Concordia University ENCS6161 – Probability and Stochastic Processes

Instructor: Dr. D. Qiu	Final Exam	Winter 2006
1) Show that the <i>Q</i> -function	for the Gaussian random variab Q(-x) = 1 - Q(x)	le satisfies (5 marks)
2) Let X be uniformly distri	buted in the interval $\begin{bmatrix} 0 & 1 \end{bmatrix} X$	ne uniformly distributed in

- 2) Let X₁ be uniformly distributed in the interval [0,1], X₂ be uniformly distributed in [0, X₁], X₃ be uniformly distributed in [0, X₂].
 a) Find the joint pdf of (X₁, X₂, X₃). (5 marks)
 b) Find the marginal pdf of X₃.(10 marks)
- 3) Let X_1, X_2, \cdots be a sequence of iid random variables, let *N* be a positive integervalued random variable independent of X_j 's, and let $S = \sum_{k=1}^{N} X_k$. Find the mean and variance of *S* in terms of the mean and variance of *X* and *N*. (15 marks)
- 4) Let X(t) = A cos ωt + B sin ωt, where A and B are iid Gaussian random variables with zero mean and variance σ².
 a) Find the mean and autocovariance of X(t). (8 marks)
 b) Find the joint pdf of X(t) and X(t+s). (7 marks)
- 5) Let Z_n be the random process defined by:

$$Z_n = \frac{1}{2}Z_{n-1} + X_n$$
 $Z_0 = 0,$

where X_n is a zero-mean, unit-variance iid process.

a) Find the autocovariance of Z_n and determine whether Z_n is wide-sense stationary. (10 marks)

b) If X_n is an iid sequence of zero-mean, unit-variance Gaussian random variables, find the pdf of Z_n as $n \to \infty$ (5 marks)

6) The input into a filter is zero-mean white noise with noise power density $N_0/2$. The filter has transfer function

$$H(f) = \frac{1}{1 + j2\pi f}$$

a) Find $S_{Y}(f)$ and $R_{Y}(\tau)$. (5 marks)

b) What is the average power of the output? (5 marks)

(See next page for more questions)

- 7) A die is rolled repeatedly. Which of the following are Markov chains? For those that are, find the transition probability matrix.
 a) The largest number X_n shown up to the *n*th roll. (7 marks)
 b) The number N_n of sixes in *n* rolls. (8 marks)
- 8) Two types of customers come to a queue independently with Poisson arrival rates of λ₁ and λ₂ respectively. Both types of customers require exponentially distributed services time of rate μ. Type 1 customers are always accepted while type 2 customers are rejected when the total number of customers in the system exceeds K.
 a) Let X(t) be the total arrival process. Prove that X(t) is a Poisson process with rate λ₁ + λ₂. (5 marks)
 b) Draw the transition diagram for N(t), the number of customers in the system. (5

b) Draw the transition diagram for N(t), the number of customers in the system. marks)