}{\partial x_{1}, \cdots \partial x_{n}} F_{X_{1}}, \quad X_{n}\left(x_{1}, \cdots x_{n}\right)
$$

If discrete, joint pmf

$$
P_{X_{1}, \quad X_{n}}\left(x_{1}, \cdots x_{n}\right)=P\left[X_{1}=x_{1}, \cdots X_{n}=x_{n}\right]
$$

e Marginal pdf

$$
f_{X_{\mathrm{i}}}\left(x_{i}\right)=\int_{\text {all } x_{1}}^{1} \cdots \int_{x_{n}}^{1} f\left(x_{1}, \cdots x_{n}\right) d x_{1} \cdots d x_{n}
$$

Independence

e $X_{1}, \cdots X_{n}$ are independent iff

$$
F_{X_{1}, \quad X_{n}}\left(x_{1}, \cdots x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \cdots F_{X_{\mathrm{n}}}\left(x_{n}\right)
$$

for all x_{1}, \cdots, x_{n}
e If we use pdf,

$$
f_{X_{1}, \quad X_{n}}\left(x_{1}, \cdots x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{\mathrm{n}}}\left(x_{n}\right)
$$

for all x_{1}, \cdots, x_{n}

Functions of Several r.v.s

e One function of several r.v.s

$$
Z=g\left(X_{1}, \cdots X_{n}\right)
$$

Let $R_{z}=\left\{\underline{x}=\left(x_{1}, \cdots, x_{n}\right)\right.$ s.t. $\left.g(\underline{x}) \leq z\right\}$ then

$$
\begin{aligned}
F_{z}(z) & =P\left\{\underline{X} \in R_{z}\right\} \\
& =\iint_{\underline{x} 2 R_{z}} \ldots f_{X_{1}, \quad, X_{\mathrm{n}}}\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}
\end{aligned}
$$

Functions of Several r.v.s

e Example: $Z=X+Y$, find $F_{z}(z)$ and $f_{z}(z)$ in terms of $f_{X, Y}(x, y)$

$$
\begin{aligned}
Z & =X+Y \leq z \Rightarrow Y \leq z-X \\
F_{z}(z) & =\int_{1}^{1} \int_{1}^{z} f_{X, Y}(x, y) d y d x \\
f_{z}(z) & =\frac{d}{d z} F_{z}(z)=\int_{1}^{1} f_{X, Y}(x, z-x) d x
\end{aligned}
$$

If X and Y are independent

$$
f_{z}(z)=\int_{1}^{1} f_{X}(x) f_{Y}(z-x) d x
$$

Functions of Several r.v.s

e Example: let $Z=X / Y$. Find the pdf of Z if X and Y are independent and both exponentially distributed with mean one.
e Can use the similar approach as previous example, but complicated. Fix $Y=y$, then $Z=X / y$ and $f_{Z}(z \mid y)=|y| f_{X}(y z \mid y)$. So

$$
\begin{aligned}
f_{Z}(z) & =\int_{1}^{1} f_{Z, Y}(z, y) d y=\int_{1}^{1} f_{Z}(z \mid y) f_{Y}(y) d y \\
& =\int_{1}^{1}|y| f_{X}(y z \mid y) f_{Y}(y) d y=\int_{1}^{1}|y| f_{X, Y}(y z, y) d y
\end{aligned}
$$

Functions of Several r.v.s

e Since X, Y are indep. exponentially distributed

$$
\begin{aligned}
f_{Z}(z) & =\int_{0}^{1} y f_{X}(y z) f_{Y}(y) d y=\int_{0}^{1} y e^{y z} e^{y} d y \\
& =\frac{1}{(1+z)^{2}} \quad \text { for } z>0
\end{aligned}
$$

Transformation of Random Vectors

e Transformation of Random Vectors

$$
Z_{1}=g_{1}\left(X_{1} \cdots X_{n}\right) Z_{2}=g_{2}\left(X_{1} \cdots X_{n}\right) \cdots Z_{n}=g_{n}\left(X_{1} \cdots X_{n}\right)
$$

The joint CDF of \underline{Z} is

$$
\begin{aligned}
F_{Z_{1} \quad Z_{\mathrm{n}}}\left(z_{1} \cdots z_{n}\right) & =P\left\{Z_{1} \leq z_{1}, \cdots, Z_{n} \leq z_{n}\right\} \\
& =\int_{\underline{x}: g_{k}(\underline{x})} \cdots \int_{z_{k}} f_{X_{1}} X_{\mathrm{n}}\left(x_{1} \cdots x_{n}\right) d x_{1} \cdots d x_{n}
\end{aligned}
$$

pdf of Linear Transformations

e If $\underline{Z}=A \underline{X}$, where A is a $n \times n$ invertible matrix.

$$
\begin{aligned}
f_{\underline{Z}}(\underline{z}) & =f_{Z_{1} Z_{n}\left(z_{1}, \cdots, z_{n}\right)} \\
& =\left.\frac{f_{X_{1} X_{\mathrm{n}}}\left(x_{1}, \cdots, x_{n}\right)}{|A|}\right|_{\underline{x}=A^{1} \underline{z}}=\frac{f_{\underline{X}}\left(A^{1} \underline{z}\right)}{|A|}
\end{aligned}
$$

$|A|$ is the absolute value of the determinant of A.
e.g if $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $|A|=|a d-b c|$

pdf of General Transformations

e $Z_{1}=g_{1}(\underline{X}), Z_{2}=g_{2}(\underline{X}), \cdots, Z_{n}=g_{n}(\underline{X})$ where $\underline{X}=\left(X_{1}, \cdots, X_{n}\right)$
e We assume that the set of equations:

$$
z_{1}=g_{1}(\underline{x}), \cdots, z_{n}=g_{n}(\underline{x})
$$

has a unique solution given by

$$
x_{1}=h_{1}(\underline{z}), \cdots, x_{n}=h_{n}(\underline{z})
$$

e The joint pdf of \underline{Z} is given by

$$
\begin{aligned}
& f_{Z_{1}} Z_{\mathrm{n}}\left(z_{1} \cdots z_{n}\right)=\frac{f_{X_{1}} X_{\mathrm{n}}\left(h_{1}(\underline{z}), \cdots, h_{n}(\underline{z})\right)}{\left|J\left(x_{1}, \cdots, x_{n}\right)\right|} \\
& \quad=f_{X_{1}} X_{\mathrm{n}}\left(h_{1}(\underline{z}), \cdots, h_{n}(\underline{z})\right)\left|J\left(z_{1}, \cdots, z_{n}\right)\right|
\end{aligned}
$$

where $J\left(x_{1}, \cdots, x_{n}\right)$ is called the Jacobian of the transformation.

pdf of General Transformations

e The Jacobian of the transformation

$$
J\left(x_{1}, \cdots, x_{n}\right)=\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial g_{n}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}}
\end{array}\right]
$$

and

$$
J\left(z_{1}, \cdots, z_{n}\right)=\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial h_{1}}{\partial z 1} & \cdots & \frac{\partial h_{1}}{\partial z_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial h_{n}}{\partial z_{1}} & \cdots & \frac{\partial h_{n}}{\partial z_{n}}
\end{array}\right]=\left.\frac{1}{J\left(x_{1} \cdots x_{n}\right)}\right|_{\underline{x}=\underline{h}(\underline{z})}
$$

e Linear transformation is a special case of $(*)$

pdf of General Transformations

e Example: let X and Y be zero-mean unit-variance independent Gaussian r.vs. Find the joint pdf of V and W defined by:

$$
\left\{\begin{array}{l}
V=\left(X^{2}+Y^{2}\right)^{\frac{1}{2}} \\
W=\backslash(X, Y)=\arctan (Y / X) \quad W \in[0,2 \pi)
\end{array}\right.
$$

e This is a transformation from Cartesian to Polar coordinates. The inverse transformation is:

$$
\left\{\begin{array}{l}
x=v \cos (w) \\
y=v \sin (w)
\end{array}\right.
$$

pdf of General Transformations

e The Jacobian

$$
J(v, w)=\left[\begin{array}{cc}
\cos w & -v \sin w \\
\sin w & v \cos w
\end{array}\right]=v \cos ^{2} w+v \sin ^{2} w=v
$$

e Since X and Y are zero-mean unit-variance independent Gaussian r.v.s,

$$
f_{X, Y}(x, y)=\frac{1}{\sqrt{2 \pi}} e^{\frac{x^{2}}{2}} \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{y^{2}}{2}}=\frac{1}{2 \pi} e^{\frac{x^{2}+y^{2}}{2}}
$$

e The joint pdf of V, W is then

$$
f_{V, W}(v, w)=v \cdot \frac{1}{2 \pi} e^{\frac{\left(v^{2} \cos ^{2} w+v^{2} \sin ^{2} w\right)}{2}}=\frac{v}{2 \pi} e^{\frac{v^{2}}{2}}
$$

for $v \geq 0$ and $0 \leq w<2 \pi$

pdf of General Transformations

e The marginal pdf of V and W

$$
f_{V}(v)=\int_{1}^{1} f_{V, W}(v, w) d w=\int_{0}^{2 \pi} \frac{v}{2 \pi} e^{\frac{v^{2}}{2}} d w=v e^{\frac{v^{2}}{2}}
$$

for $v \geq 0$. This is called the Rayleigh Distribution.

$$
\begin{aligned}
& \qquad f_{W}(w)=\int_{1}^{1} f_{V, W}(v, w) d v=\frac{1}{2 \pi} \int_{0}^{1} v e^{\frac{v^{2}}{2}} d v=\frac{1}{2 \pi} \\
& \text { for } 0 \leq w<2 \pi
\end{aligned}
$$

e Since

$$
\begin{aligned}
& f_{V, W}(v, w)=f_{V}(v) f_{W}(w) \\
& \Rightarrow V, W \text { are independent. }
\end{aligned}
$$

Expected Value of Functions of r.v.s

e Let $Z=g\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ then

$$
E[Z]=\int_{1}^{1} \cdots \int_{1}^{1} g\left(x_{1}, \cdots, x_{n}\right) f_{X_{1}} \quad X_{n}\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

For discrete case,

$$
E[Z]=\sum_{\text {all possible } \underline{x}} \cdots \sum_{1} g\left(x_{1}, \cdots, x_{n}\right) P_{X_{1}} \quad X_{\mathrm{n}}\left(x_{1}, \cdots, x_{n}\right)
$$

e Example: $Z=X_{1}+X_{2}+\cdots+X_{n}$

$$
\begin{aligned}
& E[Z]=E\left[X_{1}+X_{2}+\cdots+X_{n}\right] \\
& \quad=\int_{1}^{1} \cdots \int_{1}^{1}\left(x_{1}+\cdots+x_{n}\right) f_{X_{1}} X_{n}\left(x_{1} \cdots x_{n}\right) d x_{1} \cdots d x_{n} \\
& \quad=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]
\end{aligned}
$$

Expected Value of Functions of r.v.s

e Example: $Z=X_{1} X_{2} \cdots X_{n}$

$$
\begin{aligned}
& E[Z]=\int_{1}^{1} \cdots \int_{1}^{1} x_{1} \cdots x_{n} f_{X_{1}} X_{\mathrm{n}}\left(x_{1} \cdots x_{n}\right) d x_{1} \cdots d x_{n} \\
& \text { If } X_{1}, X_{2}, \cdots, X_{n} \text { are indep. } \\
& \quad E[Z]=E\left[X_{1} X_{2} \cdots X_{n}\right]=E\left[X_{1}\right] E\left[X_{2}\right] \cdots E\left[X_{n}\right]
\end{aligned}
$$

e The (j, k)-th moment of two r.v.s $X \& Y$ is

$$
E\left[X^{j} Y^{k}\right]=\int_{1}^{1} \int_{1}^{1} x^{j} y^{k} f_{X, Y}(x, y) d x d y
$$

If $j=k=1$, it is called the correlation.

$$
E[X Y]=\int_{1}^{1} \int_{1}^{1} x y f_{X, Y}(x, y) d x d y
$$

If $E[X Y]=0$, we call $X \& Y$ are orthogonal.

Expected Value of Functions of r.v.s

a The (j, k)-th central moment of X, Y is

$$
\begin{gathered}
E\left[(X-E(X))^{j}(Y-E(Y))^{k}\right] \\
\text { when } j=2, k=0, \Rightarrow \operatorname{Var}(X) \\
j=0, k=2, \Rightarrow \operatorname{Var}(Y)
\end{gathered}
$$

e When $j=k=1$, it is called the covariance of X, Y

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =E[X Y]-E[X] E[Y]=\operatorname{Cov}(Y, X)
\end{aligned}
$$

e The correlation coefficient of X and Y is defined as

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

where $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$ and $\sigma_{Y}=\sqrt{\operatorname{Var}(Y)}$.

Expected Value of Functions of r.v.s

e The correlation coefficient $-1 \leq \rho_{X, Y} \leq 1$ Proof:

$$
\begin{aligned}
0 & \leq E\left\{\left(\frac{X-E[X]}{\sigma_{X}} \pm \frac{Y-E[Y]}{\sigma_{Y}}\right)^{2}\right\} \\
& =1 \pm 2 \rho_{X, Y}+1=2\left(1 \pm \rho_{X, Y}\right)
\end{aligned}
$$

e If $\rho_{X, Y}=0, X, Y$ are said to be uncorrelated.
e If X, Y are independent, $E[X Y]=E[X] E[Y] \Rightarrow \operatorname{Cov}(X, Y)=0 \Rightarrow \rho_{X, Y}=0$. Hence, X, Y are uncorrelated.
e The converse is not always true. It is true in the case of Gaussian r.v.s (will be discussed later)

Expected Value of Functions of r.v.s

e Example: θ is uniform in $[0,2 \pi)$.
Let $X=\cos \theta$ and $Y=\sin \theta$
X and Y are not independent, since $X^{2}+Y^{2}=1$. However

$$
\begin{aligned}
E[X Y] & =E[\sin \theta \cos \theta]=E\left[\frac{1}{2} \sin (2 \theta)\right] \\
& =\int_{0}^{2 \pi} \frac{1}{2 \pi} \frac{1}{2} \sin (2 \theta) d \theta=0
\end{aligned}
$$

We can also show $E[X]=E[Y]=0$. So

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0 \Rightarrow \rho_{X, Y}=0
$$

X, Y are uncorrelated but not independent.

Joint Characteristic Function

a Joint Characteristic Function

$$
\Phi_{X_{1}} \quad X_{\mathrm{n}}\left(w_{1}, \cdots, w_{n}\right)=E\left[e^{j\left(w_{1} X_{1}++w_{\mathrm{n}} X_{\mathrm{n}}\right)}\right]
$$

e For two variables

$$
\Phi_{X, Y}\left(w_{1}, w_{2}\right)=E\left[e^{j\left(w_{1} X+w_{2} Y\right)}\right]
$$

e Marginal characteristic function

$$
\Phi_{X}(w)=\Phi_{X, Y}(w, 0) \quad \Phi_{Y}(w)=\Phi_{X, Y}(0, w)
$$

e If X, Y are independent

$$
\begin{aligned}
\Phi_{X, Y}\left(w_{1}, w_{2}\right) & =E\left[e^{j w_{1} X+j w_{2} Y}\right] \\
& =E\left[e^{j w_{1} X}\right] E\left[e^{j w_{2} Y}\right]=\Phi_{X}\left(w_{1}\right) \Phi_{Y}\left(w_{2}\right)
\end{aligned}
$$

Joint Characteristic Function

e If $Z=a X+b Y$

$$
\Phi_{Z}(w)=E\left[e^{j w(a X+b Y)}\right]=\Phi_{X, Y}(a w, b w)
$$

e If $Z=X+Y, X$ and Y are independent

$$
\Phi_{Z}(w)=\Phi_{X, Y}(w, w)=\Phi_{X}(w) \Phi_{Y}(w)
$$

Jointly Gaussian Random Variables

e Consider a vector of random variables
$\underline{X}=\left(X_{1}, X_{2}, \cdots X_{n}\right)$. Each with mean $m_{i}=E\left[X_{i}\right]$, for $i=1, \cdots, n$ and the covariance matrix

$$
K=\left[\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\vdots & \vdots & \cdots & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \cdots & \cdots & \operatorname{Var}\left(X_{n}\right)
\end{array}\right]
$$

Let $\underline{m}=\left[m_{1}, \cdots, m_{n}\right]^{T}$ be the mean vector and $\underline{x}=\left[x_{1}, \cdots, x_{n}\right]^{T}$ where $(\cdot)^{T}$ denotes transpose. Then $X_{1}, X_{2}, \cdots X_{n}$ are said to be the jointly Gaussian if their joint pdf is:

$$
f_{\underline{X}}(\underline{x})=\frac{1}{(2 \pi)^{\frac{n}{2}}|K|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{m})^{T} K^{1}(\underline{x}-\underline{m})\right\}
$$

where $|K|$ is the determinant of K.

Jointly Gaussian Random Variables

e For $n=1$, let $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, then $f_{X}(x)=\frac{\mathrm{p}}{\overline{2 \pi} \sigma} e^{\frac{(\mathrm{xm})^{2}}{2^{2}}}$
e For $n=2$, denote the r.v.s by X and Y. Let
$\underline{m}=\left[\begin{array}{c}m_{X} \\ m_{Y}\end{array}\right] K=\left[\begin{array}{ccccc}2 & & X Y & X & Y \\ X & & 2 & \end{array}\right]$
Then $|K|=\begin{array}{rl}2 & 2 \\ X & (1-\underset{X}{2})\end{array}$

$$
K^{1}=\frac{1}{X_{X}^{2}}{ }_{Y}^{2}\left(1-X_{X}^{2} Y\right) \quad\left[\begin{array}{ccc}
2 & -X Y X & Y \\
-X Y Y & \underset{X}{2} &
\end{array}\right]
$$

and

$$
\begin{aligned}
f_{X ; Y}(x ; y)= & \frac{1}{2 \times Y \sqrt{1-{ }_{X}^{2}}} \exp \left\{-\frac{1}{2\left(1-{\underset{X}{X}}_{2}\right)}\left[\left(\frac{x-m_{X}}{x}\right)^{2}\right.\right. \\
& \left.\left.-2 X_{Y Y}\left(\frac{x-m_{X}}{x}\right)\left(\frac{y-m_{y}}{y}\right)+\left(\frac{y-m_{y}}{y}\right)^{2}\right]\right\}
\end{aligned}
$$

Jointly Gaussian Random Variables
e The marginal pdf of X :

$$
f_{x}(x)=\frac{1}{\sqrt{2} x} e^{\frac{\left(x m_{x}\right)^{2}}{2 x_{x}^{2}}}
$$

The marginal pdf of Y :

$$
f_{Y}(y)=\frac{1}{\sqrt{2}} e^{\frac{(y m y)^{2}}{2 \frac{y}{y}}}
$$

e If $X_{Y}=0 \Rightarrow X ; Y$ are independent.
e The conditional pdf.

Linear Transformation of Gaussian r.v.s
e Let $\underline{X} \sim N(\underline{m} ; K), \underline{Y}=A \underline{X}$ then
$\underline{Y} \sim N(\underline{m} ; C)$, where $\hat{m}=A \underline{m}$ and $C=A K A^{\top}$
proof:

$$
f_{\underline{Y}}(\underline{y})=\frac{f_{\underline{x}}\left(A^{1} \underline{y}\right)}{|A|}=\frac{1}{(2)^{\frac{n}{2}}|A||K|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}\left(A^{1} \underline{y}-\underline{m}\right)^{\top} K \quad{ }^{1}\left(A^{1} \underline{y}-\underline{m}\right)\right\}
$$

Note that $A{ }^{1} \underline{y}-\underline{m}=A{ }^{1}(\underline{y}-A \underline{m})=A{ }^{1}(\underline{y}-\underline{q} \underline{q})$, so

$$
\begin{aligned}
\left(A^{1} \underline{y}-\underline{m}\right)^{\top} K{ }^{1}\left(A^{1} \underline{y}-\underline{m}\right) & =\left(\underline{y}-\underline{m_{m}}\right)^{\top}\left(A^{1}\right)^{\top} K{ }^{1} A{ }^{1}(\underline{y}-\underline{\underline{m}}) \\
& =(\underline{y}-\underline{m})^{\top} C^{1}(\underline{y}-\underline{m} \underline{m})
\end{aligned}
$$

and $|\mathrm{A}||\mathrm{K}|^{\frac{1}{2}}=\left(|\mathrm{A}|^{2}|\mathrm{~K}|\right)^{\frac{1}{2}}=\left(\left|\mathrm{AK} \mathrm{A}^{\top}\right|\right)^{\frac{1}{2}}=|\mathrm{C}|^{\frac{1}{2}}$

$$
f_{\underline{Y}}(\underline{y})=\frac{1}{(2)^{\frac{n}{2}}|C|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\underline{y}-\underline{\underline{m}})^{\top} C^{1}(\underline{y}-\underline{\underline{m}})\right\} \sim N(\underline{\underline{m}} ; C)
$$

Linear Transformation of Gaussian r.v.s

e Since K is symmetric, it is always possible to find a matrix A s.t.
$=A K A^{\top}$ is diagonal. $=\left[\begin{array}{llll}1 & & 0 \\ & 2 & & \\ & & \ddots & \\ 0 & & & n\end{array}\right]$
so

$$
\begin{aligned}
f_{\underline{Y}}(\underline{y}) & =\frac{1}{(2)^{\frac{n}{2}}| |^{\frac{1}{2}}} \mathrm{e}^{\frac{1}{2}(\underline{y} \underline{m})^{\top}{ }^{1}(\underline{y} \underline{m})} \\
& =\frac{1}{\sqrt{2 \quad 1}} \mathrm{e}^{\frac{\left(y_{1} m_{1}\right)^{2}}{21}} \cdots \frac{1}{\sqrt{2 n}} \mathrm{e}^{\frac{\left(y_{n} m_{n}\right)^{2}}{2 n}}
\end{aligned}
$$

That is, we can transform \underline{X} into n independent Gaussian r.v.s $Y_{1} \ldots Y_{n}$ with means m_{i} and variance ${ }_{i}$.

Mean Square Estimation

e We use $g(X)$ to estimate Y, write as $\hat{Y}=g(X)$. The cost associated with the estimation error is $C(Y-\hat{Y})$. e.g.

$$
C(Y-\hat{Y})=(Y-\hat{Y})^{2}
$$

$$
\xrightarrow{\mathrm{Y}} \square \xrightarrow{\mathrm{X}} \quad=(Y-g(X))^{2}
$$

The mean square error

$$
E[C]=E\left[(Y-g(X))^{2}\right]
$$

e Case 1: if $\hat{Y}=a$

$$
\begin{gathered}
E\left[(Y-a)^{2}\right]=E\left[Y^{2}\right]-2 a E[Y]+a^{2}=f(a) \\
\frac{d f}{d a}=0 \Rightarrow a=E[Y]=\mu_{Y}
\end{gathered}
$$

The mean square error: $E\left[\left(Y-\mu_{Y}\right)^{2}\right]=\operatorname{Var}[Y]$

Mean Square Estimation

e Case 2: if $\hat{Y}=a X+b$, then $E\left[(Y-a X-b)^{2}\right]=f(a, b)$

$$
\left\{\begin{array}{rl}
\frac{\partial f}{\partial a} & =0 \\
\frac{\partial f}{\partial b} & =0
\end{array} \Rightarrow a=\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}, b=\mu_{Y}-a \mu_{X}, ~\left(X-\mu_{X}\right)+\mu_{Y}\right.
$$

This is called the MMSE linear estimation.
e The mean square error:

$$
\begin{gathered}
E\left[(Y-\hat{Y})^{2}\right]=\sigma_{Y}^{2}\left(1-\rho_{X Y}^{2}\right) \\
\text { If } \rho_{X Y}=0, \hat{Y}=\mu_{Y}, \text { error }=\sigma_{Y}^{2}, \text { reduces to case } 1 . \\
\text { If } \rho_{X Y}= \pm 1, \hat{Y}= \pm \frac{\sigma_{Y}}{\sigma_{\mathrm{x}}}\left(X-\mu_{X}\right)+\mu_{Y} \text {, and error }=0
\end{gathered}
$$

Mean Square Estimation

e Case 3: \hat{Y} is a general function of X.

$$
\begin{aligned}
E\left[(Y-\hat{Y})^{2}\right] & =E\left[(Y-g(X))^{2}\right]=E\left[E\left[(Y-g(X))^{2} \mid X\right]\right] \\
& =\int_{1}^{1} E\left[(Y-g(x))^{2} \mid x\right] f_{X}(x) d x
\end{aligned}
$$

For any x, choose $g(x)$ to minimize $\mathrm{E}\left[(\mathrm{Y}-\mathrm{g}(\mathrm{x}))^{2} \mid \mathrm{X}=\mathrm{x}\right]$

$$
\Rightarrow g(x)=E[Y \mid X=x]
$$

This is called the MMSE estimation.
e Example: X, Y joint Gaussian.

$$
E[Y \mid X]=\rho_{X, Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)+\mu_{Y}
$$

The MMSE estimation is linear for Gaussian.

Mean Square Estimation

e Example: $X \sim$ uniform $(-1,1), Y=X^{2}$. We have

$$
E[X]=0
$$

$$
\rho_{X Y}=E[X Y]-E[X] E[Y]=E[X Y]=E\left[X^{3}\right]=0
$$

So, the MMSE linear estimation:

$$
\hat{Y}=\mu_{Y}
$$

and the error is σ_{Y}^{2}.
The MMSE estimation:

$$
g(x)=E[Y \mid X=x]=E\left[X^{2} \mid X=x\right]=x^{2}
$$

So $\hat{Y}=X^{2}$ and the error is 0 .

