ENCS6161: Probability and Stochastic Processes
 Fall 2005
 Final Exam

1) The random variable X has the $p d f$,

$$
f_{X}(x)=\frac{\alpha}{2} e^{-\alpha|x|}
$$

a) Find the $p d f$ of the random variable $Y=|X|$ (6 Marks).
b) Find the expected value and variance of Y (4 Marks).
2) A fair coin is tossed 900 times. Find the probability that the number of heads is between 420 and 465 (6 Marks).
3) A point (X, Y) is selected at random inside a unit circle. Find the marginal $p d f$ of X (6 Marks)
4) Independent random variables X and Y have the following probability density functions:

$$
f_{X}(x)=\frac{1}{\sqrt{10 \pi}} e^{\frac{-(x-2)^{2}}{10}}
$$

and

$$
f_{Y}(y)=\frac{1}{\sqrt{8 \pi}} e^{-\frac{(y-1)^{2}}{8}}
$$

Define random variable $Z=X+Y$ and $W=X-2 Y$. Find:
a) Joint probability density function of Z and W (8 Marks).
b) Marginal probability density functions of Z and W (4 Marks).
5) A random process is defined as,

$$
X(t)=A t+B
$$

where A and B are Gaussian random variables with means m_{1}, m_{2}, variance $\sigma_{1}^{2}, \sigma_{2}^{2}$, and correlation coefficient ρ.
a) Find the mean and autocovariance of $X(t)$ (5 Marks).
b) Find the $p d f$ of $X(t)$ (3 Marks).
6) A linear time invariant system with input $X(t)$ is described by the equation,

$$
\frac{d}{d t} Y(t)+a Y(t)=X(t)
$$

a) Find the power spectral density of $Y(t)$ if $X(t)$ is a white process with power spectral density $N_{0} / 2$ (6 Marks).
b) Find the autocorrelation function of $Y(t)$ (4 Marks).
7) In a queue, arrivals are Poisson with a rate λ. There are two servers each with an exponential service time with a mean $\frac{1}{\mu}$. The size of the buffer is 5 .
a) Draw the state transition diagram for the queue (2 Marks).
b) Find the steady state probabilities of the system (6 Marks).

