Concordia University ENCS6161 - Probability and Stochastic Processes

Instructor: Dr. D. Qiu

Midterm Exam

1) a) A random experiment has sample space $S=\{a, b, c\}$. Suppose that $P[\{a, c\}]=3 / 8$ and $P[\{b, c\}]=7 / 8$. Find the probabilities of the elementary events. (2 Marks)
b) Two numbers are selected at random from the interval $[0,1]$. Find the probability that they differ by less than 1/2. (2 Marks)
c) An urn contains four black balls and three white balls. Two balls are selected at random from the urn without replacement. Find the probability that both are black.
(2Marks)
d) How many odd three-digit numbers can be formed from the digits $0,1,2,3,4$, and 5, if each digit can be used only once? (2 Marks)
2) How many words can be formed with the letters of the word 'OMEGA' when:
a) 'E' being always in the middle? ($\mathbf{2}$ Marks)
b) Vowels occupying odd-places? (2 Marks)
c) 3 Vowels being not together? (note: 2 vowels being together is allowed) (2 Marks)
3) Consider a coin with $\mathrm{P}(\mathrm{Head})=0.4$ and $\mathrm{P}($ Tail $)=0.6$. The coin is flipped 100 times.

Let X be the number of heads obtained. Using the Chebyshev inequality, find a lower bound for $P(30<X<50)$. (3 Marks)
4) a) Let $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$ where a and b are constants. Find the characteristic function of Y in terms of the characteristic function of X. (2 Marks)
b) If a random variable X has the characteristic function $\Phi(\omega)=e^{-|\rho|}$, find the PDF of X. (3 Marks)
5) A communication channel accepts the input $X \in\{0,1,2,3\}$ and outputs $\mathrm{Y}=\mathrm{X}+\mathrm{Z}$ where Z is a binary random variable taking values -1 and +1 with equal probability. Assume X and Z are independent and all values of the input X have equal probability.
a) Find the entropy of Y. (2 Marks)
b) Find the entropy of X given that $\mathrm{Y}=1$. (2 Marks)
6) In a data network, packets containing 64 bits are transmitted over a channel with a bit error probability of $\varepsilon=10^{-2}$. If a packet is received in error, i.e., containing one or more errors, the receiver asks for retransmission.
a) What is the probability that a packet is successfully transmitted in the first attempt?
(2 Marks)
b) What is the average number of transmissions per packet? (2 Marks)

