Concordia University ENCS6161 - Probability and Stochastic Processes

Instructor: Dr. D. Qiu
Final Exam
Winter 2006

1) Show that the Q-function for the Gaussian random variable satisfies ($\mathbf{5}$ marks)

$$
Q(-x)=1-Q(x)
$$

2) Let X_{1} be uniformly distributed in the interval $[0,1], X_{2}$ be uniformly distributed in $\left[0, X_{1}\right], X_{3}$ be uniformly distributed in $\left[0, X_{2}\right]$.
a) Find the joint pdf of $\left(X_{1}, X_{2}, X_{3}\right)$. (5 marks)
b) Find the marginal pdf of $X_{3} .(\mathbf{1 0}$ marks)
3) Let X_{1}, X_{2}, \cdots be a sequence of iid random variables, let N be a positive integervalued random variable independent of X_{j} 's, and let $S=\sum_{k=1}^{N} X_{k}$. Find the mean and variance of S in terms of the mean and variance of X and N. ($\mathbf{1 5}$ marks)
4) Let $X(t)=A \cos \omega t+B \sin \omega t$, where A and B are iid Gaussian random variables with zero mean and variance σ^{2}.
a) Find the mean and autocovariance of $X(t)$. (8 marks)
b) Find the joint pdf of $X(t)$ and $X(t+s)$. (7 marks)
5) Let Z_{n} be the random process defined by:

$$
Z_{n}=\frac{1}{2} Z_{n-1}+X_{n} \quad Z_{0}=0
$$

where X_{n} is a zero-mean, unit-variance iid process.
a) Find the autocovariance of Z_{n} and determine whether Z_{n} is wide-sense stationary.
(10 marks)
b) If X_{n} is an iid sequence of zero-mean, unit-variance Gaussian random variables, find the pdf of Z_{n} as $n \rightarrow \infty$ (5 marks)
6) The input into a filter is zero-mean white noise with noise power density $N_{0} / 2$. The filter has transfer function

$$
H(f)=\frac{1}{1+j 2 \pi f}
$$

a) Find $S_{Y}(f)$ and $R_{Y}(\tau)$. ($\mathbf{5}$ marks)
b) What is the average power of the output? ($\mathbf{5}$ marks)
7) A die is rolled repeatedly. Which of the following are Markov chains? For those that are, find the transition probability matrix.
a) The largest number X_{n} shown up to the nth roll. (7 marks)
b) The number N_{n} of sixes in n rolls. ($\mathbf{8}$ marks)
8) Two types of customers come to a queue independently with Poisson arrival rates of λ_{1} and λ_{2} respectively. Both types of customers require exponentially distributed services time of rate μ. Type 1 customers are always accepted while type 2 customers are rejected when the total number of customers in the system exceeds K.
a) Let $X(t)$ be the total arrival process. Prove that $X(t)$ is a Poisson process with rate $\lambda_{1}+\lambda_{2}$. (5 marks)
b) Draw the transition diagram for $N(t)$, the number of customers in the system. (5 marks)

