ENCS 6161 Midterm, Oct 2015
 30 points total
 Time allotted: 2 hours

1. A fair die with numbers 1 to 6 on its faces is rolled n times. Let X be the number of times number 6 shows up. What is the average value of X^{2} and $\mathrm{aX}+\mathrm{bX}^{2}$? (2 points)
2. For a random variable X with $\operatorname{PDF} f(x)=\lambda e^{-\lambda x}$ (for $X>0$), find $E\left[x^{2}\right]$ (you must show how you do the integral to get the grade). (2 points)
3. A binary transmission system transmits a signal $X(-1$ to send " 0 " bit and 1 to send " 1 " bit). Assume 0 bits are 2 times as likely as 1 bits. For $X=-1$, the received signal is $\mathrm{Y}=\mathrm{X}+2 \mathrm{~N}$, and for $\mathrm{X}=1$, the received signal is $\mathrm{Y}=\mathrm{X}+\mathrm{N}$, where noise N has zero-mean Gaussian distribution with variance σ^{2}.
a) Find the conditional PDF of Y given X. That is, $f_{Y}(y \mid X=-1)$ and $f_{Y}(y \mid X=1)$.
(2 points)
b) Receiver decides a 0 bit was transmitted if the observed value of y satisfies

$$
\mathrm{fy}_{\mathrm{Y}}(\mathrm{y} \mid \mathrm{X}=-1) \mathrm{P}(\mathrm{X}=-1)>\mathrm{fy}(\mathrm{y} \mid \mathrm{X}=1) \mathrm{P}(\mathrm{X}=1)
$$

Find the range that receiver decides 0 bit was transmitted. Explain the results. (8 point)
4. Let $\mathrm{Y}=\mathrm{X}^{\wedge} 3$.
a) Find the pdf of Y in terms of pdf of X. (2 points)
b) Assume X has uniform distribution, $\mathrm{f}(\mathrm{x})=1$ for $0 \leq \mathrm{x} \leq 1$. Find $\mathrm{f}(\mathrm{y})$. (2 points)
c) In part b, what is $f(y=0)$? (2 points)
5) A communication channel accepts inputs $X=0,1,2,3$, and outputs $Z=X+Y$, where Y is a random variable taking values 0 and 1 with equal probability. Assume all values of input X have equal probabilities, and $X \& Y$ are independent.
a) Calculate the entropy of Z. (2 points)
b) Find the entropy of X given that $Y=1$. (2 points)
c) Find the entropy of X given that $\mathrm{Z}=1$. (2 points)
6) For a random variable X with $\operatorname{PDF} f(x)=\lambda e^{-\lambda x}$ (for $X>0$), find $P(X>8 \mid X>2)$. (2 points)
7) Assume current measurements I in a wire are positive, have a mean of 12 mA and standard deviation of 1 mA . Approximate both Markov and Chebychev upper bounds for prob. of $\mathrm{I}>15 \mathrm{~mA}$. Make necessary assumptions and state them. (2 points)

In case you need to solve $a x^{2}+b x+c=0$, the solution is $x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$

